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Abstract

Background: The emergence of antimicrobial resistance across populations is a global threat to public health.
Surveillance programs often monitor human and animal populations to evaluate trends of emergence in these
populations. Many national level antibiotic resistance surveillance programs quantify the proportion of resistant
bacteria as a means of monitoring emergence and control measures. The reason for monitoring these different
populations are many, including interest in similar changes in resistance which might provide insight into emergence
and control options.

Methods: In this research, we developed a method to quantify the correlation in antimicrobial resistance across
populations, for the conventionally unnoticed mean shift of the susceptible bacteria. With the proposed Bayesian
latent class mixture model with censoring and multivariate normal hierarchy, we address several challenges
associated with analyzing the minimum inhibitory concentration data.

Results: Application of this approach to the surveillance data from National Antimicrobial Resistance Monitoring
System led to a detection of positive correlation in the central tendency of azithromycin resistance of the susceptible
populations from Salmonella serotype Typhimurium across food animal and human populations.

Conclusions: Our proposed approach has been shown to be accurate and superior to the commonly used naïve
estimation by simulation studies. Further implementation of this Bayesian model could serve as a useful tool to
indicate the co-existence of antimicrobial resistance, and potentially a need of clinical intervention.

Keywords: Correlation, Antimicrobial resistance, Minimum inhibitory concentration, Bayesian latent class model,
NARMS

Background
Introduction
Antimicrobial resistance (AMR) is a major threat to global
public health for decades [1]. Surveillance programs form
a critical part of the effort to identify and control the emer-
gence of AMR. Knowledge of emerging resistance enables
actions to mitigate the spread of emergence. For example,
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it was through surveillance systems that the emergence
of ceftiofur resistance in poultry products, humans being
associated with the introduction of the product into the
poultry market, and the impact of antimicrobial elimina-
tion were detected [2]. Examples like these, which protect
public health, illustrate the rationale for national AMR
surveillance programs.
In 1996, the National Antimicrobial Resistance Mon-

itoring System (NARMS) was established to document
the emergence of resistance from the use of antimicro-
bial drugs in the United States[3]. As a collaborative
work between the Centers for Disease Control and Pre-
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vention (CDC), the U.S. Food and Drug Administration
(FDA), and the United States Department of Agriculture
(USDA), this national surveillance system tracks changes
in the antimicrobial susceptibility of certain enteric bac-
teria found in ill people, retail meats, and food animals
in the United States. This task is achieved by testing for
the minimum inhibitory concentration (MIC), which is
the lowest concentration of a particular antibiotic that will
inhibit the bacteria growth (Fig. 1). MIC is currently mea-
sured from serial dilution experiments or obtained using
the whole-genome sequencing based machine learning
method[4].
Currently, data and analysis about AMR observed in

NARMS are available in an integrated report. The pre-
dominant approach to quantifying antimicrobial resis-
tance level is to use the proportion of isolates resis-
tant to a particular antibiotic, which was defined as the
number of isolates resistant to the antibiotic divided by
the total number of isolates being tested [5]. However,

comparative analyses of resistance across either serotypes,
antibiotics, or populations are not included in the report,
although such comparative analysis could provide addi-
tional insights into resistance emergence. For example,
are patterns in resistance in one serotype of Salmonella
correlated with those in other Salmonella serotypes? Or,
are patterns in resistance observed in one Salmonella
serotype correlated between human and food animal pop-
ulations?
Existing research based on NARMS and other surveil-

lance programs report that increased antimicrobial resis-
tance in major food-borne and enteric bacteria (e.g.
Salmonella, Campylobacter) has been found in human
and food animal populations worldwide [6–8]. While
many classes of antimicrobial agents used in food ani-
mals play important roles in growth enhancement and
disease prevention, these data also raise the possibility
of development of cross-resistance in human bacterial
pathogens [9]. The ability to quantify the correlation in

Fig. 1 Determination of minimum inhibitory concentration (MIC) with the serial dilution method

A. The growth of organism A is inhibited by the lowest concentration of the serial dilution, i.e. MIC≤0.5μg/ml;
B. Organism B is inhibited by antibiotic of concentration 4μg/ml, i.e. MIC=4μg/ml;
C. Organism C is not inhibited by the highest concentration of antibiotic, so the MIC>16μg/ml.
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AMR level between human and food animal popula-
tions is an essential foundation for further studies on
the transmission of antibiotic resistance across the pop-
ulations. Positive correlations, which are of interest for
antibiotic resistance surveillance data, refers to matched
increases and/or decreases in a characteristic when com-
pared across two or more populations. For MIC data, that
characteristic could be either the resistance proportion
or, a more interesting and comprehensive perspective, the
mean MIC. The ability to evaluate multiple aspects of
surveillance data certainlymaximizes the value of society’s
investment in such programs. In this paper, it is our focus
to develop a methodology that gives accurate estimation
of the correlation in AMR across populations using the
mean MIC.

Literature review
In NARMS surveillance data, isolates were classified
into susceptible, intermediate, and resistant components
based on their MIC relative to the breakpoints adopted
from the Clinical and Laboratory Standards Institute
(CLSI) [10]. With the understanding that an intermediate
susceptibility to some drugs would remove this drug as a
clinical option, isolates with intermediate susceptibilities
could be considered as susceptible [11].
So far, the cross-population correlation in AMR has

been analyzed with the popular characteristic of MIC
data: the resistance proportion of an organism to an
antibiotic. For example, Wegener [12] calculated the cef-
tiofur resistance proportion for retail chicken and human
Salmonella Heidelberg isolates by using the moving aver-
age of quarterly proportion of resistance. A close AMR
pattern between food supply and human was concluded
in this work solely by visualization of their similar trends.
A more recent example of correlation analysis in AMR
level can be found in Iwamoto et al. [13], where Spear-
man rank correlation was used to examine the relationship
between the annual proportion of ceftriaxone resistance
among Salmonella isolates from human, retail meats, and
food animals. However, percent resistant method relies on
dichotomization of isolates (i.e. susceptible or resistant),
hence losing information of the MIC distribution [14],
and preventing monitoring of correlation in mean MIC.
Additionally, breakpoints can vary across years, making
direct comparison of proportions inappropriate. Finally,
the use of the resistance proportions to correlation analy-
sis is predicated on the presence of a resistant component,
which is not always true.
Gradual movement or shift of mean MIC in susceptible

population, a phenomenon referred to as MIC creep, has
a different focus than changes in the resistance propor-
tion or MIC geometric mean over a period of time [15]. In
addition, correlation in mean MIC in susceptible popula-
tion assists the identification of emerging joint resistance

patterns. However, the challenge associated with themean
MIC estimation arises due to the censorship of the obser-
vations. For example, when observing an MIC of “=8” for
an organism tested by some antibiotic, this MIC actually
indicates that the true MIC is > 4, ≤ 8, and ultimately
unknown. Estimation of the mean MIC based on unad-
justed observations tends to be overestimated due to the
upward rounding of data [16]. Another challenge related
to the mean MIC estimation is the underlying population
heterogeneity of the susceptible and resistant isolates. As
indicated by the frequency plot of the observed MIC, it
is natural to represent the true values with a bimodal dis-
tribution to reflect the two overlapping components (the
susceptible bacteria being one component and resistant
bacteria population being another component). Craig [17]
resolved the censorship issue by integrating the uncer-
tainty of the true log2MIC values in their underlying
intervals and suggested modeling with a Gaussian mix-
ture distribution. Under a different context, the isolates
may also be classified into wild and non-wild components;
and sometimes the non-wild component contains more
than one component, which could be satisfied thanks to
the flexibility of Gaussian mixture distribution. Subse-
quent research on estimating the full continuous scale
MIC density with the semi-parametric [18] approach was
conducted under Bayesian framework. Further analysis
on the mean MIC creep was studied by Zhang et al.
[19] with a linear model in the susceptible component
by a fully parametric Bayesian method. Jaspers et al.[20]
analyzed the joint distribution of MIC data on multiple
antibiotics with Bayesian estimation of multivariate Gaus-
sian mixtures, from which inference about the correlation
between drug resistances within one year could be drawn.
However, the multivariate means of MIC of each com-
ponent were assumed as fixed from year to year, which
ignores the potential for changes in the mean MIC for the
components.
Evidence of cross-population correlation in the resis-

tance proportion is available [13, 21]. Unlike the increase
in the central tendency of theMIC for the susceptible pop-
ulation, an increase in the resistance proportion would
most likely indicate the dissemination of less susceptible
clone(s) [15]. Another important perspective is to look
into the cross-population correlation in the movement of
theMIC distribution, but to our knowledge it has not been
studied yet. In this research, it is our interest to fill in the
gap by estimating correlation in the mean MIC through a
Bayesian framework with a multivariate normal hierarchy
linking different populations.

Contributions
In this paper, a Bayesian latent class mixture model with
censoring and multivariate normal hierarchy was pro-
posed to determine the correlation of the mean MIC of



Zhang et al. BMCMedical ResearchMethodology          (2021) 21:186 Page 4 of 12

the susceptible isolates across two different populations.
This mean MIC is unnoticed if only data about resis-
tance proportions are used. The proposed model was
applied to the datasets fromNational Antimicrobial Resis-
tance Monitoring System (NARMS) obtained from CDC
(human data) and USDA (food producing animal data). In
order to obtain an estimation of the correlation in mean
MIC across populations, we considered monthly means of
log2MIC in the susceptible component and added a bivari-
ate normal model in the hierarchical structure to evalu-
ate the correlation in log2MIC between populations. In
the example of Salmonella enterica Typhimurium tested
by azithromycin in human and food animal datasets, a
significantly positive correlation in the central shift of
susceptible component was detected. Simulations on the
proposed method were carried out for strong, moderate,
and mild correlations, to show the precision of the new
approach. Applications of our model to other organisms
or antibiotics across populations could serve as evidences
of emerging or declining joint resistance, adding value
to already existing data collected by AMR surveillance
programs.

Methods
Our methodology estimates the correlation of the mean
MIC for susceptible components across populations. In
AMR surveillance programs, we observe MIC as the mea-
surement of the antibiotic susceptibility of the isolates.
Two-fold serial dilution data, like the MIC observations,
are commonly analyzed with base 2 logarithm transfor-
mation. At the upper limit of the serial dilution where
the growth of the bacteria could not be inhibited even
with the highest drug concentration, the MIC is right cen-
sored. The resistant components are usually highly right
censored. As a consequence, there is not enough informa-
tion available to calculate the mean MIC for the resistant
component of the data. Therefore, it is necessary to focus
the correlation analysis on the susceptible components of
bacteria.
In this section, a Bayesian latent class mixture model is

introduced, and a straightforward analysis which we call
the “naïve method” throughout this paper is used as a
comparison.

Model notations and assumptions
To fill the gap of estimating the cross-population corre-
lation in the mean MIC of the susceptible component,
we proposed a hierarchical Bayesian latent class mix-
ture model and managed to address the challenges from
the censored nature and the underlying distribution of
the MIC data. To account for the censored nature, each
observed MIC value was assumed to represent an interval
where the true MIC value lies in.
The notations used are as follows:

• y∗
s,i,j: the observed value of log2MIC for isolate j in
month i of population s.

• ys,i,j: the latent value of log2MIC for isolate j in
month i of population s.

• ls,i,j, us,i,j: the lower bound and upper bound of the
latent true value ys,i,j, and ys,i,j ∈ (ls,i,j,us,i,j].
Conversion between y∗

s,i,j and the interval is defined
in Table 1.

• cs,i,j: the latent indicator of the bacterial component
from which the isolate j in month i from population s
was drawn. c = 0, 1 represents susceptible and
resistant component, respectively.

The subscript s = 1, 2 represents the two populations
whose correlation in the mean MIC are of interest to us;
i = 1, 2, ..., I is the time index, where I is the total number
of months; j = 1, 2, ..., ns,i is the isolate index, where ns,i
is the number of observations for population s in month i.
The definitions of the indices remain the same throughout
the model description unless otherwise specified. In our
example of the Real data analysis section, the populations
across which the correlation was estimated were human
and food animals.

Model description
To estimate the correlation in the mean log2MIC in the
susceptible component across populations, the Bayesian
latent class mixture model with censoring and multivari-
ate normal hierarchy is introduced in this section. In the
data level, the latent true values of log2MIC from each
population in each month are modeled by a Gaussian
mixture distribution with Bernoulli distributed weights.
This approach is motivated by the bimodal distribution
of the frequency plots of the log2MIC observations. In
the hierarchical structure of the model, a bivariate normal
distribution (BVN) was imposed on the monthly means
of log2MIC for the paired populations. The correlation
parameter in the BVN distribution answers the question
of whether the correlation in the meanMIC of the suscep-
tible isolates exists across populations, hence is the most
interesting parameter of the whole model.
The construction procedure of the proposed Bayesian

hierarchical model that details the above structure is artic-
ulated below. For s = 1, 2; i = 1, 2, ..., I; and j = 1, 2, ..., ns,i:

Table 1 Conversion table between the observed log2MIC (y∗s,i,j)
and the interval of its latent value (ys,i,j)

Observed
log2MIC : y∗

s,i,j

Censor type Interval of latent log2MIC

≤ a1 Left censored ys,i,j ∈ (−∞, a1]

= a2 Interval censored ys,i,j ∈ (a2 − 1, a2]

> a3 Right censored ys,i,j ∈ (a3,+∞)
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cs,i,j|ps,i ind∼ Ber(ps,i), (1)

ys,i,j|cs,i,j,β0,s,i,β1,s,i, σ 2
0,s, σ 2

1,s
ind∼

{
N(β0,s,i, σ 2

0,s), cs,i,j = 0
N(β1,s,i, σ 2

1,s), cs,i,j = 1
.

(2)

Thev data model indicates that for population s, the true
log2MIC of isolate j in month i is drawn from the resis-
tant component with probability ps,i, and drawn from the
susceptible component with probability 1 − ps,i. Given
that isolate j belongs to the susceptible component, the
true value of its log2MIC follows a normal distribution
with mean β0,s,i and variance σ 2

0,s. Similarly, if that isolate
j belongs to the resistant component, its log2MIC follows
a normal distribution shifting to the right compared with
the susceptible normal curve. The variance parameters of
the Gaussian mixture model vary across component and
population. But observations from the same population
and component are expected to have the same spread. In
the data model, the isolates are classified by a “soft” prob-
abilistic threshold without reliance on the pre-determined
breakpoints.
At this point, the data model depicts the distribution

of log2MIC values separately for each month and each
population. In fact, different sampling conditions (e.g.
institution, technician, time, etc.) could cause heterogene-
ity in the measurement of the antibiotic susceptibility of
the isolates. Therefore, it could be helpful to borrow infor-
mation and integrate uncertainty in the mean log2MIC
values across months via the hierarchical structure. In
order to find evidence of association across populations,
the model parameters from (1) and (2) are joined together
through multivariate normal distributions:

logit(ps,i) = log
(

ps,i
1 − ps,i

)
= αs,i, (3)

αi
iid∼ MVN(θ ,�), whereθ =

(
θ1
θ2

)
,�=

(
τ 21 ητ1τ2

ητ1τ2 τ 22

)
;

(4)

β0,i
iid∼ MVN(μ0,�0), μ0 =

(
μ0,1
μ0,2

)
,�0

=
(

γ 2
0,1 ρ0γ0,1γ0,2

ρ0γ0,1γ0,2 γ 2
0,2

)
;

(5)

β1,i
iid∼ MVN(μ1,�1), μ1 =

(
μ1,1
μ1,2

)
,�1

=
(

γ 2
1,1 ρ1γ1,1γ1,2

ρ1γ1,1γ1,2 γ 2
1,2

)
.

(6)

Expressions (3) to (6) are the model’s hierarchical level,
where the two populations are linked through a vector at

a common time period and are modeled by bivariate nor-
mal distributions. In expression (4), αi refers to the vector
of the resistance proportion of the two populations in
month i after logit transformation: (αs=1,i,αs=2,i)T ; bold-
face Greek letters are used to represent vectors. The
vector of transformed proportions of resistance follows a
multivariate normal distribution with mean vector θ and
covariance matrix �; capitalized boldface Greek letters
are used to represent matrices. Since the amount of pop-
ulations we study once at a time is two, the multivariate
normal distribution is simply bivariate. In the case of S
populations where S > 2, the hierarchical structure could
be extended to S-dimensional normal distributions.
It is important to remember that the objective of this

paper is to find evidence of cross-population correla-
tion in the monthly mean log2MIC, not considering the
resistant isolates due to their heavy censorship. Expres-
sion (5) is about the susceptible component: β0,i =
(β0,s=1,i,β0,s=2,i)T , the vector of the mean log2MIC of
two populations in month i is assumed to follow a BVN
centered at (μ0,1,μ0,2)T ; the parameters of the standard
deviation γ0,1 and γ0,2 reflect the spread of the monthly
mean log2MIC on the two dimensions of population. The
correlation parameter ρ0 reflects the degree to which the
log2MIC means of the susceptible isolates are linearly
related across the populations, hence is the key to our
research; ρ0 ∈[−1, 1]. An estimation of ρ0 with small
absolute value close to 0 indicates no or rather weak corre-
lation in AMR across populations, while a large estimation
close to 1 implies a strong positive correlation in AMR.
When the latter scenario happens, our result could serve
as an evidence of co-existence of emerging or declining
AMR across populations. Similar with (5), expression (6)
is an analog to the resistant component, but is of less
interest to our study.
Consequently, the parameter space denoted as 
, is

(σ0, σ1, θ ,�,μ0,�0,μ1,�1). To express the joint likeli-
hood of the observations, we collapse all the observed and
latent log2MIC in vectors y∗ and y, respectively. Let f (·|·)
be generic expression of the conditional density. Then
the joint likelihood of the observed log2MIC is written
out as the joint likelihood of the latent log2MIC inte-
grated over the intervals where the discrete observations
lay in.

f (y∗|
) =
∫ u2,I,n2,I

l2,I,n2,I
· · ·

∫ u1,1,1

l1,1,1
f (y|
) dy1,1,1 · · · dy2,I,n2,I .

(7)

As indicated by expressions (4) to (6), with the parameter
space 
 given, the data parameters and ys,i,j produced in
month i are independent with those in month i′, where
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i �= i′. Hence, we have the joint likelihood of the latent
log2MIC written as

f (y|
) =
I∏

i=1
f (yi|
), (8)

where y = (y1, · · · , yI)T , and

f (yi|
) =
∫

· · ·
∫

(β0,i ,β1,i ,αi)
f (yi|αi,β0,i,β1,i, σ 2

0 , σ
2
1 )f (αi|θ ,�)

f (β0,i|μ0,�0)f (β1,i|μ1,�1) dβ0,s1,i . . . dαs2,i

(9)

The f (yi|αi,β0,i,β1,i, σ 2
0 , σ

2
1 ) in equation (9) corresponds

to data model level in expressions (1) - (2), and can be
expressed as the product of the likelihoods of all ys,i,j for
s = 1, 2; j = 1, ..., ns,i. The f (αi|θ ,�), f (β0,i|μ0,�0), and
f (β1,i|μ1,�1) in equation (9) correspond to the hierar-
chical level of the model. According to the Bayes rule
that f (
|y∗) ∝ f (y∗|
) × f (
), inference of the param-
eters needs to be drawn from the posterior distribution.
The choice of prior distributions f (
) is explained in the
following subsection.

Prior distribution
Conjugate priors were assigned to the hyper mean param-
eters. We chose diffuse Gaussian priors for θ1, θ2 ∼
N(0, 10000) to reflect our lack of knowledge in the resis-
tance proportion. But we chose moderately informative
priors for μ0,s,μ1,s ∼ N(0, 100) since we know that the
magnitude of log2MIC could hardly be smaller than −10
or greater than 10. The restriction μ0,s < μ1,s (s = 1, 2)
was applied, because the susceptible mean should always
be smaller than the resistant mean. A default uniform
prior was assigned to the data standard deviation f (σc) ∝
1 (c = 0, 1) in their positive spaces.
The selection of the prior for the covariance matrices is

tricky. We adopted the separation strategy [22] over the
popular inverseWishart, since the latter distribution has a
tendency to bias the posterior correlation downward [23].
Each of the covariance matrices was decomposed into a
correlation matrix sandwiched by the scale matrices. The
correlation matrix has 1’s on its diagonal and correlation
parameters on its off-diagonal positions; the scale matrix
has the standard deviation on the diagonal. For example,
the covariance matrix of the monthly means of log2MIC
in the susceptible component is written as:

�0 =
(

γ 2
0,1 ρ0γ0,1γ0,2

ρ0γ0,1γ0,2 γ 2
0,2

)

=
(

γ0,1 0
0 γ0,2

) (
1 ρ0
ρ0 1

) (
γ0,1 0
0 γ0,2

)
=: �0R0�0.

(10)

Following the recommendation from the Stan develop-
ment team [24], we used an LKJ prior for the correlation
matrix [25], where f (R0) ∝ |R0|ν−1; ν > 0. By choos-
ing LKJ (ν = 1) for the correlation matrices decomposed
from
,�0, and�1, the densities of the priors are uniform
over correlation matrices of their corresponding dimen-
sion d (in our case, d = 2), reflecting our a priori lack
of knowledge for the correlations. Weakly informative
half-Cauchy priors were assigned to the scale parame-
ters τs, γ0,s, γ1,s ∼ Cauchy+(0, 2); s = 1, 2. Here, all prior
distributions were assumed independent.

Naïve calculation of correlation
As a comparison with the proposed Bayesian method, we
adopt the “naïve method”, a straightforward approach that
can be found in the literature of correlation studies for
MIC data of different drugs [26–29]. The naïve analysis
for mean log2MIC ignores the nature of censoring of MIC
data, and calculates the arithmetic average of log2MIC for
the susceptible isolates within each month. For example,
if an observed MIC value was = 8 and was catego-
rized as susceptible according to the CLSI standards, then
we treated log2MIC = log2(8) = 3 as the true log2MIC
value and therefore used it for the naïve mean calculation
for that month. For each population s, we could obtain
a vector of monthly averages in the susceptible compo-
nent over I months. The Spearman correlation coefficient
between the vectors of means was used to describe the
strength of correlation in the mean log2MIC of the sus-
ceptible isolates between the two populations. Hence, the
name “naïve method” comes from the fact that this cal-
culation does not take into account the censorship or the
underlying distribution of the MIC data.
In the following Real data analysis and Simulation

sections, we will implement both the Bayesian and the
naïve methods to see how the data censorship and the
mixture distribution affect their performances of estimat-
ing the cross-population correlation in the mean MIC of
susceptible components.

Real data analysis
Data description andmanipulation
Centers for disease control and prevention (CDC) human data
The human population of NARMS was launched in 1996
within the framework of CDC’s Emerging Infections Pro-
gram and the Food-borne Diseases Active Surveillance
Network (FoodNet)[5]. Salmonella isolates, as the largest
genus type among the four bacteria in NARMS (others
are Campylobacter, Shigella, and Escherichia coli O157),
were reported with year of collection, serotype, MIC
value tested against multiple antibiotics, the test conclu-
sion (resistant or not), etc. We limited our analysis to an
important serotype: S. Typhimurium. It has 5398 isolates,
accounting for 14.1% of the 38311 Salmonella isolates,
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ranking second to Enteritidis (16.3%), and was tested for
MIC for 28 antibiotics collected since 1996 till now.

U.S. department of agriculture (USDA) food producing
animal data
The food animal component of NARMS includes data
from 1997 to 2015 with monitoring of Salmonella and
later expanded to Campylobacter (1998), E. coli (2000),
and Enterococcus (2003)[30], in which Salmonella also
forms the largest proportion of the data. Isolates are
recovered from samples obtained at federally inspected
slaughter and processing plants [5]. The information
related to Salmonella Typhimurium included the MIC for
23 antibiotics, the month and year of collection, the host
the isolate was obtained from, etc, but no test conclusion.
There were 1161 S. Typhimurium isolates, accounting for
3.0% of the 38867 Salmonella isolates, ranking third after
Salmonella Kentucky (9.3%) and Salmonella Enteritidis
(4.1%).

Datamanipulation
We selected S. Typhimurium treated by azithromycin
(AZI) as an example for illustration. AZI, a clinically
important macrolide antibiotic, is used to treat a wide
variety of bacterial infections, and is often for the treat-
ment of nontyphoidal Salmonella (NTS) when treat-
ment is indicated [31]. According to the NARMS inte-
grated report of 2015 [32], AZI use for NTS is increas-
ing, likely caused by the concerns about resistance to
fluoroquinolones (e.g., ciprofloxacin) [33]. In livestock,
macrolides are a commonly used antibiotic for treatment
and control of disease, especially in cattle and swine,
where they are highly effective for common diseases such
as respiratory disease.
The pairs of the mean log2MIC during common time

periods between human’s and food animals’ susceptible
components allow us to calculate their cross-population
correlation. Using monthly means of log2MIC, instead of
yearly means, provides us with more pairs of data, hence it
is beneficial for correlation calculation. For this reason, we
acquired, with permission, fromCDC themonth of isolate
collection which is not publicly available.
At the time of this work, NARMS data after year 2017

are preliminary and the isolate collection and/or testing
are still in progress, thus not included in our analysis.
Since the AZI test for Salmonella started officially in
2011 [32], the trial samples occurring before 2011 were
removed; this represented removal of 25 human isolates
and 20 food animal isolates collected in 2008. For the cases
where the month information or the MIC results of AZI
testing are missing, the isolates were excluded from our
analysis. After such elimination, 1333 human isolates from
2011 to 2017 and 572 food animal isolates from 2011 to
2015 remained, leading to 60 pairs of monthly mean of

log2MIC for the susceptible component spanning from
January 2011 to December 2015. On average, there were
16 human observations and 10 food animal observations
per month during this five-year period. The scatter plot
of the monthly arithmetic mean log2MIC of susceptible
isolates is displayed in Fig. 2 for human and food ani-
mal populations from January 2011 to December 2015,
where a moderate cross-population correlation in mean
log2MIC could be seen.
In the CDC human data, the test conclusion for

Salmonella AZI used the cutoff of >16μg/ml between
2011 and 2015, and ≥ 32μg/ml for the other years. In the
USDA food animal data, Salmonella isolates tested by AZI
were right censored at >16μg/ml consistently through all
years, but the test conclusions are not included in the
dataset. We adopted >16μg/ml as the cutoff rule for our
example data during 2011 to 2015, even though it is stated
in the NARMS integrated report [32] that Salmonella iso-
lates from humans, retail meats, and food animals used
the CLSI investigational breakpoint of≥ 32μg/ml in order
to determine susceptibilities to AZI. This is an example of
inconsistent breakpoint and dilution spectrum. Based on
the datamanipulation described above and the breakpoint
of >16μg/ml, there was only one azithromycin-resistant
isolate in each of the two populations during this period.
This is a very low level of resistance, leaving the analysis
based on resistance proportion impossible. For situations
like this, assessing the correlations in the meanMIC of the
susceptible isolates (major component) could add useful
information for the decisions makers.

Implementation
To draw inference from the proposed model, a Bayesian
analysis of Markov Chain Monte Carlo (MCMC) was
conducted in R environment (version 4.0.0) with pack-
age rstan [34]. To sample effectively from the posterior
f (
|y∗) that has no closed form, No-U-Turn Sampler
(NUTS) [35], an extension of the powerful Hamiltonian
Monte Carlo (HMC), was implemented; it is also the
default and preferred sampling algorithm in Stan. All rel-
evant R scripts, including cleaning of the NARMS data,
model construction, and model implementation can be
found on a public GitHub repository [36].
The choice of the initial values of the MCMC was based

upon the selected example dataset of S. Typhimurium
tested by AZI from NARMS. For population s, the initial
values of the variances σ 2

c,s in equation (2) were calculated
by the variance of all observed log2MIC values in compo-
nent c, regardless of the month the isolate was obtained.
The initial value of the monthly resistance proportion
after logit transformation for population s (αs,i) was calcu-
lated by dividing the number of resistant isolates with the
total number of isolates in that month followed by logit
transformation. When all isolates appeared to be under
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Fig. 2 Jittering scatter plot of the monthly arithmetic mean log2MIC of susceptible Salmonella Typhimurium isolates tested by azithromycin in
human and food animal populations from January 2011 to December 2015

or above the breakpoint in some months, a very small
proportion was added to 0 or deducted from 1, to make
sure αs,i = log( ps,i

1−ps,i ) are finite values. The starting point
of the monthly mean of log2MIC for population s in com-
ponent c (βc,s,i) was calculated as the arithmetic average
of the observed log2MIC in the corresponding subset of
data. If in some months, one component has no obser-
vation, then these were imputed by the average of the
other monthly means in the same component of that
population.
The initial values of the above αs,i, βc=0,s,i, and βc=1,s,i

can be arranged as I × 2 data frames with the row repre-
senting month and the column representing population.
The means over the time index (i.e. column means of the
data frames) were used as the initial values of the bivariate
mean vectors θ , μ0 and μ1 in equations (4), (5) and (6).
Similarly, the standard deviations over month (i.e. column
standard deviations of the data frames) were assigned as
the initial values of the scale parts of matrices �, �0 and
�1. The Spearman correlations across populations were
entered into the correlation matrices as starting values.
For the MCMC, we conducted three chains simulta-

neously with ten thousand iterations and 50% of the
length was burn-in. We used the potential scale reduc-
tion factor of Gelman and Rubin [37] to assess conver-
gence of the three chains. Additionally, we calculated the

number of effective samples for each sampled parameter
to ensure reasonable accuracy in the tails of the posterior
distribution. The point estimates of the model parame-
ters were determined by the means of the posterior draws
after the burn-in sessions. The ends of the 95% credible
intervals (CI) were obtained from the 2.5th and 97.5th
percentiles of the posterior distributions. The results were
summarized in the following Results Section.

Results
The correlation in the mean log2MIC of the susceptible
S. Typhimurium isolates tested by azithromycin across
the human and food animal populations was estimated
through the application of the proposed Bayesian latent
class mixture model with censoring and multivariate nor-
mal hierarchy on the NARMS datasets from January
2011 to December 2015. The Bayesian estimation of the
correlation parameter, its 95% credible interval, and the
estimation through the naïve method are listed in Table 2.
The point estimation of 0.46 together with its 95% cred-

ible interval (0.1017, 0.7583) from the Bayesian approach
indicate that there exists a significant positive correlation
in the mean log2MIC between the susceptible isolates in
the human population and those in the food animal pop-
ulation. It implies that the conventionally unnoticed MIC
creep occurred in these two populations moved in similar
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Table 2 Correlations in susceptible log2MIC across populations for Salmonella enterica Typhimurium isolates estimated by Bayesian
and naïve methods

Population 1 Population 2 Bayesian estimation CI of Bayesian method Naïve estimation

human animal 0.4600 (0.1017, 0.7583) 0.3688

directions. Interestingly, we found that the Bayesian point
estimation is greater than the naïve estimate by 0.0912.
It is conjectured that the estimation from the proposed
Bayesian approach is more accurate compared with the
naïve method, because the former one takes into account
the censorship issue and makes full use of the data infor-
mation. To validate this conjecture, a simulation study was
conducted and the performance of the two methods were
compared.

Simulation
In this section, a simulation study was conducted to assess
the performance of the proposed hierarchical Bayesian
latent class mixture model and the naïve method, by com-
paring their estimation results with the underlying data
generators.
In the following description of data simulation, we

denote the known model parameters (σc, θ , μc, �, �c;
c = 0, 1) with a “hat” on top of the Greek letters.
These parameters were given the pre-determined values
that were estimated from the application of the Bayesian
approach on the human-food animal example in the
Real data analysis section, so that the simulated datasets
are close to what we might observe in the real world.
In particular, we are most interested in the correlation
parameter ρ̂0, which is the correlation part of �0, was
given the true value of 0.46. In each simulated dataset,
there are 60 months, 16 human isolates and 10 animal
isolates per month; this is to ensure a similar size of
observations with the real dataset.
For s = 1, 2; i = 1, 2, ..., I; j = 1, 2, ..., ns,i; where I = 60,

ns=1,i = 16 and ns=2,i = 10:

(i) Generate αi = (
αs=1,i,αs=2,i

)T iid∼ MVN2(θ̂ , �̂).
(ii) Convert αi to pi, the vector of monthly proportion of

resistant isolates, through expit transformation
(inverse of logit): pi = (

ps=1,i, ps=2,i
)T = 1

1+exp−αi .
(iii) Generate the vector of monthly mean log2MIC in the

susceptible and resistant population, respectively:
β0,i = (

βc=0,s=1,i,βc=0,s=2,i
)T iid∼ MVN2(μ̂0, �̂0);

β1,i = (
βc=1,s=1,i,βc=1,s=2,i

)T iid∼ MVN2(μ̂1, �̂1).
(iv) Generate the latent variable of class indicator for

each population s and month i : cs,i,j
ind∼ Ber(ps,i).

(v) Generate the latent value of log2MIC for each
population s and month i :

ys,i,j
ind∼

{
N(βc=0,s,i, σ 2

0,s), cs,i,j = 0
N(βc=1,s,i, σ 2

1,s), cs,i,j = 1 .

The log2MIC obtained from step (v) are continuous
quantities drawn from a Gaussian mixture model and
need to be censored by following the conversion rule
described in Table 1. Step (vi) describes the
censoring operation for the example of S.
Typhimurium tested by azithromycin.

(vi) Convert the latent value of log2MIC ys,i,j to the
censored value y∗

s,i,j:

y∗
s,i,j =

⎧⎪⎨
⎪⎩

−2, ys,i,j ≤ −2
�ys,i,j�,−2 < ys,i,j ≤ 4
4, ys,i,j > 4

; �·�represents the ceiling of a number.

According to the dilution spectrum we observed
from the application data, the most susceptible
isolates were from human samples with MIC =
0.5μg/ml. It indicates that if
ys,i,j ≤ log2(0.5) − 1 = −2, it will be left censored as
y∗
s,i,j ≤ −2; that is ls,i,j = −∞ and us,i,j = −2. The
most resistant isolates came from human and food
animal samples with MIC greater than 16μg/ml.
Similarly, it means that if ys,i,j > log2(16) = 4, it will
be right censored as y∗

s,i,j > 4; that is ls,i,j = 4 and
us,i,j = +∞. A latent value of log2MIC in between -2
and 4 will be interval censored with its upper bound
being the nearest integer to the right and lower
bound being the nearest integer to the left.

End of simulation.
By repeating the above procedure 100 times, we

obtained 100 simulated datasets, each of which was used
to estimate correlation with the proposed Bayesian model
and the naïve method. The two approaches were assessed
and compared by the mean bias of ρ0, and its root of
mean squared error (RMSE). These two metrics are the
indicators of a model’s precision by measuring the aver-
age bias to the truth and the average deviation around
the truth. Since it is important to assess the model per-
formance under different strengths of correlation, we also
conducted simulations for ρ̂0 = 0.8 (strong correlation)
and ρ̂0 = 0.3 (weak correlation) with the other settings
unchanged. Themean estimation bias and RMSE from the
simulations can be found in Table 3.

Discussion
When estimating the cross-population correlation in the
mean log2MIC of the susceptible isolates, the proposed
Bayesian latent class mixture model shows advantages
compared with the naïvemethod. In the simulation results
(Table 3), the absolute values of the mean estimation bias
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Table 3 Simulation results based on different true values of
correlations, estimated by Bayesian and naïve methods

True correlation Method Mean estimation
bias

Root of mean
squared error

0.80
Bayes −0.0219 0.0927

Naïve −0.1972 0.2134

0.46
Bayes −0.0025 0.1461

Naïve −0.1002 0.1510

0.30
Bayes +0.0115 0.1621

Naïve −0.0561 0.1360

of the Bayesian method are small compared with the scale
of log2MIC data, and are much smaller than those of the
naïve method. By comparing the RMSE, we can find that
the Bayesian method has much smaller deviation from
the true value for the strong correlation case. For mod-
erate and weak correlations, the variation in error of the
two methods are comparable since their RMSE are of
similar scale. Overall, the proposed method is reasonably
accurate and superior to the naïve method for estimating
correlation.
According to Annis and Craig [16], neglecting the cen-

sored nature of the MIC data in the naïve method leads to
overestimation in themean of log2MIC, while they did not
investigate its impact in correlation. Intuitively, when the
two populations are positively correlated in the monthly
mean of the latent log2MIC, the inherent correlation could
be dwarfed by the upward rounding procedure, as shown
by the underestimation of the naïve method in the simula-
tion study. This points to the importance of the censorship
adjustment included in the Bayesian model.
Another superiority of the Bayesian latent class mixture

model lies in the independence of the methods from the
breakpoint value. The naïve method subsets the dataset
by relying on the NARMS-established breakpoints and
considering only the susceptible isolates under the cut-
offs. It is not a rare case where the CLSI breakpoints were
updated for some antimicrobial agents in the NARMS
history. For example, CDC Human’s Salmonella resis-
tance to streptomycin was adjusted from ≥ 64μg/ml to ≥
32μg/ml in 2014, hence the current breakpoint could not
be applied to the previous years due to limited concentra-
tions tested [10]. Apart from this,Mouton [38] argued that
there is a major difference between clinical and micro-
biological breakpoints, where the former is an indicator
for clinical success while the latter is for detecting resis-
tant populations. Therefore, despite the simplicity of the
naïve method, it has obvious defects compared with the
proposed hierarchical Bayesian model.
Several assumptions were made in our model. We

assumed normal distributions for susceptible and resis-
tant components, as confirmed by the distributions of the

observed log2MIC in the application and other examples.
We found that many of the cases in the NARMS datasets
present two components. However, when this is violated
by single or more than two components, the latent vari-
able mixture modeling approach becomes problematic in
deciding the number of components and is considered as
a limitation of this method [39]. In this situation, an alter-
native model with appropriate number of clusters can be
developed instead.
In summary, the proposed Bayesian latent class mix-

ture model addresses the challenges associated with the
MIC data analysis, and provides accurate estimation of
correlation in mean log2MIC of susceptible isolates across
populations. It performs especially well when the true
correlation is strong, which is crucial to public health
as co-resistance of antibiotics across populations could
signal needs of remedial actions.

Conclusions
In this work, we proposed a Bayesian latent class mixture
model with censoring and multivariate normal hierarchy
for inference of the correlation in antimicrobial resistance
across populations. Besides the cross-population correla-
tion on the resistance proportionwhich has been the focus
in the existing literature, we also targeted the correlation
in the meanMIC of the susceptible populations. By apply-
ing the model to the NARMS data, we detected positively
correlated mean MIC shift in the susceptible component
between human and food animal populations. This means
that for the susceptible isolates, the monthly MIC means
in human and in food animal are changing more in the
same direction than in irrelevant directions. This result
indicates a possibility for the introduction of azithromycin
resistance of S. Typhimurium in human through food
animals, which warrants further investigation.
In future work, we are going to study several extended

questions about the correlated antimicrobial resistance.
One aspect is to evaluate the correlation in the mean
MIC across antibiotics, which could help provide evi-
dence of co-resistance among drugs. Another aspect is
to see whether the mean MIC for an antibiotic in two
serotypes are positively correlated. If the answer is yes
and the serotypes possess different resistance gene, this
suggests the genes share a similar mechanism of induc-
ing resistance. The ability to assess correlations from
more perspectives would enable increased information to
be extracted from the AMR surveillance programs, and
create further value to the public health.
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