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Abstract

lead to inaccurate predictions.

calibration curves, and Bland-Altman plots.

in patient prioritization.

Background: The lung allocation system in the U.S. prioritizes lung transplant candidates based on estimated pre-
and post-transplant survival via the Lung Allocation Scores (LAS). However, these models do not account for
selection bias, which results from individuals being removed from the waitlist due to receipt of transplant, as well
as transplanted individuals necessarily having survived long enough to receive a transplant. Such selection biases

Methods: We used a weighted estimation strategy to account for selection bias in the pre- and post-transplant
models used to calculate the LAS. We then created a modified LAS using these weights, and compared its
performance to that of the existing LAS via time-dependent receiver operating characteristic (ROC) curves,

Results: The modified LAS exhibited better discrimination and calibration than the existing LAS, and led to changes

Conclusions: Our approach to addressing selection bias is intuitive and can be applied to any organ allocation
system that prioritizes patients based on estimated pre- and post-transplant survival. This work is especially relevant
to current efforts to ensure more equitable distribution of organs.
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Background

The Organ Procurement and Transplantation Network
(OPTN) is responsible for allocating deceased-donor or-
gans in the United States. The OPTN utilizes separate
policies to govern the allocation of livers, kidneys, hearts,
and lungs [1]. For example, liver transplant candidates
receive a Model for End-Stage Liver Disease (MELD)
score; those wait-listed for kidney transplantation receive
an Estimated Post-Transplant Survival (EPTS) score, and
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lung transplant candidates receive a Lung Allocation
Score (LAS) [1-3]. More specifically, the LAS is derived
from models that predict both pre-transplant and post-
transplant survival and aims to balance each patient’s
predicted transplant benefit (i.e., difference between sur-
vival with versus without a lung transplant) against their
waitlist urgency [1-3].

Such models are particularly susceptible to selection
bias. Estimates of pre-transplant survival are subject to
selection bias in the form of dependent censoring, be-
cause patients can be removed from the waiting list
prior to 1 year of follow-up due to receipt of transplant,
loss to follow-up, or other clinical reasons (e.g., the in-
ability to withstand the transplant surgery). In each of
these cases, the patients’ true one-year pre-transplant
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survival is unobserved. Estimates of post-transplant sur-
vival similarly are subject to a type of selection bias —
“survivor bias” [4—7] — because they have been derived
using information only among patients who received a
transplant. Thus, post-transplant survival models are ap-
plied to all wait-listed patients, but are fitted using only
transplanted patients. In particular, while statistical
models used to estimate transplant benefit account for
variation in patient characteristics, they do not account
for the fact that in order to receive a transplant, individ-
uals must: 1) survive on the waitlist long enough for a
suitable donor organ to become available, and 2) have
sufficient priority to actually receive the organ. Since in-
dividuals who survive 1 year or more on the waitlist
might be inherently different from individuals who die,
receive a transplant, or are censored (e.g., lost to follow-
up or removed from the waitlist for other clinical rea-
sons, such as being too sick to withstand the transplant
surgery) prior to 1 year, failure to incorporate such in-
formation in the models used to estimate transplant
benefit and waitlist urgency can lead to inaccurate
predictions.

Lung transplantation represents an important example
to study because it is a highly effective treatment, but or-
gans are scarce. Waitlist mortality is high, waitlist times
vary, and there are concerns about inequities in waitlist
mortality and organ allocation [8]. In fact, concerns
about these inequities led the Department of Health and
Human Services to mandate the development of the
LAS based on medical need rather than wait time [3, 9—
11]. Donor lungs are now allocated to recipients based
on the LAS [3, 9-11] which is calculated using the pre-
dicted difference between transplant benefit and waitlist
urgency, with transplant benefit defined as one-year
post-transplant survival minus one-year waitlist survival,
and waitlist urgency defined as one-year waitlist survival.
Conceptually, the LAS aims to determine the number of
days of life a person would gain over the next year if
they receive transplant compared to if they do not re-
ceive transplant, and prioritizes patients for whom this
comparison is more favorable.

In Appendix 1, we use directed acyclic graphs to illus-
trate how selection bias can lead to inaccurate predic-
tions for both the pre-transplant and post-transplant
prediction models. This bias can occur even with mea-
sured covariates, because: 1) not all measured covariates
which are available in the UNOS database are included
in the LAS models (e.g., geographic differences in trans-
plant listing and outcomes [12]); and 2) even if a mea-
sured covariate is included in the LAS, the association
between such a covariate and post-transplant survival
can be different in the post-transplant subset than it is
in the full waitlist population. Biased estimates of pre-
and post-transplant survival in turn imply that the
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current prioritization of lung transplant recipients may
be inaccurate. Although prior research has incorporated
weights in the pre-transplant survival model [13], the
models did not capture important geographic differences
in patient selection and survival, and no work, to our
knowledge, has estimated weights to the post-transplant
survival model.

In this study, we attempt to bring principles from
causal inference into the existing prediction model
framework employed by the LAS to improve organ allo-
cation. Specifically, we develop a modified LAS using in-
verse probability weighting to improve the accuracy of
the LAS by accounting for selection bias in the pre- and
post-transplant survival models. Our work incorporates
additional factors in the pre-transplant weights to better
address selection bias in the pre-transplant survival
model. We also develop new weights to address selec-
tion bias in the post-transplant survival model.

Methods

Data & Weights

We used publicly available pre- and post-lung transplant
data from the United Network for Organ Sharing
(UNOS). Our development cohort consisted of all pa-
tients 18 years or older who were listed for single or bi-
lateral lung transplantation in the United States between
January 1, 2010 and December 31, 2013. This date range
was chosen because it ensures that no patient experi-
ences any person-time prior to the implementation of
the LAS (ie., prior to May 2005) and is consistent with
the development cohort used to fit the current LAS
models. Our testing cohort consisted of patients meeting
these same criteria who were listed between January 1,
2016 and December 31, 2017 (the last complete year of
available data). Patients listed during 2014 and 2015
were excluded from our analyses to ensure that 1) our
development cohort is consistent with the development
cohort used to fit the current LAS; and 2) our testing co-
hort does not include any patients for whom prior ver-
sions of the LAS were used in clinical practice. To avoid
concerns about positivity violations associated with the
likelihood of receiving a transplant, we removed individ-
uals who had clinical contraindications to receiving
transplant (e.g., those with panel reactive antibodies
greater than 90%), and individuals with both restrictive
lung disease (diagnosis group D) and height less than
five feet who require such small donor organs that they
rarely find a match. In both cohorts, patients were
followed from their initial listing date to their time of
transplant, death, loss to follow-up, or removal from the
waitlist due to other clinical reasons (e.g., inability to
withstand the transplant surgery), whichever occurred
first. Appendix 2 provides demographic and clinical
characteristics of the development and testing cohorts.
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After cleaning (see Appendix 3), data were divided into
pre- and post-transplant subsets, with the pre-transplant
subset containing daily time intervals, and the post-
transplant subset consisting of a single record per pa-
tient. This data structure allowed us to construct time-
varying inverse probability of treatment weights (IPTW)
and inverse probability of censoring weights (IPCW),
which effectively circumvent survivor bias by “mapping”
the survival probabilities obtained among the post-
transplant group back to the full waitlist population. Ap-
pendix 4 and 5 provide methodologic details on how we
constructed these weights. Analyses were conducted
using Stata (StataCorp LLC, College Station, TX) and R
(R Foundation for Statistical Computing, Vienna,
Austria).

Fitting the outcome models

We fit a weighted Cox proportional hazards model to
each patient’s baseline record in the pre-transplant data,
weighted by each patient’s daily time-varying weight to
estimate one-year pre-transplant survival accounting for
dependent censoring [14]. This approach allows us to in-
corporate information from time-varying covariates and
time on the waitlist captured by the IPTW and IPCW
models, while still retaining the same form of the out-
come model as the current pre-transplant LAS. It also
provides predicted probabilities of one-year survival on
the waitlist, which is consistent with the definition of
waitlist urgency used by the current LAS. Our weighted
Cox proportional hazards model contains all covariates
included in the existing pre-transplant LAS (but not
follow-up time, as UNOS policy prohibits follow-up time
from being included in the outcome model). Thus, the
variables in the outcome model are the same in the
modified LAS as in the existing LAS, but the coefficient
estimates vary (see Appendix 6).

Similarly, we estimated one-year post-transplant sur-
vival by fitting a weighted Cox proportional hazards
model to the post-transplant subset which included the
covariates in the existing post-transplant LAS, and was
weighted by each patient’s post-transplant weight (which
is fixed at the time of transplant). Consistent with UNOS
policy, the post-transplant outcome model did not in-
clude time since waitlist registration. The estimate of
one-year post-transplant survival obtained from this
weighted outcome model differs from that included in
the current LAS, as the weighted outcome model pro-
vides an estimate of survival that reflects the entire wait-
list population, whereas the current LAS estimates this
quantity only among the subset of individuals who did,
in fact, receive transplant. Taken together, the weighted
pre- and post-transplant outcome models produce sur-
vival estimates that align more closely with the LAS’s
conceptual goal of comparing the number of days of life
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a person would gain over the next year if they receive
transplant versus if they do not receive transplant.

Assessing model performance

To assess the discrimination of the pre- and post-
transplant outcome models, we constructed time-
dependent receiver operating characteristic (ROC)
curves and evaluated the area under these curves (AUC)
via nearest-neighbor smoothing at 1 year post-waitlist
registration and 1 year post-transplantation, respectively
[15, 16]. This approach accommodates censoring by
viewing survival time as a “time-varying binary outcome”
at each possible time point, and estimating the sensitivity
and specificity of the model among all patients who are
still alive and at risk of the outcome at those time points
[15, 16]. Separate statistics were computed for the devel-
opment and testing cohorts.

Calibration was evaluated graphically by defining low-,
medium-, and high-risk categories based on tertiles of
the linear predictor of the pre- and post-transplant out-
come models, averaging the survival functions within
each of these risk categories, and then overlaying the ob-
served (Kaplan-Meier) and predicted survival curves for
each risk category [17]. This approach allows us to
evaluate the calibration of the pre- and post-transplant
outcome models at any time point after waiting list
registration among all patients who are alive and at risk
of the outcome at those time points [17]. Separate cali-
bration plots were constructed for the development and
testing cohorts.

Comparing the modified LAS to the existing LAS

The current LAS is composed of a pre-transplant out-
come model and a post-transplant outcome model,
where only the pre-transplant outcome model is
weighted using a select number of covariates [13]. These
outcome models are used to predict one-year waitlist
and one-year post-transplant survival, which are com-
bined into a raw score by computing one-year post-
transplant survival minus two times one-year waitlist
survival [1, 3, 11]. This raw score is normalized so that it
ranges from O to 100, with higher values indicating
greater priority for transplantation [1, 3, 11]. We con-
struct modified pre- and post-transplant outcome
models by applying weights to both models, as described
above. We applied the weighted pre- and post-transplant
outcome models to the testing cohort to estimate a
modified LAS score for each patient considering all pos-
sible offer dates in 2016 and 2017. At each offer date, we
subset the data to include only patients who were alive,
registered on the waitlist, and not yet transplanted at
that date, as per UNOS guidelines [1, 11]. We computed
daily, person-specific survival estimates for the first year
spent on the waitlist and the first year post-transplant
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using the baseline hazard, weighted model coefficients,
and each individual’s covariate values. Each patients’
resulting waitlist and post-transplant survival probabil-
ities were summed to obtain the modified waitlist ur-
gency and modified post-transplant survival measures
(further details in Appendix 7).

Existing LAS scores were estimated for each patient by
applying the published pre- and post-transplant LAS
models to the testing cohort following the same proced-
ure as above [1, 11] with coefficients from the existing
LAS. Last, we constructed two sets of rankings for eli-
gible patients at each offer date: rankings based on their
modified LAS scores and rankings for the same patients
based on their existing LAS scores.

To assess the difference between the modified and
existing LAS models, we constructed Bland-Altman
plots of 1) the modified LAS score versus the existing
LAS score; and 2) the modified patient rank versus the
existing patient rank [18]. We also created a scatter plot
of the difference in estimated post-transplant survival
versus the difference in pre-transplant survival obtained
under the modified and existing LAS models to examine
which of these factors drive changes in patient
prioritization.

Results

The development and testing cohorts were comparable
in terms of demographic and clinical characteristics (Ap-
pendix 2). Table 1 displays the time-dependent AUC
[15, 16] evaluated at 1 year post-waitlist registration and
1 year post-transplant for the modified and existing LAS
models in the development and testing cohorts. In all
cases, the AUC of the modified model is higher than
that of the existing LAS, indicating that the modified
model has better discrimination. However, the extent of
improvement is larger in the pre-transplant population
than in the post-transplant population.

Figure 1 depicts the time-dependent calibration of the
modified pre- and post-transplant outcome models and
existing pre- and post-transplant LAS models in the de-
velopment cohort for the first 2 years post-listing and
post-transplant. The predicted survival curves from the
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modified pre-transplant outcome model agree more
closely with the observed survival curves for all three
risk categories when compared with the existing LAS
model. Conversely, predictions from the existing pre-
transplant LAS model are noticeably different from the
observed survival curves (Fig. 1B). This discrepancy is
most prominent during the first year post-waitlist regis-
tration, but continues beyond this time point for all
three risk groups (Appendix 8). In contrast, predicted
survival estimates from the modified post-transplant
outcome model (Fig. 1C) and the existing post-
transplant LAS model (Fig. 1D) closely match the ob-
served survival curves. This observation is consistent
with the AUC results in Table 1, and suggests that the
extent of improvement in calibration is more noticeable
for the pre-transplant model than the post-transplant
model. Similar results were obtained in the testing co-
hort (Fig. 2). In the testing cohort, the predicted survival
estimates from the modified pre-transplant outcome
model were consistent with the observed survival curves
over time, regardless of risk group (Fig. 2A). Predictions
obtained from the existing pre-transplant LAS model,
however, did not align as well with observed survival
(Fig. 2B). The modified and existing post-transplant
models exhibit similar calibration in the testing cohort
(Fig. 2C and D, respectively). The calibration of both
models is quite good in the first year post-transplant but
deteriorates considerably beyond 1 year for all three risk
groups (Appendix 8).

Figure 3 depicts Bland-Altman plots of A) the modi-
fied versus existing LAS score, and B) the modified ver-
sus existing patient rank, for 712 different organ offer
dates in the testing cohort. Patients at the extremes tend
to receive similar scores under the two models, while pa-
tients with intermediate scores tend to experience more
changes under the modified LAS. Specifically, a distinct
cluster of patients appears more than 2 standard devia-
tions below the mean; for these patients, the modified
LAS predicts a lower score than the existing LAS does.
The Bland-Altman plot of changes in rank (Fig. 3B) ex-
hibits a somewhat different pattern than that in Fig. 3A
due to constraints of ranks (i.e., individuals who receive

Table 1 Time-dependent AUC estimated via nearest-neighbor smoothing [15, 16] at one year post-waitlist registration and one year
post-transplant for the modified and existing LAS models. 95% confidence intervals were computed via the bootstrap percentile
method; p-values were estimated using the normal approximation and standard deviation obtained from the bootstrap replicates.

1000 bootstrap replicates were used

Cohort® Modified LAS Existing LAS Difference p-value of difference
Development Pre-tx 0.732 (0.690, 0.760) 0.660 (0619, 0.697) 0.071 (0.030, 0.106) <0.001

Post-tx 0.605 (0.580, 0.629) 0.560 (0.531, 0.585) 0.045 (0.026, 0.065) < 0.001
Testing Pre-tx 0.750 (0.686, 0.792) 0.693 (0.631, 0.738) 0.057 (-0.004, 0.122) 0.083

Post-tx 0.570 (0.536, 0.606) 0.540 (0.507, 0.576) 0.030 (0.003, 0.058) 0.030

%tx: transplant
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Fig. 1 Observed vs. Predicted Survival in Development Cohort. Time-dependent calibration of A) the modified pre-transplant outcome model, B)
the existing pre-transplant LAS model, C) the modified post-transplant outcome model, and D) the existing post- transplant LAS model, in the
development cohort. Smooth, solid lines represent predicted survival probabilities; points with vertical error bars represent observed Kaplan-Meier
estimates with their corresponding 95% confidence intervals. Estimates were plotted every 30 days to ease plot readability. Three risk groups are
shown: low-risk/best survival (darkest lines), medium-risk/intermediate survival (medium-shaded lines), and high-risk/worst survival (lightest lines).
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A vertical, dashed, red line is placed at one year post-waitlist registration for reference

a more favorable rank are necessarily balanced by those
who receive a less favorable one).

Figure 4 illustrates how differences in estimated pre-
and post-transplant survival under the modified and
existing LAS models influence patients’ LAS scores
(Fig. 4A) and prioritization (Fig. 4B) for 712 organ offer
dates in the testing cohort. Consistent with Fig. 3A, the
majority of patients in Fig. 4A are shaded white or blue,
indicating that these patients would receive the same or
lower score under the modified model compared with
the existing LAS. This lower score does not always
translate into a lower (worse) priority, because the rank
of a particular patient on a particular organ offer date
depends on the ranks of all other eligible patients on the
waitlist at that date. Consequently, the distribution of
shading in Fig. 4B differs from that in Fig. 4A. In both
figures, however, differences in pre-transplant survival

explain a greater proportion of the variability in the out-
come (i.e, change in LAS score or change in priority)
compared to differences in post-transplant survival.

Discussion

We developed a weighted estimation strategy to account
for selection bias in the pre- and post-transplant models
used to calculate LAS scores in prioritizing patients for
lung transplant. To our knowledge, we are the first to in-
corporate weighting into the fitting of post-transplant
models to account for survivor bias and other forms of
selection into the post-transplant population. We also
improve upon weighted fitting of pre-transplant models
by incorporating additional variables in our weight
models to better account for dependent censoring —
most notably, geography. Since these variables are only
included in the weight models (not the outcome
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Fig. 2 Observed vs. Predicted Survival in Testing Cohort. Time-dependent calibration of A) the modified pre-transplant outcome model, B) the
existing pre-transplant LAS model, C) the modified post-transplant outcome model, and D) the existing post-transplant LAS model, in the testing
cohort. Smooth, solid lines represent predicted survival probabilities; points with vertical error bars represent observed Kaplan-Meier estimates
with their corresponding 95% confidence intervals. Estimates were plotted every 30 days to ease plot readability. Three risk groups are shown:

low-risk/best survival (darkest lines), medium-risk/intermediate survival (medium-shaded lines), and high-risk/worst survival (lightest lines). A
vertical, dashed, red line is placed at one year post-waitlist registration for reference

models), they would only influence the performance of
the outcome model if they are associated both with sur-
vival and with patients’ selection for transplantation.
The fact that discrimination and calibration improve
under the modified pre- and post-transplant outcome
models compared to the existing LAS models suggests
that regional differences in patient selection may be
important to consider when estimating pre- and post-
transplant survival. That said, the extent of improve-
ment is larger in the pre-transplant population (i.e.,
the full waiting list population) than in the post-
transplant subset. There are two potential explana-
tions for this observation: first, we have considerably
more follow-up time in the pre-transplant population
than in the post-transplant population; and second,
selection bias appeared to have a larger impact on the
estimate of waiting list urgency than on the estimate
of post-transplant survival.

We postulated that the current LAS underestimates
predicted transplant benefit due to survivor bias because
it only predicts this quantity among people who were in-
deed selected to receive transplant, who tend to be older
and sicker. Our results (e.g., Fig. 4A and B) are consist-
ent with this idea because they suggest that patients’ es-
timated post-transplant survival under the modified LAS
would be the same or greater than their estimated post-
transplant survival under the existing LAS. Because the
estimate of pre-transplant survival also tends to be lon-
ger under the modified LAS compared to the existing
LAS, a sizable number of patients with intermediate
scores under the current LAS would receive lower scores
(lower priority) under the modified LAS.

Our study has several strengths. We demonstrate how
inverse probability weighting can account for survivor
bias in real-world lung transplant data. These weights
account for the probability of receiving transplant as well
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(i.e., lagged) clinical covariates, we account for regional
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demonstrate how these models perform over longer time
frames. Such an evaluation can help inform future revi-
sions of the LAS, and is especially relevant as the lung
transplant community considers what role longer-term
survival should play in lung allocation [19-21]. Finally,
while our analysis focuses on lung allocation specifically,
our approach can be applied to any organ allocation sys-
tem that relies on estimates of post-transplant survival
to prioritize patients (e.g., the United States’ EPTS score
for kidney allocation [1-3], Germany’s Lung Allocation
Score [9, 22], and the United Kingdom’s Liver Trans-
plant Benefit Score [23]).

Our study is not without limitations. First, insufficient
information is available to distinguish between patients
who were newly listed and those who were re-activated
after temporary waitlist removal. Thus, the first record
associated with each identification number was taken to
be the initial registration date, follow-up time was
counted from that date forward, and individuals who
were subsequently lost to follow-up were censored at
that time. Second, we exclude individuals on the waitlist
who are highly unlikely to receive transplant, due to cer-
tain patient characteristics that prevent them from find-
ing a suitable donor organ match (e.g., high sensitization
or small stature). Although this analytic decision ensures
that the remaining individuals on the waitlist have at
least some probability of receiving transplant, it also im-
plies that we can only generalize our findings to individ-
uals on the waitlist who do not have these clinical
contraindications. Third, we cannot account for ascer-
tainment bias/informed presence bias (i.e., we cannot ac-
count for the fact that presence in the UNOS database is
not random, but rather indicates that the patient was ill
enough to visit the hospital, undergo evaluation for
transplant, and be registered on the waitlist). Fourth,
transplant organ allocation is a highly selective process,
and selection bias can occur at various stages through-
out this process (e.g., decision to register a patient on
the waitlist, decision to remove a waitlisted patient, deci-
sion to transplant). In this particular paper, we restrict
our focus to selection bias that arises due to the fact that
some individuals die or are otherwise censored prior to
receiving transplant, and present a quantitative approach
to mitigating this bias in the LAS. Although beyond the
scope of this study, additional research — including
qualitative work — is necessary to understand how to
balance all the factors that go into making transplant
decisions.

Conclusions

Our approach to addressing selection bias is intuitive
and straightforward to implement, and demonstrates
how principles from causal inference can be incorpo-
rated into existing prediction model frameworks to
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improve organ allocation. Additionally, it can be applied
to any organ allocation system that relies on estimates of
pre- and post-transplant survival to prioritize patients,
including those used for different organs and in other
countries. We anticipate that this work can inform fu-
ture revisions of the LAS and other prediction models in
organ transplantation to improve prediction and ensure
fair and equitable organ allocation.
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