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Abstract

Background: Childhood malnutrition is a major cause of child mortality under the age of 5 in the sub-Saharan
Africa region. This study sought to identify the risk factors and spatial distribution of the composite index of
anthropometric failure (CIAF).

Methods: Secondary data from 2000, 2005, 2011, and 2016 Ethiopian Health and Demographic Survey (EDHS) were
used. The generalized geo-additive mixed model was adopted via the Integrated Nested Laplace Approximation
(INLA) with a binomial family and logit link function.

Results: The CIAF status of children was found to be positively associated with the male gender, the potency of
contracting a disease, and multiple births. However, it was negatively associated with family wealth quartiles,
parental level of education, place of residence, unemployment status of mothers, improved sanitation, media
exposure, and survey years. Moreover, the study revealed significant spatial variations on the level of CIAF among
administrative zones.

Conclusions: The generalized geo-additive mixed-effects model results identified gender of the child, presence of
comorbidity, size of child at birth, dietary diversity, birth type, place of residence, age of the child, parental level of
education, wealth index, sanitation facilities, and media exposure as main drivers of CIAF. The results would help
decision-makers to develop and carry out target-oriented programs.
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Introduction
A considerable number of evidence from different
sources currently indicate that nearly one in every nine
children under the age of five around the globe had sin-
gle or multiple forms of malnutrition, and nearly half of
the deaths among the under-five children population
(U5C) is due to poor nutrition [1]. Moreover, this preva-
lence is persistently higher in the Sub-Saharan African
(SSA) region including Ethiopia [2]. In Ethiopia, the pro-
portion of underweight (low weight for age) fell from

47.12 to 21% of children, stunting (too short for age) fell
from 51.22 to 37%, and wasting (too low weight for
height) fell from 10.37 to 7% of children from 2000 to
2019 [3].
Previous studies on the prevalence of undernutrition

in Ethiopia had focused on a single conventional an-
thropometric index of stunting, underweight, wasting
[4–9] separately proposed by World Health
Organization (WHO) [2]. However, those conventional
indices, when used alone, failed to give true estimates of
the real impact of childhood malnutrition. The compos-
ite index of anthropometric failure (CIAF) might over-
come such limitations through an aggregation of
different forms of malnutrition measures [4–7, 10].
Looking into the global experience, one can see that

countries such as China, India, Bangladesh, Malawi, and
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others have adopted the CIAF approach to defining their
U5C’s nutritional status [11–16]. Yet such national wide
studies are missing in most developing nations like
Ethiopia. Besides, the majority of the previous studies
carried out on nutritional status in this country have
mainly focused on different socio-economic, demo-
graphic, or health-related covariates, disregarding spatial
and nonlinear effects of covariates. Moreover, the studies
didn’t target the impact of climate and environmental
covariates which is now widely acknowledged to be a
threat to food security and nutrition around the globe
[17, 18]. As such climate change directly affects crop
production and therefore food availability [19]. Rainfall
shortfalls occur frequently, while temperature increase
from time to time and hence increases the rate of evapo-
transpiration [20]. These bring drought, ultimately lead-
ing to lower crop yields and worsened food security and
nutrition for vulnerable populations [21].
Further, those studies had only reported geograph-

ical variations of CIAF at higher (country/region) ag-
gregated levels, and zonal level variation is rarely
examined. A closer look into the contents of the
studies shows that their CIAF data is masked in
higher-level geographical aggregates, and had an ad-
verse effect on lower levels (zones in this context).
This is inconsistent with the decentralized system of
governance in Ethiopia. The zone is administrative
levels where operation planning, resource allocation,
and implementation of health services are made.
Hence identifying the problem of malnutrition and its
variation among administrative zones would provide
deeper insight into the country’s health priorities for
the under-five children population. Particularly, this
would help Zonal health departments to make in-
formed decisions and actions in their planning,
follow-up, monitoring, and evaluation of health activ-
ities at lower levels [22–25]. Addressing the health in-
equalities is of considerable importance for the
country, requiring a major reform that will ensure ac-
cess to health care services for the poor and disad-
vantaged groups in the zones. Therefore, the main
aim of this study was to identify linear fixed, nonlin-
ear, and spatial effects of covariates on CIAF among
under-five children in administrative zones of
Ethiopia.

Materials and methods
Ethiopia is the second-largest country in SSA with a
population of more than 96 million people, among
which more than 13 million are under five. With a sur-
face area of 1.1 million km2, the country shares borders
with Eritrea in the north, Djibouti and Somali in the
east, Sudan and South Sudan in the west, and Kenya in
the south. The government of Ethiopia divides the

country into 11 administrative units (regions) including
Addis Ababa, the capital city of the country. The regions
were further divided into 72 third-level administrative
zones mainly based on ethnic groups [26]. Figure 1
shows the spatial prevalence variability of CIAF among
the 72 administrative zones of Ethiopia.

Study data
The dataset of this study consists of 29,792 children
from 72 Ethiopian administrative zones over 16 years.
We obtained Global Positioning System (GPS) coordi-
nates for 2208 cluster coordinates from EDHS and those
clusters were linked with the corresponding administra-
tive III (zones) for spatial analysis. The DHS program
randomly displaces cluster coordinates up to 2 and 5 km
for urban and rural clusters respectively. This is made to
ensure the confidentiality of data and the anonymity of
participants. The administrative shapefiles were freely
available databases on Global administrative units hosted
through the DIVA-GIS project (http://www.diva-gis.org)
[27]. This database represents the 72 Ethiopian zones
across 11 regions that existed in 2016.

Variables
The outcome variable of this study is the composite
index for anthropometric failure (CIAF). It is computed
by grouping children whose height and weight above the
age-specific norm (above − 2 z-scores) and those whose
height and weight for their age is below the norm and
thus experiencing one or more forms of anthropometric
failure. As such, they were classified into seven categor-
ies: A-no-anthropometric failure, B-wasting only, C-
wasting and underweight, D- wasting, stunting and
underweight, E- stunting and underweight, F-stunting
only, and Y- underweight only. The CIAF is then calcu-
lated by aggregating the six (B-Y) categories [5, 7, 28–
30]. The potential risk factors comprise the child, house-
hold, and maternal covariates selected based on findings
in the literature [8, 31–37] (Fig. 2).

Geographic covariates
In addition to the child maternal and household DHS
covariates, the contextual geographic covariates were ob-
tained from the EDHS. This dataset can easily be linked
to the original EDHS datasets through the cluster identi-
fying number (ID) [1, 17, 18, 38–40]. These factors were
selected based on previous studies which demonstrated
that the nutritional status was correlated with key cli-
mate factors [41–45]. The key contextual climate factors
in the study include the average number of drought epi-
sodes (1, low and 10, high), aridity index defined as the
ratio of annual precipitation (0, most arid to 300, most
wet), Built-up index (UR) between 0.00 (extremely rural)
and 1.00 (extremely urban), Daytime Land Surface
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Temperature (LST: The average annual land surface
temperature during the day), and Enhanced Vegetation
Index (EVI).

Statistical analysis
We adopted three models including the generalized lin-
ear mixed model (GLMM), generalized additive mixed
model (GAMM), and generalized geo-additive mixed
model (GGAMM). The GLMM is a strictly linear regres-
sion that assumes a linear effect of the categorical and
continuous covariates. Let W be an n by p design matrix
for p-categorical covariates related to n = 29,792 children
and which may be linearly associated with the response
variable. The response variable Y is assumed to be a
member of an exponential family [46] expressed as

f y y; θ;ϕð Þ ¼ exp
yθ � b θð Þ

a ϕð Þ þ c y;ϕð Þ
� �

ð1Þ

where a, b, and c are arbitrary functions, θ and φ is the
natural and scale parameter respectively. For the ith

child, the GLMM can be expressed as

g E Y ijWð Þf g ¼ β0 þ
XP

j¼1
Wijβj þ UhðiÞ ð2Þ

Where g(.) is the link function, β = (β1,…, βp) is a vec-
tor of unknown univariate fixed effect parameters for
the categorical covariates and Uh(i), hi =1, 2, . . .,72, is
the zone level random effect.
The second model is GAM [47, 48], which is a non-

parametric generalized linear model. This model as-
sumes nonlinear functions for the continuous covariates

and linear effects of the categorical covariates. Let X be
the n by q design matrix with the q-dimensional vector
of continuous predictors with possible non-linear effects
related to n = 29,792 under-five children.

g E Y ijW ;Xð Þf g ¼ ηi ¼ β0 þ
XP

j¼1
Wijβj

þ
Xq

l¼1
f i Xð Þ þ UhðiÞ ð3Þ

where f = (f1, f2,…, fq)
T is a vector of unknown smooth

functions.
The third model is GGAMM, which is an extension of

GAM by adding a bivariate spatial function. Supposing
that the children belong to zone h and cluster k in terms
of location, the random spatial effects of the GGAMM is
generally given as [49, 50].

�hk ¼ f spat lonk ; latkð Þ þ Uh

Without loss of generality, the GGAMM model in our
study is expressed as;

}

The nonlinear term fspat(lonk, latk) is a function of geo-
graphical coordinates of the kth cluster where
lonk and latk the longitude and latitude are respectively.
The parameter fspat(lonk, latk) is random effects that cap-
ture the unobserved spatial heterogeneity at location k,
for which some are spatially structured and the others
are unstructured. This is denoted as:

Fig. 1 CIAF Prevalence per zones in Ethiopia, based on the EDHS
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f spatðkÞ ¼ f str lonk ;latkð Þ þ f unst lonk ;latkð Þ ð4Þ

Prior distributions
In the Bayesian context, all the unknown fixed effect pa-
rameters and variance (β,σ2) and unknown smooth func-
tions (fl, l = 1, 2. . . q, fstr and funstr) are considered as
random variables and this requires specifying the appro-
priate prior assumptions. Accordingly, for the categorical
fixed effect parameters β independent diffuse priors, π
(Φ) ∝ constant are assumed. Also, the non-linear smooth
parameters were modeled by second-order random walk
prior given by
f l=f l�1; f l�2; �

2
l � N 2f l�1 � f l�2; �

2
l

� �
for l = 3, . . .,f

with non-informative priors for f1, f2 [51–55].
Finally, to capture the unstructured spatial random ef-

fects (fustr), exchangeable normal priors are
assumed,f ustr � N 0; �2

unst

� �
, where �2unst is a variance

component that allows for over-dispersion and hetero-
geneity [51–55]. It is important to note at this point, the

software R-INLA assign a prior to log (�2
unst) which by

default is a log-gamma distribution. Yet to model the
spatial correlation (structured) components, neighbor-
hoods must be defined among the study zones. Two
zones are neighbors if they share common boundaries.
The spatial autocorrelation is modeled using a normal
distribution with mean zero and a precision matrix that
controls correlations between neighbors. Hence, the
structured spatial effect of correlations between areas is
achieved by incorporating the fstr using the Generalized
Markov Random Field (GMRF) priors, where the MRF is
defined as [54, 55]

f
str=�2str

� � N
�
0; �2

strQ
�1) (5)

Such that �2
str designates the unknown precision par-

ameter that controls the degree of similarities, and Q is
the spatial precision matrix that encodes the spatial
structure. Hence the (i,j)th element of the spatial preci-
sion matrix Q is given by

Fig. 2 Covariates included in the model

g EðY Þf g ¼ β0 þ β1sexþ β2ageþ β3VAþ β4BOþ β5BF þ β6coþ β7scþ β8DDSþ
β9TBþ β10PRþ β11ME þ β12FE þ β13WAþ β14water þ β15toilet þ β16mediaþ β17WQþ β18WSþ

β19year þ f 1ðwetÞ þ f 2ðtemÞ þ f 3ðagecÞ þ f 4ðagemÞ þ f 5ðeviÞ þ f spat lonk ; latkð Þ þ Uh
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Q ¼
nd d¼e

1 d � e
0 elsewhere

8<
:

Where d~e denotes the area, d is adjacent to e, and nd
is the number of adjacent areas to d.
Areas are neighbors if they share common borders

[51–55] . Thus, area d with neighboring area e, would
have conditional distributions given by

f dstr j f estr ; d 6¼ e
� 	 � N γ; "ð Þ ð6Þ

where γ ¼ 1
nd

P
e2m f dstr , " ¼ �2str

nd
, d and e are adjacent

areas in the set of all adjacent areas (m) of area s.
Finally, it is important to note that for all unknown

variances, the proposed prior distribution is the inverse-
Gamma IG (aj, bj) [51] where the constant parameters
aj > 0 and bj > 0 with hyper-parameters aj = bj = 0.001 is
the standard choice for a weakly informative prior [51–
55]. For further illustration, let us assume that Φ pre-
sents the vector of unknown parameters in the model
and L(.) be the likelihood which is the product of indi-
vidual likelihoods. With Φ = {β, σ2, fl, fstrc}. Under the
Bayesian approach, the posterior distribution L(Φ/y) is a
function of the prior distribution L(Φ) and the likelihood
function L(y/Φ) [52, 54, 56].

Model diagnostics
In this study, we considered three models mentioned in
the methodology part. We used formal criteria like devi-
ance information criteria (DIC) [1, 2] Watanabe_Akaike
information criteria (WAIC) [3], and conditional pre-
dictive ordinate (CPO) [4, 5] to compare the predictive
capability of different competing models including
GLMM GAMM and GGAMM. The model with the low-
est DIC and WAIC and the highest values of CPO was
considered as the best model to fit the data. In the se-
lected model, covariates with an association that was sig-
nificant at a 10% level were included in the multivariable
logit model [49, 50].
The EDHS provided a sample weight for each survey

respondent that accounted for the unequal likelihood of
selection and non-response. To confirm that our results
are representative of the Ethiopian population, the sam-
ple weights were included in the analysis through the
options pop-up command of “weight” representing the
sample weight by “inla” function [57].

Model validation and evaluation
The test statistic such as the AUC (which is a func-
tion of specificity and sensitivity) is used to assess the
overall predictive power of the selected model. The
AUC measures the ability of the model to correctly
predict the presences or absences: specificity measures

the percentage of absences correctly predicted, while
sensitivity measures the percentage of presences cor-
rectly predicted [6–8].

Sensitivity analysis for priors
Was performed to investigate the influence of the choice
of different variance component priors on the final
model to check whether the result was unchanged or
not. The following specifications were used as recom-
mended: IG (0.001, 0.001), IG (0.01, 0.01), IG (0.5,
0.0005), and (1, 0.026) of different degrees of uncertainty
[51, 58–62]. The first two equal prior specifications (a =
b) have often been as a standard choice on the variances
of random effects [60], the third specifications were sug-
gested by [58, 59], for modeling the precision of the
spatial effects in MRF models. The remaining prior
choice has been proposed by [59, 61, 62] for capturing
residual odds of range (0.5, 2.0). Generally, for the large
dataset and well-identified parameters, any of the prior
choices have minor different effects on the posterior in-
ferences [51]. For the analysis purpose, the Integrated
Nested Laplace Approximation (INLA) software package
for R was used, this is due to the time efficiency as com-
pared to MCMC [53, 63, 64].

Results
This study sought to find out the determinants and
spatial patterns of CIAF among U5C using the four co-
hort DHS studies in Ethiopia. The posterior mean
(standard deviation) together with the 95% credible in-
tervals (Crs) is determined for the linear fixed effect pa-
rameters included in the model. These figures are
comprehensively presented in Figs. 2, 3 below. Also, the
positive coefficients corresponding to an increased risk
for the CIAF are demonstrated in the table.

Fixed effects
The findings revealed that the CIAF status of children
under five in Ethiopia is positively associated with the
male gender. The male under-five children are 22%
more likely to be malnourished as compared to female
under-five children. Children with comorbidity are 1.407
times more likely affected by malnutrition as compared
to those without comorbidity.
The odds ratio of U5C with large/small size at birth

decreased /increased by 0.83/1.417 respectively as com-
pared to average size children at birth; the CIAF status
of U5C is negatively associated with singleton birth type,
i.e. the odds ratio of singleton birth is decreased by
64.4% compared with the multiple birth types (Fig. 3).
Turning to the link between the CIAF status of chil-

dren and the educational attainments of their parents,
one observes a negative association between the two.
Those children born from mothers with primary, and
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secondary and above were 0.958 and 0.602 times less
likely affected by malnutrition as compared to those
born from mothers with no formal education counter-
parts. This is markedly different compared to those hav-
ing no formal education at all. Moreover, those children
born from fathers who attained primary, and secondary,
and above were 0.855 and 0.804 times less likely affected
by malnutrition as compared to their counterparts from
those having no formal education. Children born from
households with unimproved access to sanitation were
1.116 times more likely affected by CIAF compared with
those who got improved sanitation facilities (Fig. 4).
Also, children from the low socioeconomic household
were, more undernourished than those from high-
income backgrounds (the lowest quintile index is posi-
tively associated with the CIAF (odds ratio > 1), com-
pared with the middle quintile, the reference group.
Particularly, compared against the benchmark category
(medium wealth quintiles), children from households
with the lowest and lower wealth quintile odds ratio
were increased by 26.10 and 13% respectively. In con-
trast for those from rich and richest wealth quintiles, the
odds ratio decreased by 0.924 and 0.797 compared to
the baseline category. Finally, the CIAF status of U5C in
Ethiopia is negatively associated with the EDHS survey
years. As such the odds ratio of CIAF was decreased by
0.620, 0.529, and 0.651 for children whose information
has been collected in 2005, 2011, and 2016 respectively
compared to the 2000 group, the reference category in
the study (Fig. 4).

Nonlinear effects
The results for the non-linear effects of the continuous
covariates and the log-odds of CIAF after accounting for
other variables with a 95% confidence interval were pre-
sented in Fig. 5 and Fig. 6. The estimates for most of the

continuous variables were different from zero, suggest-
ing that there are nonlinear effects (Table 1).
Accordingly, the log-odds of U5C having CIAF is dir-

ectly but nonlinearly correlated with the age of the child
(in months). This shows that the CIAF status of children
is negatively associated with the lower age group (up to
about 12 months). The influence of a child’s age on its
CIAF is considerably high between the age of 15 and the
age of 24 months and almost gets static up to the age of
about 52 months. The log-odds of CIAF status of U5C
were negatively associated with the lower birth orders
(birth order < 4). It increases between the birth orders of
4 to 6 and stabilizes at the same level thereafter. Looking
into the mother’s body mass index and its impact on the
level of their child’s log-odds of CIAF, one can observe
the influence expressed in the form of a u-shape in the
graph. As such, the result revealed that there is a posi-
tive association between the thinness condition of the
mother and the CIAF status of their U5C (Fig. 5).
Turning to the last determinant under this category,

we observe that the CIAF status of U5C is indirectly but
non-linearly correlated with enhanced vegetation index
(EVI) and urban-rural (UR) settlement ratios. Particu-
larly, the risk of CIAF was found to be significantly high
in the lower EVI and UR. Further, looking into the arid-
ity and land surface temperature (LST) and their impact
on the log-odds level of their child’s CIAF there is a
negative association between the lower values of the
aridity and lst., The influence is depicted in the graphs
which take a clear-cut u-shape forms. Finally, while a
negative association is evident in the graphs, the log-
odds of CIAF increase with an increase in aridity (> 20)
and lst (> 30) (Fig. 6).

Spatial effects
The spatial effects presented in Figs. 6, 7 are based on
the GGAMM. It shows both positive and negative spatial

Fig. 3 Posterior estimates of the fixed effects of childhood parameters for CIAF among U5C in Ethiopia
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effects on the log-odds of CIAF status among the under-
five children in Ethiopia. The estimated cluster (struc-
tured) and zonal level (unstructured) estimates were
generated for 2208 clusters and 72 Ethiopian third-level
administrative zones respectively. Moreover, the variance
estimates for the zone-level random effect and the
cluster-level spatial effects (which account for the spatial
autocorrelation) were nonzero and statistically signifi-
cant (Table 1).
The colors on the map show the log-odds scale, which

reveals each administrative zone’s contribution to the
odds of a child’s CIAF in U5C.

The colors ranged from green to red such that the
green dot denoting a negative effect on the posterior pa-
rameters for the log-odds of CIAF, while the yellow and
red dots show the positive effects which are associated
with an increased risk of the log-odds of childhood mal-
nutrition. Moreover, the map revealed that the presence
of variation in CIAF among under-five children in Ethi-
opian clusters. Mainly clusters in the northern, north-
western, and some parts of the western areas were more
likely to be suffered from malnutrition (Fig. 7). The re-
sults of the random effects presented in Fig. 8 above re-
veal the variation across the posterior parameters of

Fig. 5 Posterior means of the non-parametric effects of age of the child, birth order, household size and BMI of the mother

Fig. 4 Posterior estimates of the parameters of maternal and household level covariates associated with CIAF among U5C in Ethiopia
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CIAF among under-five children at smaller spatial units
in administrative zones across the country.
The positive posterior values further reveal the increased

log-odds of CIAF in the zones, but the negative values
showed the decreased log-odds of CIAF. Notably, children
from the zones including the eastern part of Tigray, Gon-
dar, Waghmira, Guraghe, and Alaba Tembaro were more
likely to have suffered from malnutrition. Yet most of the
subjects from Oromia, Somali, Afar, SNNP regions, and
Addis Ababa city were less likely affected. Moreover, the
maps of the 95% CrI and SD indicate higher uncertainties
about the CIAF distribution in Ethiopia.

Model goodness of fit and diagnostics
The area under the curve (AUC) for the given three
models compared with that of the diagonal line that is

always 0.500 (half of the graph) is computed. The
GGAMM model has the lowest DIC and WAIC, but the
highest values of CPO and AUC indicating that it is the
best model for identifying the associated effects of child-
household level covariates on CIAF (Fig. 9).

Sensitivity analysis
The results are robust to changes in the prior informa-
tion. It shows that all the four distributions provided al-
most equivalent values for the parameters and therefore,
our model is less sensitive to the choice of the hyper-
parameters. Hence, the standard choice of a = b = 0.001
which is the default for R-INLA was implemented to ex-
plore this study data with GGAMM (Table 2)

Discussion
The focus of this study was identifying factors associated
with CIAF among U5C and mapping the possible spatial
pattern of CIAF at zonal level heath service institutional
structures. As such, it is the first study in the country
that provides the new measures for the prevalence of
malnutrition by considering the aggregated indicators of
anthropometric failure and applies them to larger na-
tionally representative datasets in Ethiopia over time.
The major findings of the study demonstrated that, for

all EDHS datasets, the CIAF is significantly higher com-
pared to the prevalence reported by conventional indices
of stunting, underweight, and wasting [65–67].
The linear fixed effects have demonstrated a significant

positive association between the outcome variable
(CIAF) and the demographic characteristics of the
child’s maternal level of education, and socio-economic
level of households. The results, consistent with the

Fig. 6 Posterior means of the non-parametric effects of the geo-spatial covariates on child’s CIAF status

Table 1 Regression coefficient and variance component
estimation of the nonlinear terms

Estimate SE LL UL

Child’s age 0.213 0.0370 0.140 0.2856*

Child’s birth order 0.0045 0.0057 0.000 0.0156

Family size 0.0016 0.0021 0.000 0.0058

BMI of mother 0.0012 0.0071 0.000 0.0152

Enhanced vegetation index 0.07 0.0123 0.046 0.0942*

UR index 0.013 0.0012 0.011 0.0153*

Aridity 0.002 0.0154 0.000 0.0321

Land surface temperature 0.005 0.0274 0.000 0.0588

Zone-level random effect 0.056 0.016 0.025 0.087*

Cluster level spatial effect 0.220 0.049 0.123 0.317*

Keys: SE standard error of the estimate; LL Lower Level; UL Upper Level; (*)
statistically significant at α=0.05
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Fig. 7 Spatial (structured) variation of CIAF posterior estimates among U5C in Ethiopia

Fig. 8 Spatial (unstructured) variation of CIAF posterior estimates among U5C in Ethiopia
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studies reported among the SSA [68] regions, revealed
that boys are more likely to have CIAF compared to
girls. This may be because the morbidity pattern of male
children under the age of 5 is more prevalent than fe-
male counterparts [68]. Our study further found out that
odds of CIAF among children from a rural area are more
prevalent compared to those who live in urban areas.
This might be because the rural areas are less developed
in healthcare facilities and communities lack awareness
of food intake.
A further look into the results shows that children

from the lowest socio-economic households are more
likely to experience CIAF compared to children from
the richest households. This is also consistent with pre-
vious studies conducted in other developing countries
[14, 34, 38, 69–73]. This might be because in rural areas
and in the poorest wealth index families; the access to
healthcare facilities and a balanced diet is limited which
would lead to inadequate nutrient intakes. Moreover,
parents with a limited source of income are unable to
purchase food and health care services for their children,
which, in effect, contribute to undernourishment.
Finally, the CIAF status is found to have negatively

and significantly associated with the educational attain-
ments of parents. The evidence also supports the evi-
dence reported by several studies investigating child
nutrition [70, 73–76]. The results suggest that the edu-
cated parents have a better knowledge of a balanced diet
and the health of their children. Strengthening this im-
plication, the risk of malnourishment (CIAF) is almost
43.8% lower for children whose mother attains second-
ary or higher education than fathers with similar educa-
tional attainments. Of course, it is also important to
consider the employment status of the mothers in this

respect. With more than 63% of women in Ethiopia be-
ing unemployed and usually spend more of their time
with their children compared to their husbands, they
would afford to provide childcare and nourishment ser-
vices than the fathers could do. Thus, while the level of
education significantly contributes to the mothers’ cap-
acity for child care and nourishment, the time factor
might have complemented this impact.
Turning to another determinant, the CIAF status of

under-five children was negatively associated with im-
proved sanitation facilities. This might be due to the fact
that households with improved sanitation reduce the ex-
posure to additional diseases hence decreases the under-
nutrition of children. However, the use of improved/
unimproved water has no significant effects on the CIAF
status of children. This might be connected to the fact
that in Ethiopia, only 38% of households are using im-
proved sanitation, but more than 61.5% of inhabitants
can use improved water.
Apart from socio-demographic determinants the

mothers’ access to mass media use also impacted the
CIAF status of the children. As such, a significant nega-
tive association is observed between the two variables,
suggesting that women who are exposed to media learn
about the diet and health of their children and allocating
even the limited income to devote to the health nutrition
of their children. This finding is consistent with previous
research evidence reported in other countries [9, 70, 75,
77, 78]. Further, the CIAF status was negatively associ-
ated with the DHS year in Ethiopia. Particularly, the risk
of malnourishment (CIAF) is almost 10.9, 31, and 39.5%
less likely to be malnourished respectively in 2005, 2011,
and 2016 as compared to the reference category (the
2000 group). This decline in under-nutrition prevalence
over the past two decades evidenced that Ethiopia con-
tinued to address childhood malnutrition.
Turning to another evidence in the data, the nonlinear

relationship between the age of the child (in months)
and CIAF prevalence was similar to that of studies con-
ducted elsewhere [72, 73]. Moreover, children in the
youngest age group (in months) had significantly lower
CIAF odds than the older age groups. This result is also
consistent with different studies [14, 72–74]. This may
be because breastfeeding practices common among
mothers who spent much of their time with their chil-
dren [79]. Moreover, the highest CIAF risk was observed
in the age group of almost 18 to 31 months and this is
because in this age group mothers do not produce suffi-
cient breast milk to fulfill the required nutrition for their
children.
Finally, the predicted values from the GGAMM re-

vealed that child under-nutrition (CIAF) remains high in
almost all parts of the country with a limited exception
that Zones in Addis Ababa, Gambella, Somali, and

Fig. 9 Model diagnostics and goodness of fit
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central parts of the Oromia region showed a lower risk
of CIAF. This limited variation could be due to the rela-
tively better health facilities available in these zones.

Conclusion
The wide-ranging analyses made in the last sections of
the paper demonstrate that the study, as the first of its
type in using the GGAMM approach in Ethiopia, has
successfully modeled the CIAF at the zonal level by
using both the EDHS and geospatial covariates. Through
this comprehensive modeling, it has found out that child
sex, presence of comorbidity, size of child at birth, diet-
ary diversity, birth type, place of residence, child age,
parental educational level, wealth index, sanitation facil-
ities, media exposure of mothers and the survey years
have direct links with the risk of under-nutrition among
children under the age of five in Ethiopia. Moreover, the
minimum body mass index, the higher birth order, and
the lower urban-rural ratio were associated with the ris-
ing of CIAF. Still, as a major contribution to the inquiry
on the subject, this study explored and depicted the
spatial maps that revealed the areas at the high (low) es-
timated risk of undernutrition (CIAF) among under-five
children in Ethiopian administrative zones. Finally, the
generated estimated values of CIAF and the identified
factors would provide essential information that helps
the decision-makers to allocate limited resources and
program implementation in the zones that need more
attention in Ethiopia.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12874-021-01391-x.

Additional file 1.

Acknowledgments
The datasets used in this study were obtained from the DHS program thanks
to the authorization received to download the dataset on the website.

Authors’ contributions
HMF was involved in this study from data management, data analysis,
drafting, and revising the final manuscript. TZT and EKM contributed to the
conception, design, and interpretation of data, as well as to manuscript
reviews and revisions. The authors read and and approved the final
manuscript.

Funding
Not applicable

Availability of data and materials
The dataset used and analyzed during the current study is available from the
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
We, the authors, declare that we have no competing interests.

Author details
1Department of Statistics, College of Science, Bahir Dar University, Bahir Dar,
Ethiopia. 2Department of Public Health, College of Medicine and Health
Sciences, Bahir Dar University, Bahir Dar, Ethiopia. 3School of Mathematics,
Statistics and Computer Science, College of Agriculture Engineering and
Science, University of KwaZulu-Natal, Durban, South Africa.

Received: 11 March 2021 Accepted: 28 August 2021

References
1. FAO, IFAD, UNICEF, WFP, & WHO. The state of food security and nutrition in

the world 2018. Building climate resilience for food security and nutrition.
Rome: FAO; 2018.

2. De Onis M, et al. Worldwide implementation of the WHO child growth
standards. Public Health Nutr. 2012;15(9):1603–10. https://doi.org/10.1017/
S136898001200105X.

3. Institute, E.P.H. and ICF. Ethiopia mini demographic and health survey 2019:
key indicators. Rockville: EPHI and ICF; 2019.

4. Al-Sadeeq AH, Bukair AZ, Al-Saqladi A-WM. Assessment of undernutrition
using Composite Index of Anthropometric Failure among children aged< 5
years in rural Yemen. East Mediterr Health J. 2018;24(12):1126. https://doi.
org/10.26719/2018.24.12.1119.

5. Nandy S, Svedberg P. The composite index of anthropometric failure (CIAF):
an alternative Indicator for malnutrition in young children. In: Preedy V,
editor. Handb anthropometry. New York: Springer; 2012.

6. Svedberg P. Poverty and undernutrition: theory, measurement, and policy.
Oxford: Oxford University Press for UNU-WIDER; 2000.

7. Rasheed W, Jeyakumar A. Magnitude and severity of anthropometric failure
among children under two years using composite index of anthropometric
failure (CIAF) and WHO standards. Int J Pediatr Adolesc Med. 2018;5(1):24–7.
https://doi.org/10.1016/j.ijpam.2017.12.003.

8. Habyarimana F, Zewotir T, Ramroop S. A proportional odds model with
complex sampling design to identify key determinants of malnutrition of
children under five years in Rwanda. Mediterr J Soc Sci. 2014;5(23):1642.
https://doi.org/10.5901/mjss.2014.v5n23p1642.

9. Kassie GW, Workie DL. Exploring the association of anthropometric
indicators for under-five children in Ethiopia. BMC Public Health. 2019;19(1):
1–6. https://doi.org/10.1186/s12889-019-7121-6.

Table 2 Summary of the sensitivity analysis of the choice of hyper-parameters with posterior mean-variance (standard error), 95% CI
based on GGAMM

spatial effects a = b = 0.001 a = 0.01,b = 0.01 a = 0.05,b = 0.0005 a = 1,b = 0.026

�2str 0.220 (0.049) 0.229 (0.046) 0.193 (0.055) 0.201 (0.056)

2.5–97.5% (0.123, 0.317) (0.139,0.319) (0.085, 0.301) (0.091,0.311)

�2unstr 0.056 (0.016) 0.058 (0.015) 0.055 (0.011) 0.055 (0.011)

2.5–97.5% (0.025, 0.087) (0.028,0.088) (0.034,0.076) (0.033,0.077)

DIC 36,597.81 36,596.98 36,598.83 36,598.30

Fenta et al. BMC Medical Research Methodology          (2021) 21:232 Page 11 of 13

https://doi.org/10.1186/s12874-021-01391-x
https://doi.org/10.1186/s12874-021-01391-x
https://doi.org/10.1017/S136898001200105X
https://doi.org/10.1017/S136898001200105X
https://doi.org/10.26719/2018.24.12.1119
https://doi.org/10.26719/2018.24.12.1119
https://doi.org/10.1016/j.ijpam.2017.12.003
https://doi.org/10.5901/mjss.2014.v5n23p1642
https://doi.org/10.1186/s12889-019-7121-6


10. Biswas S, Giri SP, Bose K. Assessment of nutritional status by composite
index of anthropometric failure (CIAF): a study among preschool children of
Sagar block, south 24 Parganas District, West Bengal, India. Anthropol Rev.
2018;81(3):269–77. https://doi.org/10.2478/anre-2018-0022.

11. Nandy S, Irving M, Gordon D, Subramanian SV, Smith GD. Poverty, child
undernutrition and morbidity: new evidence from India. Bull World Health
Organ. 2005;83(3):210–6.

12. Nandy S, Miranda JJ. Overlooking undernutrition? Using a composite index
of anthropometric failure to assess how underweight misses and misleads
the assessment of undernutrition in young children. Soc Sci Med. 2008;
66(9):1963–6. https://doi.org/10.1016/j.socscimed.2008.01.021.

13. Pei L, Ren L, Yan H. A survey of undernutrition in children under three years
of age in rural Western China. BMC Public Health. 2014;14(1):121. https://doi.
org/10.1186/1471-2458-14-121.

14. Islam MS, Biswas T. Prevalence and correlates of the composite index of
anthropometric failure among children under 5 years old in Bangladesh.
Matern Child Nutr. 2020;16(2):e12930. https://doi.org/10.1111/mcn.12930.

15. Bejarano IF, Oyhenart EE, Torres MF, Cesani MF, Garraza M, Navazo B, et al.
Extended composite index of anthropometric failure in Argentinean
preschool and school children. Public Health Nutr. 2019;22(18):3327–35.
https://doi.org/10.1017/S1368980019002027.

16. Ziba M, Kalimbira AA, Kalumikiza Z. Estimated burden of aggregate
anthropometric failure among Malawian children. South Afr J Clin Nutr.
2018;31(2):20–3. https://doi.org/10.1080/16070658.2017.1387433.

17. Smith KR, Woodward A, Campbell-Lendrum C, Chadee DC, Honda Y, Liu Q,
Olwoch JM, Revich B, Sauerborn R. Human health: impacts, adaptation, and
co-benefits. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability.
Part A: global and sectoral aspects. Contribution of Working Group II to the
fifth assessment report of the Intergovernmental Panel on Climate Change.
[Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M.
Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy,
S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge:
Cambridge University Press; 2014. pp. 709–754.

18. Organization, W.H., Quantitative risk assessment of the effects of climate
change on selected causes of death, 2030s and 2050s. 2014.

19. Schlenker W, Lobell DB. Robust negative impacts of climate change on
African agriculture. Environ Res Lett. 2010;5(1):014010. https://doi.org/10.1
088/1748-9326/5/1/014010.

20. Milly PC, Dunne KA. Potential evapotranspiration and continental drying.
Nat Clim Chang. 2016;6(10):946–9. https://doi.org/10.1038/nclimate3046.

21. Wheeler T, Von Braun J. Climate change impacts on global food security.
Science. 2013;341(6145):508–13. https://doi.org/10.1126/science.1239402.

22. Gebreyesus SH, Mariam DH, Woldehanna T, Lindtjørn B. Local spatial
clustering of stunting and wasting among children under the age of 5
years: implications for intervention strategies. Public Health Nutr. 2016;19(8):
1417–27. https://doi.org/10.1017/S1368980015003377.

23. Collaborators, G.R.F. Global, regional, and national comparative risk
assessment of 79 behavioural, environmental and occupational, and
metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the
Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1659.

24. Corsi DJ, Chow CK, Lear SA, Rahman MO, Subramanian SV, Teo KK. Shared
environments: a multilevel analysis of community context and child
nutritional status in Bangladesh. Public Health Nutr. 2011;14(6):951–9.
https://doi.org/10.1017/S1368980010003356.

25. Griffiths P, Madise N, Whitworth A, Matthews Z. A tale of two continents: a
multilevel comparison of the determinants of child nutritional status from
selected African and Indian regions. Health Place. 2004;10(2):183–99. https://
doi.org/10.1016/j.healthplace.2003.07.001.

26. Fetene N, Linnander E, Fekadu B, Alemu H, Omer H, Canavan M, et al. The
Ethiopian health extension program and variation in health systems
performance: what matters? PLoS One. 2016;11(5):e0156438. https://doi.
org/10.1371/journal.pone.0156438.

27. ESRI, ArcGIS Desktop: Release 10. Redlands: Environmental Systems Research
Institute; 2011.

28. Shit S, Taraphdar P, Mukhopadhyay DK, Sinhababu A, Biswas AB.
Assessment of nutritional status by composite index for anthropometric
failure: a study among slum children in Bankura, West Bengal. Indian J
Public Health. 2012;56(4):305–7. https://doi.org/10.4103/0019-557X.106421.

29. Mandal G, Bose K. Assessment of overall prevalence of undernutrition using
composite index of anthropometric failure (CIAF) among preschool children
of West Bengal, India; 2009.

30. Sen J, Mondal N. Socio-economic and demographic factors affecting the
composite index of anthropometric failure (CIAF). Ann Hum Biol. 2012;39(2):
129–36. https://doi.org/10.3109/03014460.2012.655777.

31. Chowdhury MRK, et al. Risk factors for child malnutrition in Bangladesh: a
multilevel analysis of a nationwide population-based survey. J Pediatr. 2016;
172:194–201. e1.

32. Adekanmbi VT, Kayode GA, Uthman OA. Individual and contextual factors
associated with childhood stunting in Nigeria: a multilevel analysis. Matern
Child Nutr. 2013;9(2):244–59. https://doi.org/10.1111/j.1740-8709.2011.00361.x.

33. Aheto JMK, Keegan TJ, Taylor BM, Diggle PJ. Childhood malnutrition and its
determinants among under-five children in G hana. Paediatr Perinat
Epidemiol. 2015;29(6):552–61. https://doi.org/10.1111/ppe.12222.

34. Bain LE, Awah PK, Geraldine N, Kindong NP, Sigal Y, Bernard N, et al.
Malnutrition in Sub–Saharan Africa: burden, causes and prospects. Pan Afr
Med J. 2013;15(1). https://doi.org/10.11604/pamj.2013.15.120.2535.

35. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al.
Maternal and child undernutrition: global and regional exposures and
health consequences. Lancet. 2008;371(9608):243–60. https://doi.org/10.101
6/S0140-6736(07)61690-0.

36. Degarege D, Degarege A, Animut A. Undernutrition and associated risk
factors among school age children in Addis Ababa, Ethiopia. BMC Public
Health. 2015;15(1):375. https://doi.org/10.1186/s12889-015-1714-5.

37. Fenta HM, Workie DL, Zike DT, Taye BW, Swain PK. Determinants of stunting
among under-five years children in Ethiopia from the 2016 Ethiopia
demographic and health survey: application of ordinal logistic regression
model using complex sampling designs. Clin Epidemiol Global Health. 2020;
8(2):404–13. https://doi.org/10.1016/j.cegh.2019.09.011.

38. Balk D, Storeygard A, Levy M, Gaskell J, Sharma M, Flor R. Child hunger in the
developing world: an analysis of environmental and social correlates. Food
Policy. 2005;30(5–6):584–611. https://doi.org/10.1016/j.foodpol.2005.10.007.

39. Nkurunziza H, Gebhardt A, Pilz J. Bayesian modelling of the effect of climate
on malaria in Burundi. Malar J. 2010;9(1):114. https://doi.org/10.1186/1475-2
875-9-114.

40. Mayala B, et al. The DHS program geospatial covariate datasets manual.
Rockville: ICF; 2018.

41. Alegana VA, Atkinson PM, Pezzulo C, Sorichetta A, Weiss D, Bird T, et al. Fine
resolution mapping of population age-structures for health and
development applications. J R Soc Interface. 2015;12(105):20150073. https://
doi.org/10.1098/rsif.2015.0073.

42. Gething PW, Clara R. Burgert-Brucker. The DHS program modeled map
surfaces: understanding the utility of spatial interpolation for generating
indicators sub-national administrative levels. DHS Spatial Analysis Reports
No. 15. Rockville: ICF; 2017.

43. Osgood-Zimmerman A, Millear AI, Stubbs RW, Shields C, Pickering BV, Earl L,
et al. Mapping child growth failure in Africa between 2000 and 2015.
Nature. 2018;555(7694):41–7. https://doi.org/10.1038/nature25760.

44. Amegbor PM, Zhang Z, Dalgaard R, Sabel CE. Multilevel and spatial analyses
of childhood malnutrition in Uganda: examining individual and contextual
factors. Sci Rep. 2020;10(1):1–15. https://doi.org/10.1038/s41598-020-76856-y.

45. Ugwu CLJ, Zewotir T. Evaluating the effects of climate and environmental
factors on Under-5 children malaria spatial distribution using generalized
additive models (GAMs). J Epidemiol Global Health. 2020;10(4):304–14.
https://doi.org/10.2991/jegh.k.200814.001.

46. Nelder JA, Wedderburn RW. Generalized linear models. J Royal Stat Soc.
1972;135(3):370–84. https://doi.org/10.2307/2344614.

47. Hastie TJ, Tibshirani RJ. Generalized additive models, vol 43. Boca Raton:
CRC press; 1990.

48. Wood SN. Generalized additive models: an introduction with R. Boca Raton:
CRC press; 2017.

49. Wand MP. Smoothing and mixed models. Comput Stat. 2003;18(2):223–49.
https://doi.org/10.1007/s001800300142.

50. Wand H, Whitaker C, Ramjee G. Geoadditive models to assess spatial
variation of HIV infections among women in local communities of Durban,
South Africa. Int J Health Geogr. 2011;10(1):28. https://doi.org/10.1186/1476-
072X-10-28.

51. Fahrmeir L, Kneib T. Propriety of posteriors in structured additive regression
models: theory and empirical evidence. J Stat Plan Inference. 2009;139(3):
843–59. https://doi.org/10.1016/j.jspi.2008.05.036.

52. Gosoniu L, Vounatsou P, Sogoba N, Smith T. Bayesian modelling of
geostatistical malaria risk data. Geospat Health. 2006;1(1):127–39. https://doi.
org/10.4081/gh.2006.287.

Fenta et al. BMC Medical Research Methodology          (2021) 21:232 Page 12 of 13

https://doi.org/10.2478/anre-2018-0022
https://doi.org/10.1016/j.socscimed.2008.01.021
https://doi.org/10.1186/1471-2458-14-121
https://doi.org/10.1186/1471-2458-14-121
https://doi.org/10.1111/mcn.12930
https://doi.org/10.1017/S1368980019002027
https://doi.org/10.1080/16070658.2017.1387433
https://doi.org/10.1088/1748-9326/5/1/014010
https://doi.org/10.1088/1748-9326/5/1/014010
https://doi.org/10.1038/nclimate3046
https://doi.org/10.1126/science.1239402
https://doi.org/10.1017/S1368980015003377
https://doi.org/10.1017/S1368980010003356
https://doi.org/10.1016/j.healthplace.2003.07.001
https://doi.org/10.1016/j.healthplace.2003.07.001
https://doi.org/10.1371/journal.pone.0156438
https://doi.org/10.1371/journal.pone.0156438
https://doi.org/10.4103/0019-557X.106421
https://doi.org/10.3109/03014460.2012.655777
https://doi.org/10.1111/j.1740-8709.2011.00361.x
https://doi.org/10.1111/ppe.12222
https://doi.org/10.11604/pamj.2013.15.120.2535
https://doi.org/10.1016/S0140-6736(07)61690-0
https://doi.org/10.1016/S0140-6736(07)61690-0
https://doi.org/10.1186/s12889-015-1714-5
https://doi.org/10.1016/j.cegh.2019.09.011
https://doi.org/10.1016/j.foodpol.2005.10.007
https://doi.org/10.1186/1475-2875-9-114
https://doi.org/10.1186/1475-2875-9-114
https://doi.org/10.1098/rsif.2015.0073
https://doi.org/10.1098/rsif.2015.0073
https://doi.org/10.1038/nature25760
https://doi.org/10.1038/s41598-020-76856-y
https://doi.org/10.2991/jegh.k.200814.001
https://doi.org/10.2307/2344614
https://doi.org/10.1007/s001800300142
https://doi.org/10.1186/1476-072X-10-28
https://doi.org/10.1186/1476-072X-10-28
https://doi.org/10.1016/j.jspi.2008.05.036
https://doi.org/10.4081/gh.2006.287
https://doi.org/10.4081/gh.2006.287


53. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of
model complexity and fit. J Royal Stat Soc. 2002;64(4):583–639. https://doi.
org/10.1111/1467-9868.00353.

54. Bolstad WM. Understanding computational Bayesian statistics. 1st ed. New
York: Wiley; 2009.

55. Brezger A, Lang S. Generalized structured additive regression based on
Bayesian P-splines. Comput Stat Data Anal. 2006;50(4):967–91. https://doi.
org/10.1016/j.csda.2004.10.011.

56. Wand H, Whitaker C, Ramjee G. Geoadditive models to assess spatial
variation of HIV infections among women in local communities of Durban,
South Africa. Int J Health Geogr. 2011;10(1):1–9.

57. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations. J
Royal Stat Soc. 2009;71(2):319–92. https://doi.org/10.1111/j.1467-9868.2008.
00700.x.

58. Kelsall J, Wakefield J. Discussion of ‘Bayesian models for spatially
correlated disease and exposure data’, by Best et al. Bayesian Stat. 1999;
6:151.

59. Kazembe LN, Kandala N-B. Estimating areas of common risk in low birth
weight and infant mortality in Namibia: a joint spatial analysis at sub-
regional level. Spatial Spatio-Temp Epidemiol. 2015;12:27–37. https://doi.
org/10.1016/j.sste.2015.02.001.

60. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS-a Bayesian modelling
framework: concepts, structure, and extensibility. Stat Comput. 2000;10(4):
325–37. https://doi.org/10.1023/A:1008929526011.

61. Wakefield J. Disease mapping and spatial regression with count data.
Biostatistics. 2007;8(2):158–83. https://doi.org/10.1093/biostatistics/kxl008.

62. Best NG, et al. Bayesian models for spatially correlated disease and exposure
data. Bayesian Stat. 1999;6:131–56.

63. Lang S, Brezger A. Bayesx-software for bayesian inference based on markov
chain Monte Carlo simulation techniques; 2000.

64. Martins TG, Simpson D, Lindgren F, Rue H. Bayesian computing with INLA:
new features. Comput Stat Data Anal. 2013;67:68–83. https://doi.org/10.101
6/j.csda.2013.04.014.

65. Csa I. Central statistical agency (CSA)[Ethiopia] and ICF. Addis Ababa and
Calverton: Ethiopia demographic and health survey; 2016.

66. Demographic CE. Health survey 2011. Addis Ababa and Calverton: Central
Statistical Agency and ICF International; 2011.

67. bālaśelṭān, E.Y.s, Macro O. Demographic and Health Survey, 2005. Ethiopia:
Central Statistical Authority; 2006.

68. Wamani H, Åstrøm AN, Peterson S, Tumwine JK, Tylleskär T. Boys are more
stunted than girls in sub-Saharan Africa: a meta-analysis of 16 demographic
and health surveys. BMC Pediatr. 2007;7(1):17. https://doi.org/10.1186/14
71-2431-7-17.

69. Endris N, Asefa H, Dube L. Prevalence of malnutrition and associated factors
among children in rural Ethiopia. Biomed Res Int. 2017;2017:1–6. https://doi.
org/10.1155/2017/6587853.

70. Dasgupta A, et al. Assessment of under nutrition with composite index of
anthropometric failure (CIAF) among under-five children in a rural area of
West Bengal. Indian J Community Health. 2014;26(2):132–8.

71. Akombi BJ, Agho KE, Merom D, Renzaho AM, Hall JJ. Child malnutrition in
sub-Saharan Africa: a meta-analysis of demographic and health surveys
(2006-2016). PLoS One. 2017;12(5):e0177338. https://doi.org/10.1371/journal.
pone.0177338.

72. Khamis, A.G., et al., The burden and correlates of childhood undernutrition
in Tanzania according to composite index of anthropometric failure. 2020.

73. Takele K, Zewotir T, Ndanguza D. Understanding correlates of child stunting
in Ethiopia using generalized linear mixed models. BMC Public Health. 2019;
19(1):626. https://doi.org/10.1186/s12889-019-6984-x.

74. Kejo D, Mosha TCE, Petrucka P, Martin H, Kimanya ME. Prevalence and
predictors of undernutrition among underfive children in Arusha District,
Tanzania. Food Sci Nutr. 2018;6(8):2264–72. https://doi.org/10.1002/fsn3.798.

75. Farooq R, Khan H, Khan MA, Aslam M. Socioeconomic and demographic
factors determining the underweight prevalence among children under-five
in Punjab. BMC Public Health. 2020;20(1):1–11. https://doi.org/10.1186/s12
889-020-09675-5.

76. Ahmed MM, et al. Prevalence of undernutrition and risk factors of severe
undernutrition among children admitted to Bugando medical Centre in
Mwanza. Tanzania. BMC Nutr. 2016;2(1):1–6.

77. Khamis AG, Mwanri AW, Kreppel K, Kwesigabo G. The burden and correlates
of childhood undernutrition in Tanzania according to composite index of

anthropometric failure. BMC Nutr. 2020;6(1):1–13. https://doi.org/10.1186/s4
0795-020-00366-3.

78. Obasohan PE, Walters SJ, Jacques R, Khatab K. Risk factors associated with
malnutrition among children under-five years in sub-Saharan African
countries: a scoping review. Int J Environ Res Public Health. 2020;17(23):
8782. https://doi.org/10.3390/ijerph17238782.

79. World Health Organization. Indicators for assessing infant and young child
feeding practices: definitions and measurement methods. Geneva: World
Health Organization; 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Fenta et al. BMC Medical Research Methodology          (2021) 21:232 Page 13 of 13

https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1016/j.csda.2004.10.011
https://doi.org/10.1016/j.csda.2004.10.011
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1016/j.sste.2015.02.001
https://doi.org/10.1016/j.sste.2015.02.001
https://doi.org/10.1023/A:1008929526011
https://doi.org/10.1093/biostatistics/kxl008
https://doi.org/10.1016/j.csda.2013.04.014
https://doi.org/10.1016/j.csda.2013.04.014
https://doi.org/10.1186/1471-2431-7-17
https://doi.org/10.1186/1471-2431-7-17
https://doi.org/10.1155/2017/6587853
https://doi.org/10.1155/2017/6587853
https://doi.org/10.1371/journal.pone.0177338
https://doi.org/10.1371/journal.pone.0177338
https://doi.org/10.1186/s12889-019-6984-x
https://doi.org/10.1002/fsn3.798
https://doi.org/10.1186/s12889-020-09675-5
https://doi.org/10.1186/s12889-020-09675-5
https://doi.org/10.1186/s40795-020-00366-3
https://doi.org/10.1186/s40795-020-00366-3
https://doi.org/10.3390/ijerph17238782

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Study data
	Variables
	Geographic covariates
	Statistical analysis
	Prior distributions
	Model diagnostics
	Model validation and evaluation
	Sensitivity analysis for priors

	Results
	Fixed effects
	Nonlinear effects
	Spatial effects
	Model goodness of fit and diagnostics
	Sensitivity analysis


	Discussion
	Conclusion
	Supplementary Information
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

