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Abstract

Background: As a hot method in machine learning field, the forests approach is an attractive alternative approach
to Cox model. Random survival forests (RSF) methodology is the most popular survival forests method, whereas its
drawbacks exist such as a selection bias towards covariates with many possible split points. Conditional inference
forests (CIF) methodology is known to reduce the selection bias via a two-step split procedure implementing
hypothesis tests as it separates the variable selection and splitting, but its computation costs too much time.
Random forests with maximally selected rank statistics (MSR-RF) methodology proposed recently seems to be a
great improvement on RSF and CIF.

Methods: In this paper we used simulation study and real data application to compare prediction performances
and variable selection performances among three survival forests methods, including RSF, CIF and MSR-RF. To
evaluate the performance of variable selection, we combined all simulations to calculate the frequency of ranking
top of the variable importance measures of the correct variables, where higher frequency means better selection
ability. We used Integrated Brier Score (/BS) and c-index to measure the prediction accuracy of all three methods.
The smaller IBS value, the greater the prediction.

Results: Simulations show that three forests methods differ slightly in prediction performance. MSR-RF and RSF
might perform better than CIF when there are only continuous or binary variables in the datasets.

For variable selection performance,

When there are multiple categorical variables in the datasets, the selection frequency of RSF seems to be lowest in
most cases. MSR-RF and CIF have higher selection rates, and CIF perform well especially with the interaction term.
The fact that correlation degree of the variables has little effect on the selection frequency indicates that three
forest methods can handle data with correlation.

When there are only continuous variables in the datasets, MSR-RF perform better. When there are only binary
variables in the datasets, RSF and MSR-RF have more advantages than CIF.

When the variable dimension increases, MSR-RF and RSF seem to be more robustthan CIF
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nature of covariates.

Machine learning, Variable selection, Brier score

Conclusions: All three methods show advantages in prediction performances and variable selection performances
under different situations. The recent proposed methodology MSR-RF possess practical value and is well worth
popularizing. It is important to identify the appropriate method in real use according to the research aim and the
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Background

Survival analysis, also known as time-to-event analysis, is
a branch of statistics investigated in how long it takes
for certain events to occur, and estimating the relevant
important factors. A key feature of these time-to-event
datasets is that they contain either censored or truncated
observations, in which right censoring is the most com-
monly encountered type [1]. The Cox-proportional haz-
ards regression model (Cox model) is a default choice in
analyzing right-censored time-to event data [2]. As a
semi-parametric method, its flexibility derives from re-
quiring no specifications of the shape of the hazard
function, which means no assumption is required on the
overall shape of survival times [3]. However, its restrict-
ive proportional hazards assumption is always not met
in applications [4—6]; what’s more, the covariates are as-
sumed to have an additive effect on the log hazard ratio,
which may become unsuitable for data containing non-
linearity or high dimensional covariates [7, 8]. Machine
learning methods can deal with these data. Machine
learning methods have been widely concerned in the
biomedical field because of their great abilities for self-
studying, classification, prediction and feature identifica-
tion, among which the forests approach is especially
popular with scholars and researchers.

The random forests (RF) approach was first proposed
by Breiman [9]. RF construct ensembles from tree base
learners, and then combine the results to a final deci-
sion. In RF, randomness is introduced in two forms:
First, each of the randomly drawn bootstrap samples of
the data is used to grow a tree [10]. Second, at each
node of the tree, a randomly selected subset of covari-
ates is chosen as candidate variables for splitting [11].
With CART being base learner, the original RF primarily
focus on classification and regression problems [12].
Random survival forests (RSF) methodology proposed by
Ishwaran et al. extends RF method to right-censored
time-to-event data [13, 14]. RSF can easily handle high
dimensional covariate data as RF [15-17]. However, RSF
also inherit the drawbacks of RF, especially the selection
bias towards covariates with more possible split points,
which may result in bias of other parameter estimates
such as variable importance measures [18].

Conditional inference forests (CIF) methodology is
known to reduce selection bias via a two-step split

procedure implementing hypothesis tests [19]. Instead of
maximizing a splitting criterion over all possible splits
simultaneously in RSF, CIF separate the algorithms for
the best split variable search and the best split point
search [20]. In the first step, a linear rank association
test is performed to determine the optimal split variable.
In the second step, the optimal split point is determined
by comparing two-sample linear statistics for all possible
partitions for the split variable. Despite the two steps are
both implemented within the theory of permutation
tests, there is a change in the statistical approach for the
split variable and the split point selection, which in-
creases the time and storage of CIF application.

Random forests with maximally selected rank statistics
(MSR-RF) methodology proposed by Wright et al. seems
to be a great improvement towards RSF and CIF [21].
Following the basic concept of CIF, MSR-RF use a two-
step split procedure via hypothesis tests, which means
MSR-RF also separate the variable selection and the split
point procedures. However, distinguished from CIF, bin-
ary split via maximal log rank score is used consistently
in both steps of MSR-RF, which saves time and reduces
bias. Log rank score is one of the most commonly used
criterion statistics in RSF. What's more, the authors
Wright et al. introduced a new package ranger proved
to be faster [22]. This package can be used in both C
and R languages, which makes MSR-RF more feasible.

Despite the development of survival forests, only a few
studies have been done to compare the forests methods.
MSR-RF’s authors did simulations to illustrate their
methods with RSF and CIF as reference, including split
variable selection performance for the null case of no as-
sociation between covariates and survival outcome, pre-
diction performance under several situations, and
runtime performance [21]; Nasejje et al. did simulation
study to compare the prediction performance between
RSF and CIF with all variables associated with the sur-
vival outcome, while split variable selection performance
was not investigated [23]; Du et al. compared the predic-
tion performance between RSF and CIF on real cancer
dataset without split variable selection performance [24].
The previous simulation researches majorly focused on
the predictive performance of the methods without con-
sidering the variable selection performance. What’s
more, proposed in 2016, MSR-RF methodology still has
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not been implemented in those recent researches, while
RSF and CIF retain the wide use. The main aim of this
research is popularize the MSR-RF methodology and to
provide advices of using the survival forests methods
concerning on variable selection and prediction. We
think it’s essential to study in depth and compare the
survival forests under different situations. In this paper
we used simulation study and real data study to compare
prediction performances and variable selection perfor-
mances among three survival forests mentioned above,
including RSF, CIF and MSR-RF.

The article is structured as follows: section 2 “Methods”
describes the three methods used. In section 3 “Simulation
study”, we present the simulation study together with the
simulation results. Section 4 “Application study” intro-
duces the two real datasets used in this study and also
gives the corresponding real data analysis results. Lastly
section 5 “Discussion and conclusion” presents the discus-
sion and conclusions drawn from this study.

Methods

Random survival forests

Random survival forests (RSF) method is an extension of
Brieman’s RF method to right censored time-to-event
data [13]. Given the original data with N subjects and M
features, RSF algorithm is described as follows:

1. Draw B bootstrap samples from the original data.
Bagging generates B new training sets with
replacement [10]. If the size of each training set
equals to N, each subject in the original data has a
probability of (1-1/N)™ not being selected. In this
way, on average 36.8% of the data would be
excluded for each bootstrap sample, called out-of-
bag data (OOB data) [9].

2. Grow a binary survival tree for each bootstrapped
sample. At each node of the tree, randomly select
m (m < < M) features for splitting. In practical
settings m is usually set to m= VM or m = logoM. A
split is made using the candidate feature and its
cut-off point that maximizes the survival differences
between daughter nodes under a predetermined
split rule [14].

3. Grow the tree to full size under the pre-specified
constraints.

4. Calculate a cumulate hazard function (CHF) and a
survival function (SF) for each tree. Average over all
trees to obtain the ensemble CHF. In this way, one
estimate for each individual in the data is
calculated.

5. Using OOB data, calculate prediction error for the
ensemble CHF and variable importance measures
(VIM) of M features.
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Researchers have come up with several splitting rules
for RSF, among which four rules are representative [13],
including: a log-rank splitting rule that splits nodes by
maximization of the log-rank test statistic, a log-rank
score splitting rule that splits nodes by maximization of
a standardized log-rank score statistic, a conservation-
of-events splitting rule that splits nodes by finding
daughters closest to the conservation-of-events principle,
a random log-rank splitting rule that splits nodes by the
variable with maximum log-rank statistic (at its prede-
termined random split point). Log-rank splitting rule
and log-rank score splitting rule are the most popular
rules in practical use. Log-rank splitting rule is described
as follows:

The log-rank test for a parent node splitting at the
cut-off point value ¢ for predictor X; is

K Yk[ Ykl Yk dk
" o

Let t; <ty <...<tx be the distinct death times in the
parent node, d; and Y; equal the number of deaths and
individuals at risk at time #; in the parent node respect-
ively. Y/(Z Yk, 1+ Yk, » dk= dk, 1+ dk, re dk, )i and Y/(, ] repre-
sent those in the left daughter node, which means Y; ;=
{i:t;2 4, Xj; < c}. The value of |L(Xj, ¢)| is the measure of
node separation. The larger the value of |L(Xj c)|, the
greater the survival difference between the two groups.
The best split is determined by finding the predictor X,
and split value ¢* with maximum statistic value.

RSF naturally inherit many of RF’s good properties
[16], including: non-parametric, flexible, and can easily
handle high dimensional covariate data, which are essen-
tial in the genetics field; RSF are highly data adaptive
and model assumption free, which are especially helpful
when associations between predictors and outcome are
complex such as nonlinear effects or high-order interac-
tions; what’s more, VIM and OOB estimates can be ob-
tained through the forest growing. RSF can be
performed through several packages. Here we use R
package randomForestSRC [25]. Log-rank splitting rule
is implemented.

(dkz Y Yk)

Conditional inference forests

Conditional inference forests (CIF) method is a tree en-
semble method utilizing the theory of permutation tests
[19, 26]. As CART serves as base learner in RF, this kind
of algorithms has a variable selection bias towards vari-
ables with many split points. This bias is induced by
maximizing a splitting criterion over all possible splits,
whereas the chance to find a good split increases if the
variable has more split points. The authors thought even
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Table 1 Information of each simulated dataset
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model form covariate

Al 1.5%;4 (x5 =2) X11—X2~U(0, 1), X3; = X4~N(0, 1),

A 156+ 60, 3) 2, - fgﬁ/}sgg’éﬁ& %;)57, — xgr~DiscreteU(1, 4),
A3 1.5%1;+ 1(xo; 2 5)

B1 I(x1;>0.5) * (x5, =2)

B2 I(x1;> 0.5) 5 (x5, = 3)

B3 1061, > 0.5) % l(xg; 2 5)

C X+ 1.5% X1 = X10~MWN(O, £)°

D1 217+ 3% x17= xu~N(O, 1)

D2 22X+ 3% X1, — Xui~DiscreteU(1, 2)2

@ DiscreteU(1, k) is the discrete uniform distribution, a simple distribution that puts equal weight on the integers from 1 to k
b5 is a squared matrix with all diagonal elements equal to 1 and all off-diagonal elements equal to p

€ M is the number of covariates

an uninformative variable could also sit high up on the
tree’s structure, and then result in biased estimate [18].
CIF are known to solve this problem by taking statistical
significance into account [27].

CIF construct forests with conditional inference tree
(CIT) as base learner [19]. Instead of maximizing a split-
ting criterion over all possible splits, CIT separates the
algorithms for selecting the best split covariate from the
best split point search. CIT first conducts association
tests to determine the best split covariate, and then
makes the best binary split based on standardized linear
statistic.

Same as RSF, assume the original data with N subjects
and M features, and a new training set is defined as
L, ={Y:,X1,....X0m);i=1,...,n}. At step 1 variable
selection of CIT splitting procedure, we need to decide
whether there is any information about the response
variable covered by covariate Xj, which is indicated by

partial hypothesis of independence H :D(Y|X;) =
D(Y) with global null hypothesis Hy = ﬂj‘il H),. The as-
sociation between Y and Xj, is measured by linear statis-
tics of the form

Tj(Loy W) = Vec(ijlng(Xﬁ)h(Yi, (Y1, ¥ )))

Where w is case weight indicating each node, g; is a
non-random transformation of the covariate Xj, The in-
fluence function / depends on the responses (Y7, ..., Y,)
in a symmetric permutation way. These functions may
differ in practical settings, such as in time-to-event data
the influence function may be chosen as log rank score
or Savage score. The evaluation of T;(L,,w) is based on
the distribution of Y and X;, which often remains un-
known. However, at least under the null hypothesis one
can dispose of this dependency by fixing the covariates
and conditioning on all possible permutations of the

responses, which is known as the theory of permutation
tests. Later in the algorithm, T;(L,,w) is standardized to
univariate test statistics ufT,-(E,,, w)| for further com-
parison. If we are not able to reject Hy at a pre-specified
level a, we stop the recursion, otherwise select X, with
the strongest association (the smallest P value) as the
best split variable.

Once we have selected a covariate Xj, at step 1 of the
algorithm, an optimal split point should be determined
at step 2. The goodness of a split is evaluated by a two-
sample linear statistics which is a special case of the lin-
ear statistic used at step 1. For all possible split points of
X;. the linear statistic is

T;*(EW,W) = VEC(Z:I:IW,'I(X]'*Z‘ S C)h(Yi, (Y],.,,, Yn )))

The two-sample statistic measures the discrepancy be-
tween two daughter nodes. The split ¢+ with a standard

test statistic u‘T;*(ﬁn,w)‘ maximized over all possible

splits is established.

CIF differ from RF and RSF with respect to not only
base learner but the aggregation scheme applied. Instead
of averaging predictions directly as in RF, the aggrega-
tion scheme works by averaging observation weights ex-
tracted from each tree. CIF are implemented in the R
package called party [28].

Survival forests with maximally selected rank statistics

Survival forests with maximally selected rank statistics
(MSR-RF) method was proposed by Wright et al. in
2017 [21]. The authors thought an obvious disadvantage
of standard CIF was a change in the statistical approach
for split variable and split point selection. As is intro-
duced above, the association test for selecting the split
variable is based on a linear rank statistic, while the opti-
mal split is a dichotomous threshold-based split. MSR-
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(See figure on previous page.)

Fig. 1 Correct variable selection frequency for datasets A-D with RSF, CIF and MSR-RF. In subplots A-B, sample size was fixed at 200. Dataset A
was set in a linear form, whereas dataset B was set in an interaction term. The unordered-categorical covariate associated with the outcome was
(A1, B1) covariate with 2 categories; (A2, B2) covariate with 4 categories; (A3, B3) covariate with 8 categories. Dataset C was set in a linear form
with all ten variables generated form the multivariate normal distribution MVN(0, %). The subplot C(p) was fixed at N =100 and 25% censoring;
C(N) was fixed at p=0 and 25% censoring; C (censoring) was fixed at N = 100 and p=0. Dataset D was set in a linear form with all variables
generated from the standard normal distribution for D1 and the binomial distribution with 0.5 probability for D2. The subplots D were fixed at
N =100 and 25% censoring with the various ratio M/N, which means the ratio of the number of covariates M to the sample size N

RF are designed to deal with those problems by a statis-
tical test for binary splits using maximally selected rank
statistics [29].

The forest algorithm of MSR-RF is identical with that
of RSF. Randomness is induced in both selections of
samples and covariate subsets. Finally results of the trees
are aggregated through vote or average. The split pro-
cedure of MSR-RF follows the basic concept of CIF,
which means a two-step procedure via hypothesis tests
separating variable selection and split point search. Max-
imally selected rank statistics for survival endpoints is
implemented through log-rank score, which also can be
used in RSF and CIF as we mentioned above.

Consider a training set L, =
{(Yi,X1,....Xami);i=1,...,n} at a node, for time-to-
event data Y;= (¢, d;), where ¢; is survival time and §; is
censoring indicator. To describe the log-rank score split-
ting rule, assume the covariate X; has been ordered so
that Xj; <X, <... <X, The log-rank score is defined as
a “rank” for each survival time ¢;

I; 5](
ai:é\i_Zkzln—fk-l-l

Where T; is the number of observations with survival
time up to £;. The linear rank statistics for a split at point
¢ is the sum of all log-rank scores in the left daughter
>_x,<ci- The H),
P(Y|X; <c) =P(Y|X; >c) for all points. Under the
null hypothesis, the standardized log-rank score test
statistic is

node null  hypothesis s

Zx,.,»gc a; — nia

nln,SIE
n

Where @ and S2 are the sample mean and sample vari-
ance of a;, n;={i: Xj; < ¢} denotes the number in the left
daughter node, n =mn;+ n,. Log-rank score splitting de-
fines the measure of node separation by |S(X),c)|. The
maximum statistic value yields the best split, and is de-
fined as the maximally selected rank statistics (MSR).

In RSF, a split is established by maximizing a splitting
criterion over all possible splits, where the values of log-
rank score test statistics would be compared not only

S(Xj,c) =

between cut-points on the same variable but also be-
tween different variables, which induces bias. MSR-RF
deal with the problem with a two-step procedure. In the
first step, for each potential variable, the split point with
the maximally selected rank statistics is selected. There-
fore, for each variable, P values are obtained for the best
split point under the null hypothesis. The covariate with
the smallest P-value is selected as splitting candidate.
Only if the adjusted P-value for multiple testing of the
candidate is smaller than the pre-specified type I error,
the split is made, otherwise no split is performed. In the
second step, MSR-RF procedure simplifies CIF proced-
ure as the optimal split point is determined as a by-
product in step 1, which means new computation is
needed no more in step 2. In this way, one procedure is
used consistently in both steps of MSR-RF.

MSR-RF model is implemented in the R package
called ranger [30].

Simulation study

Simulation design

In this section, we conducted simulation study to evalu-
ate the performance of the three survival forests de-
scribed in the previous section, in terms of prediction
and variable selection.

The number of Monte Carlo simulation replications
was set to 1000. All forests were run with 200 trees, in
which the number of candidate covariates m for splitting
was set to square root of the number of covariates M.
The significance level of all hypothesis tests in this study
was set to 0.05. To avoid the problems of overfitting that
arises from using the same dataset to train and test
model, in each simulation we randomly selected 80%
subjects as training set and the other 20% as test set.

Survival time T was generated by inverting survival
function via exponential distribution.

T = —log(U)+exp(0.5 + B X))

Where U followed the uniform distribution (0, 1).
Censoring times were generated from exponential distri-
butions with different parameters to get different censor-
ing rates.
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Fig. 2 Integrated Brier score for datasets A-D with RSF, CIF and MSR-RF. In subplots A-B, sample size was fixed at 200. Dataset A was set in a
linear form, whereas dataset B was set in an interaction term. The unordered-categorical covariate associated with the outcome was (A1, B1)
covariate with 2 categories; (A2, B2) covariate with 4 categories; (A3, B3) covariate with 8 categories. Dataset C was set in a linear form with all
ten variables generated from the multivariate normal distribution MVYN(0, %). The subplot C(p) was fixed at N =100 and 25% censoring; C(N) was
fixed at p=0 and 25% censoring; C (censoring) was fixed at N= 100 and p=0. Dataset D was set in a linear form with all variables generated from
the standard normal distribution for D1 and the binomial distribution with 0.5 probability for D2. The subplots D were fixed at N= 100 and 25%
censoring with the various ratio M/N, which means the ratio of the number of covariates M to the sample size N

The models that generated datasets are listed in
Table 1, where the form is described as f”X;. For each
simulated dataset, only two covariates were set to be as-
sociated with survival outcome, whereas the others per-
formed as noise covariates. We specified four types of
models:

A. Multiple categorical covariates are included, and no
interaction term exists.

B. Multiple categorical covariates are included, and
one first-order interaction term exists.

C. Only continuous covariates generated from
multivariate normal distribution are included, and
the correlation degree among covariates changes.

D. Only independent and identical distributed
covariates are included, and the dimension of
covariates changes.

Model A was established in a linear form with ten co-
variates, including four continuous covariates xj; —xy;
(two covariates were generated from uniform distribu-
tion x1; — x2,~U(0, 1) and the others were generated from
standard normal distribution x3; — x4,~N(0, 1)) and six
categorical covariates xs; — x1¢; (the categorical covariates
were generated from discrete uniform distributions with
different categories, including two covariates with 2 cat-
egories x5; — x;~DiscreteU(1,2), two covariates with 4
categories x;; — xg;~DiscreteU(1,4) and two covariates
with 8 categories xq; — x10;~DiscreteU(1, 8)). Only a con-
tinuous covariate x;; and an unordered-categorical co-
variate were set to be associated with the outcome,
including (A1) covariate x5; with 2 categories; (A2) co-
variate x,; with 4 categories; (A3) covariate xy; with 8
categories. For valid comparison, we controlled the cat-
egories in the indicative function /() so that 50% subjects
in each model would have a value of 1. Model A was
simulated at different censoring rates of 0, 25, 50, 75%
and different sample sizes of 100, 200, 400, 800 (training
set).

Model B had the same covariate framework as model
A. Model B was established in a first-order interaction
form with a continuous covariate x;; and an unordered-
categorical covariate associated with the outcome, in-
cluding (B1) covariate x5; with 2 categories; (B2) covari-
ate x,; with 4 categories; (B3) covariate x9; with 8

categories. Model B was simulated at different censoring
rates of 0, 25, 50, 75% and different sample sizes of 100,
200, 400, 800 (training set).

Model C was established in a linear form with two
continuous covariates x;; and x,; associated with the
outcome. In this model all ten variables followed multi-
variate normal distribution MVN(0, X), where X is a
squared matrix with all diagonal elements equal to 1 and
all off-diagonal elements equal to p. We changed the
parameter p to get different correlations between the co-
variates. Model C was simulated at different censoring
rates of 0, 25, 50, 75%, different sample sizes of 40, 100,
200, 400, 800 (training set) and different correlation par-
ameter p of 0, 0.2, 0.4, 0.6, 0.8.

Model D was established in a linear form with two co-
variates x1; and x,;. It was used to study the performance
of the methods under different dimensions of covariates,
including (D1) continuous covariates all generated from
the standard normal distribution; (D2) binary covariates
all generated from discrete uniform distribution. The
sample size N was set to 100 (training set); the censoring
rate was set to 0, 25, 50, 75%. The ratio M/N, which
means the ratio of the number of covariates M to the
sample size N, was set to 0.2, 0.5, 1, 2, 5.

Model evaluation

To evaluate the performance of variable selection, we
ranked the VIM of each forest in each simulation and
obtained the ranks of the two correct variables. Finally
we combined all simulations to calculate the frequency
of the correct variables ranking in the top by VIM.

We used prediction error based on Brier score and c-
index (c-index only exhibited in the supplement) to
measure the prediction accuracy of all the three models.
Brier score was originally applicable to multi-category
forecasts, defined as the mean squared difference be-
tween the predicted probabilities and the actual observa-
tions [31].

1N R 2
BS = N Z (predict,»j — ObSerVei/)
i=1 j=1

Where N is sample size and R is the number of cat-
egories, predict;; is the predicted probability for individ-
ual i assigned to the possible category j, and observe; is
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Table 2 Characteristics of the covariates in Dataset lung [Mean + SD or n (%)]

Characteristics

Total(n =167)

inst (institution code)
1

2
3
4
5
6
7

10
1
12
13
15
16
21
22
26
32
sex
male
female
ph.ecog (ECOG performance score rated by physician)
asymptomatic
symptomatic but completely ambulatory
in bed < 50% of the day
in bed >50% of the day but not bedbound
age
ph.karno (Karnofsky performance score rated by physician)
patkarno (Karnofsky performance score rated by patient)
meal.cal (Calories consumed at meals)

wt.loss (Weight loss in last six months)

28 (16.8)
4(24)
12 (7.2)
4 (24)
7 (4.2)
12(7.2)
7 (4.2)
4(24)
13 (7.8)
16 (9.6)
13(7.8)
6 (3.6)

103 (61.7)
64 (38.3)

47 (28.1)

81 (485)

38 (22.8)

1(06)

62.57 £9.21
82.04+1278
7958 +15.10
929.13+£413.49
9.72+13.38

the actual observation for individual i at category j (1 if
it is the actual observation and 0 otherwise).

The brier score BS(t) for survival data is defined as a
function of time

1& ey 2l <68 =1) ey 2Lt > 1)
BS(t) fﬁ;{ [0 S(¢1x3)] WJF [1 - S(¢1x7)] GXy) }

Where G is the Kaplan-Meier estimate of the condi-
tional survival function of the censoring time. Brier score
value has a range of 0 and 1. Good predictions at time ¢

denote small values. The integrated brier score (IBS) in-
troduced by Graf is [32].

Jmaxt®) Bs(¢)dt

IBS =
max(t;)

The smaller IBS value, the greater the prediction. Note
that IBS has gradually become a standard evaluation
measure for survival prediction methods and is com-
monly used in survival forests prediction [33].
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Fig. 3 Survival curve generated from lung dataset and hnscc dataset
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VIM was computed just from the training set, whereas
IBS and c-index were estimated in the test set. IBS and
c-index are implemented in R package pec [34].

Simulation result

Variable selection

Figure 1 displays the ratio of identifying both the correct
variables of models A-D.

Models A and B are presented as a function of differ-
ent censoring rates at a fixed sample size of N =200. In
subplots A1, A2, A3, RSF have the lowest ratio of correct
variable selection. CIF and MSR-RF vary slightly in Al
and A2, as CIF are a little bit better in A1 whereas con-
versely in A2. In A3, MSR-RF absolutely take over the
lead. In subplots Bl, B2, CIF perform best, while the
others present equivalent performances. MSR-RF exhibit
the best performance closely followed by CIF in B3 while
RSF remain the poorest performance. More results are
exhibited in Fig. S1 and S2. It can be seen that three
methods all perform better when sample size increases,
especially reach a nearly complete selection at a sample
size of 800. RSF perform relatively badly in all situations.
As models A and B share the same covariate framework,

the results show that RSF may have a relatively weak
ability in this kind of data, no matter with linear sets or
interaction sets, which directs variable selection bias.
Dataset C was set in a linear form with all ten variables
generated form the multivariate normal distribution
MVN(0,%), and we use three subplots to describe it
under different conditions. The subplot C(p) plots the
results as a function of the correlation parameter p be-
tween the covariates at N=100 and 25% censoring. It
can be seen that the selection rate varies slightly when
p < 0.6. The selection rate at p = 0.8 is lower than p = 0.6.
C(N) plots the results of various sample sizes N at a
fixed correlation parameter p=0 and 25% censoring,
which means the covariates are independent. C(N)
shows when the sample size N is smaller than 40, RSF
and CIF both exhibit poor results with less than 20% se-
lection rate. When N =800, all three methods reach
nearly complete variable selection. C (censoring) studies
different censoring rates at N =100 and p=0. It shows
when the censoring rate is 75%, all three methods per-
form low selection rate less than 20%, but MSR-RF have
absolutely higher selection rate under other censoring
rates. In three subplots, it can be seen that the order of
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One-year survival cohort
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performance is MSR-RF, RSF, CIF in turn for most
cases. More results are shown in Fig. S3, which verify
the results above. The variable selection frequency
doesn’t fluctuate too much for small correlations. CIF
don’t perform well under this type of covariates.

The subplots D1, D2 plot the results as a function of
number of covariates M at N =100 and 25% censoring.
In D1 with continuous covariates, MSR-RF offer obvious
advantages across different dimensions of covariates.
RSF are slightly better than CIF when M/N is no more
than 1, which means sample size N is no less than the
number of covariates M. When M/N > 1, both RSF and
CIF perform badly, as the selection rate is nearly 0. In
D2 with binary covariates, both MSR-RF and RSF per-
form much better than CIF when M/N increases. More
results are shown in Fig. S4. In D1 MSR-RF show abso-
lute advantages over the others. CIF are obviously weak,
even sustain a selection rate of nearly O at a censoring
rate of 75% no matter how M/N changes. MSR-RF
closely follow RSF, and both methods have a selection
rate of over 75% even when M/N =5 in D2, while CIF
perform conversely poor when M/N increases. As model
D is aimed to study different numbers of covariates with
continuous variables or categorical variables, the results

show that CIF may not identify the correct covariates ac-
curately in data with high dimensional covariates.

Prediction performance
Figure 2 displays the mean value of IBS of models A-D,
with the same parameter settings as Fig. 1.

Models A and B were investigated as a function of dif-
ferent censoring rates at a fixed sample size of N =200.
In subplots A1-A3, all three curves almost coincide. In
subplots B1-B3, MSR-RF perform better under 75% cen-
soring, whereas three methods remain overlapped when
censoring rate less than 50%. More results in Fig. S5 and
S6 prove the findings above. The results of c-index in
Fig. S9 and S10 also indicate that there are only slight
differences within 0.02 between the curves at the same
settings, so it’s hard to conclude which perform best.

The subplot C(p) was fixed at N =100 and 25% cen-
soring, and IBS decreases as p increases. RSF perform
slightly better, followed by MSR-RF and lastly CIF. C(N)
was fixed at p=0 and 25% censoring. It shows MSR-RF
performs best when N =40, and RSF take over the lead
when N >40. C (censoring) was fixed at N =100 and p=
0, in which RSF maintain the best prediction. Overall
three curves only have small /BS gap and Fig. S7 proves
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it. The results of c-index in Fig. S11 indicate that MSR-
RF are superior. RSF perform poor as CIF when N =40,
whereas RSF perform just a little bit lower than MSR-RF
when N >40. Overall, CIF remain the poorest
performance.

The subplots D1, D2 plot the results as a function of
number of covariates M at N =100 and 25% censoring.
IBS increases as the ratio M/N increases. In D1 with
continuous covariates, both  MSR-RF and RSF have
lower [BS than CIF. In D2 with binary covariates, RSF
offer obvious advantages across different M. Same find-
ings can be observed in Fig. S8 with more results. The
results of c-index in Fig. S12 indicate that MSR-RF are
superior in D, followed by RSF and lastly CIF. In D2
with binary covariates, RSF perform just a little bit lower
than MSR-RF. Overall, CIF still remain the poorest
performance.

Application study

To demonstrate the efficiency and the predictive per-
formance of the three survival forest models, we ana-
lyzed two real datasets with MSR-RF, RSF and CIF. For
forest construction, 200 survival trees were grown for

each survival forest. In each simulation, we randomly se-
lected 80% subjects as training set and the other 20% as
test set, and this was repeated 100 times. For each repe-
tition, IBS of test set were recorded and shown as box-
plots. For easy explanation, Cox model was also
conducted with the same analysis as a benchmark
model.

The lung dataset recorded survival in patients with ad-
vanced lung cancer from the North Central Cancer
Treatment Group (NCCTG) [35]. Subjects with missing
values were excluded, so 167 subjects with 8 covariates
were retained for analysis in our study. The median sur-
vival time is 268(range: 5 ~ 1022) days. A total of 120 pa-
tients died, with a low censoring rate of 28.1%. Summary
characteristics can be found in Table 2. The dataset has
5 continuous covariates and 3 categorical covariates, in-
cluding one with 2 categories, one with 4 categories and
one with 17 categories. The dataset is freely available in
the R package survival [36].

The hnscc dataset is a high dimensional breast cancer
gene expression data with 565 subjects and 99 continu-
ous covariates. The median survival time is 1671 (range:
2-6417) days. A total of 253 patients died, with a



Liu et al. BMC Medical Research Methodology (2021) 21:193

censoring rate of 55.2%. The dataset is freely available in
the R package SurvHiDim [37]. Survival curves gener-
ated from lung dataset and hnscc dataset are shown in
Fig. 3.

Besides the overall survival, researchers may also have
interest in survival of specific time. In this way, despite
the overall survival cohort of each dataset, we also
present the 1-year survival prediction of lung dataset
and the 4-year survival prediction of hnscc dataset. In
Figs. 4 and 5, we find that all three forests perform bet-
ter than the default benchmark Cox model. For lung
dataset, all three forests seem to be comparable in pre-
dicting 1-year survival while CIF have the lowest median
value. MSR-RF show the relatively low IBS range in
overall survival prediction. What's more, MSR-RF seem
to be the most stable method here because of the smal-
lest range and interquartile range. For hnscc dataset,
MSR-RF show the smallest range and interquartile range
in both four-year survival prediction and overall survival
prediction whereas CIF show the largest conversely.

Figure 6 presents the variable importance result of
lung dataset. CIF and MSR-RF have similar results in
identifying the factors affecting the survival outcome, as
ph.ecog, wtloss, ph.karno, meal.cal rank 1st, 4th, 5th,
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8th respectively in both forests. Sex, pat.karno rank 2nd-
3rd and inst, age rank 6th—7th in both forests with slight
difference in order. However, despite the difference in
RSF, ph.ecog, sex, pat.karno are the top three predictors
among all methods, and meal.cal tends to have the low-
est association with the outcome.

For the variable selection performance of hnscc data-
set, unlike the custom establishment of correct variables
in the simulation part, we have to use other variable se-
lection method to learn the variables as a reference.
Here we used backward stepwise selection based on AIC
criterion as a reference and 38 covariates were selected.
Ranks of VIM of the 38 variables were calculated among
all the 99 variables. Median ranks of VIM and frequency
of the selected variables’ VIM ranking top 38 of all repe-
titions were listed in Table 3. It can be seen that three
methods differ in the ranks. CIF have the largest range
and interquartile range, which indicate a relatively dis-
persion in the result. RSF and MSR-RF have a relatively
close and robust performance compared to CIF.

Discussion and conclusion
In this paper we used simulation study and real data
study to compare prediction performances and variable

CIF
wt.loss- _
ph.karno- -
inst- -
meal.cal- -
0.000 0.005 0.010
Variable Importance
RSF
ph.karno- -
inst- -
wt.loss- -
age- l
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Fig. 6 Variable importance on Dataset lung
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ph.ecog-

pat.karno-
sex-
wt.loss -
ph.karno -
age-
inst-

meal.cal -
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Table 3 The ranks of variable importance on hnscc dataset

Characteristics Median ranks of VIM Frequency of VIM ranking top 38

RSF CIF MSR-RF RSF CIF MSR-RF
AFF3 9 5 8 081 0.99 0.85
PCDP1 49 36.5 52 043 0.54 0.35
ADH1B 12 235 395 0.87 0.8 048
RIMKLA 63 80.5 64.5 0.21 0.07 0.12
PCDHA12 58 64 56.5 0.24 0.21 0.14
CDHRS5 48 115 32 043 0.94 0.56
PGC 4 19.5 375 0.94 0.87 0.51
NMES5 48 43 45 0.31 043 043
XIST 36.5 27.5 50 051 0.66 033
B3GAT1 15 17.5 19 0.72 091 0.75
Clorf88 14 6 5 0.8 0.97 0.98
SELENBP1 17 25 155 0.73 0.77 0.75
ASRGL1 56.5 415 39 036 047 05
SGK2 52 15.5 455 0.36 0.86 044
PPP1R9A 49 815 66 029 0.05 0.21
KLF15 48 54.5 50 034 03 035
PNMA2 67 74 56.5 0.16 0.08 0.26
DNALN 45 58 36 038 029 053
TMEM178 62.5 74 585 028 0.08 0.25
GAL3ST1 315 9 17 0.57 0.93 071
PLCXD3 425 64 555 047 0.13 0.19
RSPH1 445 245 48 044 0.7 04
METTL7B 31 17 25 0.58 0.88 0.62
DCDC2 63.5 64 61.5 0.17 0.19 0.16
DDAH1 64.5 56 44 0.24 0.26 0.46
RGL3 585 72 59.5 0.23 0.1 0.18
C160rf89 54.5 77 62 031 0.05 026
TCF21 61.5 66 515 0.24 0.16 0.33
C8orf46 62.5 70 66 0.21 0.1 0.32
CTSE 23 14 10 067 09 0.81
GJB1 60 77 64 0.18 0.06 022
BEX1 31 28 26.5 0.6 067 0.56
ABCC6P2 57 46.5 46 031 038 044
MYEF2 455 37 44 046 052 043
SLC4A4 63.5 62 61 0.18 0.19 03
CA8 64.5 68 61.5 023 0.13 0.19
CACNA1D 44 43 41 041 043 045
AQP4 62 775 58 0.2 0.06 0.22
median 485 4475 47 036 040 042
range 4~67 5~815 5~ 66 0.16 ~0.94 0.05~0.99 0.12~0.98

IQR 32.75~61.12 23.75~675 36.38 ~ 5838 0.24~0.56 0.13~0.79 0.25~0.53
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selection performances between three survival forests
mentioned above, including RSF, CIF and MSR-RF. The
prediction performance was evaluated through the pre-
diction error IBS based on brier score with c-index as
supplement. The smaller /BS value, the greater the pre-
diction. The variable selection performance was evalu-
ated by calculating the frequency of the correct variables
ranking in the top by VIM.

The variable selection performance in simulation study
shows that CIF and MSR-RF both outperform RSF when
there are multiple categorical variables in the datasets,
where CIF show advantages in dealing with interaction
term. When there are only continuous variables in the
datasets, MSR-RF perform better. When there are only
binary variables in the data, RSF and MSR-RF are super-
ior than CIF. The results also show that three forests
methods are not sensitive to the correlation between co-
variates due to the fact that correlation degree of the
variables has little effect on the selection frequency.
When the variable dimension increases, MSR-RF and
RSF seem to be more robust than CIF.

However, the IBS results and c-index results in pre-
dictive performance show that three methods are com-
parable majorly, only small variations can be observed
under some situations. When there are only continuous
variables or binary variables in the datasets, MSR-RF
and RSF seem to perform better than CIF. The results in
application study are similar to those from simulation
study. All three forest methods outperform the bench-
mark Cox model based on IBS result, but there are only
tiny differences among the three methods. MSR-RF
seem to be more stable based on smaller range and
interquartile range.

What’s more, it can be seen that higher correct vari-
able selection frequency does not match better IBS or c-
index value exactly in simulation study, which indicates
prediction performance and variable selection perform-
ance are worth taking into consideration respectively,
and that’s the objective in this paper.

There are several limitations in our study. First, high
dimensional datasets have been considered only in
model D in our research, which studied only continuous
or binary variables. We have to admit that we lack deep
investigations in high or ultra-high dimensional datasets
in this paper because we think it’s a wide field deserving
deep investigations and we will make independent re-
search in the future. Next, our paper studied both vari-
able selection performance and prediction performance
respectively. The prediction performance of simulation
and application is easy to exhibit, which has been done
in previous comparative studies. However, the variable
selection performance of application is hard to evaluate
because the correct variables associated to the outcome
are unknown, whereas they can be set in simulation. We
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can only learn those variables from other variable selec-
tion methods for real datasets such as stepwise selection,
LASSO et al. to serve as reference. Nevertheless, no
method could be regarded as a “gold standard” refer-
ence. In this paper we just conducted the backward step-
wise selection and exhibited the distribution of the ranks
of VIM.

The main finding of this study is that RSF, CIF, MSR-
RF all show advantages based on different type of covari-
ates. Hence it’s important for researchers to choose an
appropriate forest model according to the research aim
(variable selection or better prediction) and the nature
of covariates. As it is shown in our study, MSR-RF ex-
hibit a relatively good and stable performance in most
situations. Years ago the proposers conducted studies on
computational time and proved the realization faster,
which is also observed in our study. In this way, MSR-
RF are worth generalization and we hope the method
could raise more attention in biomedical field.
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