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Abstract 

Background:  Disease surveillance of diabetes among youth has relied mainly upon manual chart review. However, 
increasingly available structured electronic health record (EHR) data have been shown to yield accurate determina-
tions of diabetes status and type. Validated algorithms to determine date of diabetes diagnosis are lacking. The objec-
tive of this work is to validate two EHR-based algorithms to determine date of diagnosis of diabetes.

Methods:  A rule-based ICD-10 algorithm identified youth with diabetes from structured EHR data over the period 
of 2009 through 2017 within three children’s hospitals that participate in the SEARCH for Diabetes in Youth Study: 
Cincinnati Children’s Hospital, Cincinnati, OH, Seattle Children’s Hospital, Seattle, WA, and Children’s Hospital Colorado, 
Denver, CO. Previous research and a multidisciplinary team informed the creation of two algorithms based upon 
structured EHR data to determine date of diagnosis among diabetes cases. An ICD-code algorithm was defined by 
the year of occurrence of a second ICD-9 or ICD-10 diabetes code. A multiple-criteria algorithm consisted of the year 
of first occurrence of any of the following: diabetes-related ICD code, elevated glucose, elevated HbA1c, or diabetes 
medication. We assessed algorithm performance by percent agreement with a gold standard date of diagnosis deter-
mined by chart review.

Results:  Among 3777 cases, both algorithms demonstrated high agreement with true diagnosis year and differed in 
classification (p = 0.006): 86.5% agreement for the ICD code algorithm and 85.9% agreement for the multiple-criteria 
algorithm. Agreement was high for both type 1 and type 2 cases for the ICD code algorithm. Performance improved 
over time.

Conclusions:  Year of occurrence of the second ICD diabetes-related code in the EHR yields an accurate diagnosis 
date within these pediatric hospital systems. This may lead to increased efficiency and sustainability of surveillance 
methods for incidence of diabetes among youth.
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Background
The SEARCH for Diabetes in Youth Study (SEARCH) 
has documented trends in the incidence and preva-
lence of diabetes among youth aged less than 20 years 
in five geographic areas of the United States since 
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2001 [1–5]. Manual chart review remains the primary 
method to identify diabetes status, diabetes type, and 
date of onset, which requires substantial time and 
effort. Previous work determined that structured elec-
tronic health record (EHR) data, which has become 
widely available, can accurately determine diabetes 
status and type [6–9]. Given the longitudinal nature 
of EHR data with associated dates, it is reasonable to 
consider leveraging the EHR to determine date of diag-
nosis to enable identification of incident cases.

EHR systems have been increasingly utilized to 
enhance the efficiency of public health surveillance, 
particularly in establishing prevalence of disease [10]. 
However, identifying date of onset of any disease is 
challenging due to the absence of a structured date 
field that captures this information. EHR data have 
been explored as a mechanism to efficiently identify 
incident cases of diabetes. Studies often define this 
incident population through a requirement that a 
person is present in the EHR network and free from 
evidence of diabetes for a defined length of time or 
for a number of prior outpatient visits [11–14]. First 
evidence defined by a well-reasoned EHR algorithm 
is then considered date of onset. Pantalone charac-
terized newly diagnosed type 2 diabetes cases among 
adults as those with at least two primary care out-
patient visits prior to the first appearance of a dia-
betes-related ICD code [11]. Date of diagnosis was 
determined by time of anti-hyperglycemic medica-
tion, ICD-9 code, or laboratory value consistent with 
diabetes. Another study identified incident prediabe-
tes cases by elevated glycated hemoglobin (HbA1c) 
and glucose values occurring after at least 2 years of 
longitudinal EHR data without evidence of diabetes 
or prediabetes (qualifying ICD diabetes code, glucose, 
HbA1c, or metformin prescription) [15]. The scope 
of previous work is largely focused on the identifica-
tion of incident cases for observation or follow-up 
care, in which case precise date of diagnosis is not 
essential. Limitations include the lack of validation of 
algorithms [15] or an extremely small sample size for 
validation (n = 20) [11].

Therefore, the purpose of the present study is to adapt 
previous research to surveillance efforts and to validate 
EHR-based algorithms to determine date of diagnosis 
in a large sample of youth with diabetes. The SEARCH 
for Diabetes in Youth study provides an ideal opportu-
nity to evaluate this question as EHR-based methods 
can be compared to a chart-reviewed gold standard to 
comprehensively fulfill the needs of automated case 
registration and increase surveillance efficiency.

Methods
Search
The SEARCH for Diabetes in Youth study has con-
ducted population-based incidence and prevalence 
ascertainment of non-gestational diabetes in youth 
since 2001 [1–5]. SEARCH identifies youth diagnosed 
under the age of 20 years at the following locations: 
health plan members in seven counties in Southern 
California, the state of Colorado, Native American res-
ervations in Arizona and New Mexico, eight counties 
in Ohio, the state of South Carolina, and five counties 
in Washington. Cases are also identified by a variety 
of sources that include referrals from physicians and 
other health care providers, community health systems, 
and diabetes registries. In SEARCH, a diabetes case is 
determined by physician diagnosis. This determination 
can be made by provider report, medical record review, 
or self-report.

Three hospital systems that are part of the SEARCH 
case ascertainment network participated in this study: 
Cincinnati Children’s Hospital, Cincinnati, OH, Seattle 
Children’s Hospital, Seattle, WA, and Children’s Hospi-
tal Colorado, Denver, CO. The study was approved by 
the SEARCH coordinating center (Wake Forest Uni-
versity Health Sciences Institutional Review Board; 
IRB00015926) with waivers of informed consent and 
Health Insurance Portability and Accountability Act 
authorization. This study was also approved by the local 
Institutional Review Boards of the participating sites. 
Methods were carried out in accordance with the Dec-
laration of Helsinki and all other relevant guidelines 
and regulations. Two of these study sites use EHRs 
developed by Epic (Verona, WI) while the other site 
employs an EHR developed by Cerner EHR (Kansas 
City, MO).

Case identification
This work originates from a project designed to explore 
detection of diabetes status, diabetes type, and date of 
diagnosis within a cohort of possible 2017 prevalent 
cases. All potential cases of youth with diabetes aged 
less than 20 years in 2017 were extracted from the EHR 
at three hospital systems through the use of a highly 
sensitive algorithm. The sensitive algorithm included at 
least one inpatient or outpatient clinical encounter in 
2017 and at least one of the following criteria: a diabe-
tes-related International Classification of Disease, 10th 
Revision, (ICD-10) diagnosis code, a glycated hemo-
globin A1c ≥ 6.5%, a fasting or random glucose value 
≥126 mg/dl and 200 mg/dl respectively, or a diabetes-
related medication [16].
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Gold standard for date of diagnosis
Potential diabetes cases were matched to the SEARCH 
registry, which included date of diagnosis and diabetes 
type from previous medical record review. Diabetes 
cases identified by the sensitive algorithm that were 
not already in the registry underwent the same review 
process. Calendar month and year of date of diabetes 
diagnosis were recorded for each subject and used as 
the gold standard to which date of diagnosis algorithms 
were compared.

Electronic health record data
Structured outpatient and inpatient EHR data were 
extracted for patients within the following domains: 
demographics, laboratory measurements, diagnosis 
codes, medications, and vital signs. Dates were recorded 
as calendar month and year. Each site removed protected 
health information prior to transmitting the data to the 
coordinating center for harmonization and analysis.

Diabetes status and type
Previous research in SEARCH demonstrated that struc-
tured EHR data yields respectable metrics for determin-
ing diabetes status and type [6–8, 16]. The presence of at 
least two ICD-10 codes (E08-E13.x, P70.2, O24.0x, and 
O24.1x) determines status well, and a preponderance 
of type 1 diabetes, type 2 diabetes, and other diabetes 
(non-type 1 or type 2) codes can accurately determine 
type when paired with limited manual chart review of 
type 2 diabetes and other type cases [9]. Given the excel-
lent metrics in determining diabetes status and the simi-
larity to other algorithms in the literature, the authors 
applied this rule-based ICD-10 approach to all accumu-
lated diagnosis data from the point of EHR entry through 
12/31/2017 to identify probable diabetes cases. We tested 
date of diagnosis algorithms within this population.

Inclusion criteria
Probable cases according to the rule-based ICD-10 algo-
rithm were included in the analysis. Eligibility criteria 
were intended to mimic a real-world application in which 
one would not know true diabetes status or date of diag-
nosis and would therefore be unable to subset the popu-
lation according to either of these parameters. Patients 
were restricted to those first detected in the EHR from 
1/1/2009 through 12/31/2017 as EHR systems were lim-
ited prior to 2009. This reduced the number of cases 
with incomplete data at the time of diagnosis. We con-
sidered limiting cases to those with a pre-defined period 
of time in the EHR without evidence of diabetes. We did 
not pursue this approach as this would have substantially 

reduced the size of the analytic cohort, and we found that 
performance metrics remained strong without the addi-
tional requirement.

Date of diagnosis algorithms
We considered two algorithms to determine date of diag-
nosis: an ICD code algorithm and a multiple-criteria 
algorithm. These algorithms were developed by a mul-
tidisciplinary team of clinicians, epidemiologists, and 
informaticians who participated in SEARCH and have 
extensive experience with childhood diabetes. The ICD 
code algorithm was defined as the time of occurrence 
of second diabetes diagnosis code (ICD-9: 249–250.x, 
357.2, 362.0x, 366.41, 648.0x, 775.1 and/or ICD-10: 
E08-E13.x, P70.2, O24.0x, O24.1x) and was based upon 
previous success in the identification of prevalent dia-
betes cases [9]. Both ICD-9 and ICD-10 codes were uti-
lized as the span of potential diagnosis dates preceded 
the implementation of ICD-10 in October of 2015. The 
multiple-criteria algorithm was defined as the time of 
occurrence of the first diabetes-related diagnosis code, 
or elevated glycated hemoglobin ≥6.5%, or elevated 
glucose (≥ 126 mg/dl fasting, ≥ 200 mg/dl random), or 
diabetes-related medication (Alpha Glucosidase Inhibi-
tors, Dipeptidyl Peptidase-4 (DPP4) Inhibitors, Gluca-
gon-like Protein-1 (GLP-1) Receptor Agonists, Insulin, 
Meglitinides, Sodium-glucose co-transporter-2 (SGLT2) 
inhibitors, Sulfonylureas, Thiazolidinediones, and other 
medications identified by clinicians). This combination of 
variables was based upon strong association with diabe-
tes status, presence in the literature [6, 8, 11, 14, 15], and 
adequate data availability in the EHR.

Statistical methods
All analyses were conducted using R version 3.6.2 (R 
foundation for Statistical Computing). We assessed the 
performance of the rule-based ICD-10 status algorithm 
for diabetes status with accuracy, sensitivity, and speci-
ficity. Performance between each date of diagnosis algo-
rithm compared to the gold standard calendar year of 
diagnosis was quantified by percent agreement (number 
of observations where predicted calendar year matched 
the gold standard year divided by the total number of 
probable diabetes cases identified by the rule-based 
ICD-10 status algorithm) and Cohen’s Kappa for inter-
rater reliability [17]. McNemar’s test identified if the mar-
ginal proportions between algorithms differed overall 
and within each diabetes type. A two proportion z-test 
identified differences in proportions correctly classified 
between type 1 and type 2 diabetes cases within each 
algorithm. We deemed results of all tests statistically sig-
nificant at P < 0.05. We examined concordance between 
predicted and gold standard calendar month and year 
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for the ICD code algorithm by scatterplot with under-
lying distribution by gold standard diagnosis year. We 
inspected performance over time visually by line graph 
with 95% confidence intervals for each year of diagno-
sis. Visualizations were limited to 2009–2017 due to lack 
of EHR data prior to 2009; type 2 cases were limited to 
2012–2017 due to the small number of cases (n = 12) with 
gold standard date from 2009 to 2011. While year alone is 
most relevant for surveillance purposes, month and year 
of diagnosis is important for a variety of other reasons 
beyond the scope of this paper. Therefore, we also report 
overall percent agreement, Kappa, and McNemar’s test 
for the algorithms compared to the gold standard calen-
dar month and year (plus or minus 1 month) and visually 
examined performance over time.

Results
Among potential cases (n = 6386), the rule-based ICD-
10 algorithm identified 3777 probable cases of diabetes. 
Table 1 displays the characteristics of these cases by site. 
Cases where SEARCH staff could not determine a diag-
nosis date from the medical record (n = 19) or who were 
ineligible according to SEARCH criteria (n = 46, e.g., geo-
graphic status, institutionalization, etc.) were excluded. 
Many cases (n = 2331, 61.7%) first appeared with some 
EHR-based evidence of diabetes during the same month 

they first appeared in the EHR network and 1916 (50.7%) 
had a concordant gold standard month and year of diag-
nosis at this time (Supplemental Table 1).

The rule-based ICD-10 algorithm for identification of 
diabetes performed well with an overall accuracy of 0.98, 
sensitivity of 0.99, and a specificity of 0.96. Of those con-
sidered to be probable diabetes cases, 94.1% were cor-
rectly classified by the rule-based ICD-10 approach for 
diabetes type. A detailed classification matrix is included 
as Supplemental Figure 1.

Within probable diabetes cases, the ICD code algo-
rithm demonstrated 86.5% (3267/3777) agreement with 
the gold standard year of diagnosis and a high inter-
rater reliability (Kappa = 0.85). This algorithm was not 
equivalent in case classification to the multiple crite-
ria algorithm (p = 0.006), which demonstrated 85.9% 
(3246/3777) agreement (Kappa = 0.84). The ICD code 
algorithm correctly classified 40 diabetes cases that the 
multiple-criteria algorithm misclassified (incorrectly pre-
dicted the year of diagnosis), and the multiple-criteria 
algorithm correctly classified 19 that the ICD code algo-
rithm misclassified. When compared to gold standard 
calendar month and year (plus or minus 1ne month), the 
ICD code algorithm demonstrated 85.1% (3215/3777) 
agreement (Kappa = 0.83) and statistically differed in 
classification compared to the multiple-criteria algorithm 

Table 1  Characteristics of youth identified by rule-based ICD-10 algorithm by SEARCH site

Values are presented as mean (standard deviation) for continuous variables and count (%) for categorical variables

Variable Site A Site B Site C Total
n = 1217 n = 1305 n = 1255 n = 3777

Age group in 2017 (years), n (%)
  0–4 50 (4.1) 50 (3.8) 93 (7.4) 193 (5.1)

  5–9 194 (15.9) 259 (19.8) 348 (27.7) 801 (21.2)

  10–14 459 (37.7) 438 (33.6) 453 (36.1) 1350 (35.7)

  15–19 514 (42.2) 558 (42.8) 361 (28.8) 1433 (37.9)

Mean age of diagnosis in years (SD) 8.9 (4.3) 8.7 (4.3) 7.3 (4.3) 8.3 (4.4)

Sex, n (%)
  Female 596 (49.0) 598 (45.8) 623 (49.6) 1817 (48.1)

  Male 621 (51.0) 707 (54.2) 632 (50.4) 1960 (51.9)

Race, n (%)
  White 959 (78.8) 835 (64.0) 862 (68.7) 2656 (70.3)

  Black 187 (15.4) 109 (8.4) 67 (5.3) 363 (9.6)

  Other/Unknown 71 (5.8) 361 (27.7) 326 (26.0) 758 (20.1)

Ethnicity, n (%)
  Hispanic 47 (3.9) 139 (10.7) 228 (18.2) 414 (11.0)

  Non-Hispanic or unknown 1170 (96.1) 1166 (89.3) 1027 (81.8) 3363 (89.0)

SEARCH diabetes type, n (%)
  Type 1 1009 (88.4) 1166 (90.3) 1165 (94.2) 3340 (91.0)

  Type 2 115 (10.1) 110 (8.5) 52 (4.2) 277 (7.5)

  Other (non-type 1 or type 2) 18 (1.6) 15 (1.2) 20 (1.6) 53 (1.4)
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(p = 0.002), which demonstrated 84.4% (3189/3777) 
agreement (Kappa = 0.82). The denominator for these 
calculations included 107 false positives for which the 
predicted date of diagnosis could not be compared to a 
gold standard date of diagnosis as these were not true/
validated cases of diabetes. Cases with a diagnosis date 
prior to 2009 (n = 119) were also incorrectly classified 
due to lack of EHR data. These remained in the denomi-
nator as systematic exclusion is not possible in future 
application.

Percent agreement by calendar year improved over 
time from 2009 through 2017 and exceeded 95% for 2016 
and 2017 (Fig.  1). Agreement differed modestly across 
sites and was initially lower at site C, but improved and 
consistently remained greater than 90% for 2016 and 
2017 at all sites (Supplemental Figure 2). Percent agree-
ment within calendar month also improved over time 
and exceeded 95% in 2016 and 2017 for the ICD code 
algorithm (Supplemental Figure 3).

Figure  2 displays percent agreement by gold standard 
year of diagnosis for type 1 diabetes (2009–2017) and 
type 2 diabetes cases (2012–2017). The ICD code algo-
rithm and multiple-criteria date of diagnosis algorithms 
made considerably different predictions for type 2 cases 
(p = 0.010), but not for type 1 (p = 0.439) or other type 
cases (p = 0.527). The ICD code algorithm correctly 
classified diagnosis year in 89.6% (2991/3340) of type 1 

diabetes cases and 86.6% (240/277) of type 2 diabetes and 
showed no statistical difference between proportions cor-
rectly classified by year (p = 0.132). The multiple-criteria 
algorithm classified diagnosis year correctly in 89.5% 
(2988/3340) of type 1 diabetes cases and 80.9% (224/277) 
of type 2 diabetes cases and statistically differed by type 
(p < 0.001). These trends persist upon examination of 
agreement with calendar month and year (Supplemental 
Figure 4). Percent agreement for other types of diabetes 
were 67.9% (36/53) and 64.2% (34/53) for the ICD code 
and multiple-criteria algorithms, respectively.

Figure 3 further illustrates the accuracy of the ICD code 
algorithm for predicting date of diagnosis. The diagonal 
line represents perfect agreement between predicted and 
gold standard month and year. When dates disagreed, the 
true date of diagnosis was often earlier than the predicted 
date. While this trend was also present for the multiple-
criteria algorithm, visual inspection showed a larger 
number of cases with a true date of diagnosis subsequent 
to the predicted date (Supplemental Figure 5).

Discussion
We demonstrate that structured EHR data can accu-
rately identify the year of diagnosis in approximately 86% 
of youth with diabetes. Of the two algorithms we evalu-
ated, we recommend using the ICD code algorithm (year 
of occurrence of the second ICD-9 or ICD-10 diabetes 

Fig. 1  Algorithm percent agreement with gold standard year of diagnosis (2009–2017). Non-diabetes observations (n = 107) incorrectly identified 
by the rule-based ICD-10 algorithm and diabetes cases (n = 119) with gold standard date of diagnosis preceding 2009 are not visualized
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code) to identify onset of diabetes in practice. First, the 
ICD code algorithm performed better at classification of 
cases overall and type 2 diabetes cases against the gold 
standard when compared to the multiple-criteria algo-
rithm. Second, performance was high and did not dif-
fer between type 1 diabetes (89.6%) and type 2 diabetes 
(86.6%) cases. Third, the utilization of diagnosis codes 
is simple and avoids the need to harmonize and process 
additional structured data elements in the EHR. Finally, 
this approach is consistent with our previous work for 
determining diabetes status and type in youth, and 
facilitates an easier combination of methods to compre-
hensively determine diabetes status, type, and date of 
diagnosis.

We observed improvement in the accuracy of the 
algorithms over the period from 2009 through 2017. 
This trend persisted for all age groups at time of diag-
nosis (0–4, 5–9, 10–14, and 15–19 years of age) and did 
not appear to be an artifact of the cohort definition that 
restricted the population to those less than 20 years of 
age at the end of 2017. Additionally, type 2 cases which 
are typically diagnosed later in childhood were thus 
observed in higher proportions from 2012 to 2017. This 
only bolsters our confidence in temporal improvement as 
these cases showed slightly lower agreement compared 
to type 1 cases although not statistically so for the ICD 
code algorithm. Although there was no underlying trend 
or impact in the number of cases diagnosed prior to EHR 
entry over time, the proportion of cases that entered the 
EHR at the time of diagnosis decreased each year for all 
age groups. We are unsure why this is the case, but this 

is yet another indicator of improvement over time that 
may be affected by dynamic EHR structures and clini-
cal practices. Temporal improvement may be due to an 
increase in the amount of available structured data as 
EHR adoption extends to additional internal depart-
ments or as networks acquire new clinical practices over 
time. Systematic improvement in coding procedures 
may also contribute. For example, October 2015 marked 
the implementation of ICD-10, and new coding intro-
duced enhancements to classification of diabetes type 
and spurred further educational coding initiatives for 
healthcare personnel. Whatever the underlying reason, 
the improvement in performance observed over time has 
important implications for future surveillance activities 
and suggests that performance accuracy may exceed 90% 
when this algorithm is applied prospectively.

Our results are likely a conservative estimate of the 
accuracy of the algorithm in predicting date of diagno-
sis. The denominator of our calculation is inflated with 
probable cases whose gold standard diagnosis dates are 
between 1998 and 2008, the period preceding the time 
that sites in this study had well-established EHR sys-
tems. Identifying a retrospective diagnosis date in the 
era of paper-based records is notably challenging and we 
attempted to limit the number of these cases by requir-
ing a person’s first instance of any EHR data to occur 
after 2008. This issue will be lessened in future studies as 
length of EHR-established time increases. The denomi-
nator is also inflated by 107 non-cases incorrectly identi-
fied as probable diabetes cases by the rule-based ICD-10 
status algorithm. Removing these misclassified cases 

Fig. 2  Algorithm percent agreement with true gold standard year of diagnosis by Type 1 and Type 2 diabetes. Type 2 cases limited to 2012–2017 
due to small number of cases with date of diagnosis from 2009 to 2012 (n = 12)
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increases percent accuracy to 89.0% for the ICD code 
algorithm and 88.4% for the multiple-criteria algorithm. 
The algorithms perform well despite these limitations.

For the ICD code algorithm for date of diagnosis, per-
formance trended towards better classification of type 1 
cases compared to type 2. This is likely due to differences 
in the presentation of disease as very acute in type 1 dia-
betes but prolonged in type 2 diabetes. There are ways to 
improve performance. We have previously recommended 
that a targeted chart review be employed in the small 
number of type 2 diabetes and other type cases (n = 465, 
12.3% of total cases) to manually identify type of diabetes; 

such review could also be used to determine date of diag-
nosis, which would improve classification and percent 
agreement [9]. This method prioritizes efficiency through 
automation as the primary method of ascertainment with 
modest augmentation by chart review. Another option 
is scouring free text and physician notes through natural 
language processing in order to supplement structured 
data, although one must weigh the resources required to 
adapt an algorithm with the amount of improvement one 
can achieve [18, 19].

We explored a number of variations in algorithms in 
order to select the most efficient algorithms presented 
in this paper. The first diabetes-related ICD-9 or ICD-10 
code for determining date of diagnosis was considered, 
but this algorithm classified fewer cases correctly with 
respect to precise gold standard calendar month and 
year and was not statistically equivalent in performance 
to the date of two or more ICD codes (p < 0.001). This in 
conjunction with previous research [9] served as a basis 
for proceeding with two or more cumulative ICD codes 
for our analyses. We speculate that the date of the first 
diagnosis code represents and exploration of possible 
diabetes by a clinician, while a second code serves as a 
confirmation of diagnosis and thus agrees more closely 
with the gold standard. Furthermore, using two codes 
aligns the algorithm for date of diagnosis with confirma-
tion of diabetes status by the rule-based ICD-10 status 
algorithm [9, 16]. We chose not to analyze single-vari-
able algorithms such as glucose level or diabetes medi-
cations due to challenges in missing data and outliers; 
hence, we selected a multiple-criteria algorithm. Vari-
ables were not limited or stratified based on inpatient or 
outpatient class designation as this was largely incom-
plete. Using these variables and designations would have 
resulted in a large proportion of cases with a missing 
predicted diagnosis date.

Evaluation of electronic algorithms for diabetes sur-
veillance are limited by the lack of a gold standard. We 
were able to overcome this limitation in SEARCH with 
our large annotated dataset of diabetes cases in youth. 
Other strengths include the three study sites in different 
regions of the country, two different EHR systems, and 
the large number of type 2 diabetes cases (a condition 
less prevalent in youth).

These algorithms are applicable to a population aged 
less than 20 years and future research should test appli-
cability within adult populations. There are differences 
in epidemiologic patterns by age such as a higher inci-
dence of type 2 diabetes for adults compared to their 
younger counterparts. While this study demonstrated 
good performance among type 2 cases, other factors 
that may affect performance such as length of time an 

Fig. 3  ICD code algorithm and gold standard date of diagnosis 
concordance and accompanying distribution. In Panel A, the 
diagonal line represents perfect alignment of calendar month/
year between the predicted and gold standard date of diagnosis 
for diabetes cases. The accompanying histogram in Panel B 
demonstrates frequency of diabetes cases by type and within each 
year as the intensity of the 45 degree line is not easily discernable
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EHR has been established are unknown and beyond the 
scope of this study.

A limitation is our inability to test the algorithms 
outside of these three pediatric healthcare systems. 
We hypothesize that accuracy may differ across sys-
tems and sites due to underlying institutional cod-
ing practices, geographic patient mobility in and out 
of network, and presence of competing local clinical 
healthcare institutions that could affect completeness 
of one’s EHR record at the time of diagnosis within a 
single network. Augmentation with claims data or inte-
gration of data from external EHR’s in close geographic 
proximity could help distinguish new cases especially 
among those who show evidence of diabetes upon EHR 
network entry. Ideally, an integration of all EHRs that 
serve a geographic region could provide comprehensive 
information regarding care over time and could provide 
a robust examination of date of diagnosis algorithms.

Conclusions
In conclusion, the date of occurrence of the second 
ICD-9 or ICD-10 diagnosis code demonstrated good per-
formance for the estimation of year of diagnosis for youth 
with type 1 diabetes and type 2 diabetes, and showed 
improvement over time within these pediatric healthcare 
systems. Algorithms derived from structured EHR data 
may increase the efficiency of childhood diabetes surveil-
lance efforts when compared to more resource-intensive 
methods to determine date of diagnosis.
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