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Abstract 

Background:  Network meta-analysis (NMA) is a widely used tool to compare multiple treatments by synthesizing dif-
ferent sources of evidence. Measures such as the surface under the cumulative ranking curve (SUCRA) and the P-score 
are increasingly used to quantify treatment ranking. They provide summary scores of treatments among the existing 
studies in an NMA. Clinicians are frequently interested in applying such evidence from the NMA to decision-making in 
the future. This prediction process needs to account for the heterogeneity between the existing studies in the NMA 
and a future study.

Methods:  This article introduces the predictive P-score for informing treatment ranking in a future study via Bayesian 
models. Two NMAs were used to illustrate the proposed measure; the first assessed 4 treatment strategies for smoking 
cessation, and the second assessed treatments for all-grade treatment-related adverse events. For all treatments in 
both NMAs, we obtained their conventional frequentist P-scores, Bayesian P-scores, and predictive P-scores.

Results:  In the two examples, the Bayesian P-scores were nearly identical to the corresponding frequentist P-scores 
for most treatments, while noticeable differences existed for some treatments, likely owing to the different assump-
tions made by the frequentist and Bayesian NMA models. Compared with the P-scores, the predictive P-scores gener-
ally had a trend to converge toward a common value of 0.5 due to the heterogeneity. The predictive P-scores’ numeri-
cal estimates and the associated plots of posterior distributions provided an intuitive way for clinicians to appraise 
treatments for new patients in a future study.

Conclusions:  The proposed approach adapts the existing frequentist P-score to the Bayesian framework. The predic-
tive P-score can help inform medical decision-making in future studies.
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Background
Network meta-analysis (NMA) of randomized controlled 
trials is a statistical method widely used to draw conclu-
sions about multiple treatment comparisons in evidence-
based medicine [1–7]. It simultaneously synthesizes both 
direct and indirect evidence, where the direct evidence 
comes from head-to-head trials and the indirect evi-
dence comes from indirect comparisons with common 

treatment comparators. For example, the comparison 
between two active drugs A and B can be informed from 
the indirect comparisons of A vs. C and B vs. C, where C 
may be a placebo, or from the direct comparison in clini-
cal trials comparing A vs. B. The synthesis of both direct 
and indirect evidence can provide more precise estimates 
of treatment effects (i.e., estimates with smaller variances 
and thus narrower confidence or credible intervals) than 
conventional meta-analyses that compare pairs of treat-
ments separately [8–11].

One of the main purposes of NMAs is finding a suc-
cinct way to present summarized results among many 
competing treatment options and inform future clinical 
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trial designs. Rank probability (i.e., the probability of a 
treatment having a certain rank r) and cumulative rank 
probability (i.e., the probability of a treatment being at 
least the r th best) are commonly used measures for 
treatment rankings in an NMA. A limitation to these 
ranking methods is that they do not yield a simple sin-
gle number to summarize the rank of each treatment 
[12]. When many treatments are available for a certain 
disease, these may be hard to interpret and may not 
be useful measures to clinicians [13]. Some research-
ers might rely only on the probability of being the best 
treatment for decision-making, which could draw mis-
leading conclusions. It may be more intuitive to summa-
rize the multiple probabilities into a single number for 
each treatment to assess the overall performance of the 
treatments.

One such summarization method is the surface under 
the cumulative ranking curve (SUCRA) proposed by Sal-
anti et  al. [12]. The SUCRA is calculated by averaging 
cumulative rank probabilities; it essentially transforms 
the mean rank of a treatment to a value between 0 and 
1 [14]. The SUCRA is advantageous over the mean rank 
because its common range from 0 to 1 facilitates con-
sistent interpretations across different NMAs, while the 
mean rank depends on the number of treatments in a 
network. The higher value of the SUCRA indicates a bet-
ter treatment; SUCRA = 0 or 1 indicates an always worst 
or best treatment, respectively.

A relevant concept is the P-score, which was origi-
nally proposed under the frequentist framework by 
Rücker and Schwarzer [14]. The P-score of a treatment 
is obtained by estimating the effect sizes of pairwise 
treatment comparisons and assuming their point esti-
mates are normally distributed. Like the SUCRA, the 
P-score ranges from 0 to 1, with 0 or 1 being the theo-
retically worst or best treatment, respectively. Although 
it is defined differently from the SUCRA, the P-score has 
been shown to be identical to the SUCRA under the fre-
quentist framework [14].

These approaches to treatment rankings are based 
on the existing studies in an NMA; they may not be 
directly used to inform treatment rankings in future 
studies due to potential heterogeneity. Heterogeneity is 
a critical factor in meta-analyses. It is usually quantified 
by the I2 statistic, which is interpreted as the percentage 
of variability due to between-study heterogeneity rather 
than within-study sampling error [15]. Nevertheless, 
I2 has several limitations [16]. For example, research-
ers commonly report I2 without an interval estimate 
quantifying its uncertainty and may wrongly use it as 
an absolute measure [17]. Motivated by these limita-
tions, the prediction interval is recommended for use 
in meta-analyses (including NMAs) [17–21]. While the 

conventional confidence or credible interval informs a 
treatment effect’s uncertainty based on the studies in a 
current NMA, the prediction interval gives a range of 
the true treatment effect in future studies. The predic-
tion interval may be more straightforward than heter-
ogeneity measures such as τ2 and I2 in appraising the 
impact of heterogeneity. It helps clinicians understand 
the full uncertainties in treatment effects in future 
studies.

Similar approaches are needed to predict treat-
ment rankings in a future study setting [22–24]. Such 
attempts have been made under the frequentist frame-
work and can be implemented using Stata commands 
[13, 25]. The predictive treatment ranking measures 
account for the heterogeneity between the future study 
and the studies in the existing NMA; they may provide 
important information for future clinical trial designs 
in the presence of many competing treatment options. 
For example, for ethical considerations, clinicians 
might want to compare a new drug with existing treat-
ments that have relatively high predictive measures.

In the current literature, many NMAs are performed 
using Bayesian approaches alongside frequentist ones 
[26–28]. Bayesian approaches offer additional flexibility 
compared to frequentist approaches, e.g., by specifying 
informative priors and sophisticated variance-covar-
iance structures within multi-arm studies [29–36]. 
This article extends the P-score to a future study set-
ting under the Bayesian framework, with the focus on 
NMAs with binary outcomes.

Methods
Bayesian model for network meta‑analysis
We assume that an NMA contains N studies; each 
study compares a subset of a total of K treatments. The 
treatments compared in study i are denoted by the set 
Ti (i = 1, …, N). Let yik be the outcome measure in study 
i’s treatment group k  (k ∈ Ti) and Dik be the known, 
observed data in this study’s treatment group.

This article focuses on the case of binary outcomes, 
so yik is the event count, which is assumed to follow the 
binomial distribution, and Dik represents the sample size 
nik. Without loss of generality, the following materials can 
be generalized to other types of outcomes. In addition, let 
bi be the baseline treatment for study i; this can be any 
treatment in Ti , and can differ across studies. For simplic-
ity, we denote it by b when it does not lead to confusion. 
The Bayesian hierarchical model for the NMA is [2, 37]:

(likelihood)

(link function)

yik ∼ Bin(pik , nik), i = 1, . . . ,N , k ∈ Ti;
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(random effects)

(multi-arm studies)

(priors)

We use the canonical logit link function for bino-
mial data, i.e., g(t) = log[t/(1 − t)], which transforms the 
underlying true event rate pik to a linear form. The indi-
cator function I (·) returns 0 if k = b and 1 if k ≠ b. Con-
sequently, δibk represents the underlying true log odds 
ratio (OR) of treatment k vs. b in study i. Moreover, μi 
represents the baseline effect of study i. Because baseline 
effects could differ greatly across studies, μi is commonly 
modeled as a nuisance parameter. To account for poten-
tial heterogeneity, δibk is modeled as a random effect; 
τ 2bk represents the between-study variance for the com-
parison k vs. b. The between-study variances are typi-
cally assumed equal for all comparisons (i.e., τ 2bk = τ 2 ) 
[1, 2]. This assumption greatly reduces the model com-
plexity. In cases that these variances dramatically differ, 
one may alter to use more general model specifications 
[37]. The overall log ORs are the parameters dbk and are 
of primary interest in NMAs. Within multi-arm studies 
(if any), γbhk denotes the correlation coefficient between 
comparisons k vs. b and h vs. b. It is commonly set to 0.5, 
which is a result of assuming equal between-study vari-
ances [2, 38].

The posterior distributions of the parameters of inter-
est can be obtained via the Markov chain Monte Carlo 
(MCMC) algorithm. Our analyses use the vague priors 
N(0, 1002) for study-specific baseline effects μi and the 
log ORs of all treatments vs. the reference treatment, 
say treatment 1 (i.e., d1k). The reference treatment may 
be different from study-specific baseline treatments; it is 
usually a standard control (e.g., placebo) [39]. The over-
all log ORs of other comparisons are obtained under the 
evidence consistency assumption, i.e., dhk = d1k − d1h [2]. 
This article makes the consistency assumption, while it 
should be routinely checked in NMAs [40–42].

Frequentist and Bayesian P‑scores
We tentatively assume that the outcome is beneficial 
(e.g., successful smoking cessation); if the outcome is 

g(pik) = µi + δibk I(k �= b);

δibk ∼ N
(

dbk , τ
2
bk

)

;

Corr(δibk, δibh) = γbhk;

µi, dbk , τbk , and γbhk ∼ priors.

harmful (e.g., mortality), we may simply invert the direc-
tion of treatment comparisons in the following materials. 
Under the frequentist setting, the P-score is built on the 
quantities

where d̂1k and d̂1h are the point estimates of treatment 
effects for k vs. 1 and h vs. 1, respectively, and skh is the 
standard error of d̂1k − d̂1h . Moreover, Φ(·) is the cumu-
lative distribution function of the standard normal dis-
tribution. The quantity Pkh can be interpreted as the 
extent of certainty that treatment k is better than h [14]. 
The frequentist P-score of treatment k is calculated as 
1

K−1

∑

h�=kPkh.
Analogously to the frequentist P-score, conditional 

on d1h and d1k, the quantities Pkh from the Bayesian 
perspective can be considered as I(d1k > d1h), which are 
Bernoulli random variables. To quantify the overall 
performance of treatment k, we may similarly use

Note that Pk is a parameter under the Bayesian frame-
work, while the frequentist P-score is a statistic. More-
over, ∑h ≠ kI(d1k > d1h) is equivalent to K − Rk, where Rk 
is the true rank of treatment k. Thus, we may also write 
Pk = (K − Rk)/(K − 1) ; this corresponds to the findings 
by Rücker and Schwarzer [14]. Consequently, we call Pk 
the scaled rank in the NMA for treatment k. It transforms 
the range of the original rank between 1 and K to a range 
between 0 and 1. In addition, note that E[I(d1k > d1h| Data
)] = Pr(d1k > d1h| Data), which is analogous to the quantity 
in Eq. (1) under the frequentist framework. Therefore, we 
use the posterior mean of the scaled rank Pk as the Bayes-
ian P-score; it is a counterpart of the frequentist P-score.

The scaled ranks Pk can be feasibly estimated via the 
MCMC algorithm. Let 

{

d
(j)
1k ; k = 2, . . . ,K

}J

j=1
 be the 

posterior samples of the overall relative effects d1k of all 
treatments vs. the reference treatment 1 in a total of J 
MCMC iterations after the burn-in period, where j 
indexes the iterations. As d11 is trivially 0, we set d(j)11 to 
0 for all j. The jth posterior sample of treatment k’s 
scaled rank is P(j)

k = 1
K−1

∑

h�=k I
(

d
(j)
1k > d

(j)
1h

)

 . We can 
make inferences for the scaled ranks from the posterior 
samples 

{

P
(j)
k

}J

j=1
 , and use their posterior means as the 

Bayesian P-scores. We may also obtain the posterior 
medians as another set of point estimates, and the 2.5 
and 97.5% posterior quantiles as the lower and upper 
bounds of 95% credible intervals (CrIs), respectively. 

(1)Pkh = �

((

d̂1k − d̂1h

)

/skh

)

,

(2)Pk =
1

K − 1

∑

h�=k
I(d1k > d1h).
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Because the posterior samples of the scaled ranks take 
discrete values, the posterior medians and the CrI 
bounds are also discrete.

Predictive P‑score
Based on the idea of the Bayesian P-score, we can simi-
larly define the predictive P-score for a future study by 
accounting for the heterogeneity between the existing 
studies in the NMA and the new study. Specifically, we 
consider the probabilities in the new study

conditional on the population parameters d1h, d1k, and 
τ from the NMA. Here, δnew, 1k and δnew, 1h represent the 
treatment effects of k vs. 1 and h vs. 1 in the new study, 
respectively. The Pnew, kh corresponds to the quantity Pkh 
in the NMA; it represents the probability of treatment k 
being better than h in the new study. Due to heteroge-
neity, δnew, 1k ∼ N(d1k, τ2) and δnew, 1h ∼ N(d1h, τ2). Recall 
that the correlation coefficients between treatment 
comparisons are assumed to be 0.5; therefore, such 
probabilities in the new study can be explicitly calcu-
lated as Pnew, kh = Φ((d1k − d1h)/τ), which is a function of 
d1h, d1k, and τ. Finally, we use

to quantify the performance of treatment k in the new 
study. The posterior samples of Pnew,k can be derived 
from the posterior samples of d1k, d1h, and τ during the 
MCMC algorithm.

Note that the probabilities in Eq. (3) can be written as 
E[I(δnew, 1k > δnew, 1h)]. Based on similar observations for 
the scaled ranks in the NMA, the Pnew,k in the new study 
subsequently becomes

where Rnew, k is the true rank of treatment k in the new 
study. Thus, we call Pnew,k  the expected scaled rank in the 
new study. Like the Bayesian P-score, we define the pre-
dictive P-score as the posterior mean of Pnew,k . The poste-
rior medians and 95% CrIs can also be obtained using the 
MCMC samples of Pnew,k.

Of note, the predictive P-scores considered in this 
article are all derived under the Bayesian framework. 
Strictly speaking, they may be called Bayesian predictive 
P-scores, as contrasted with Bayesian P-scores. Never-
theless, for convenience, we call them predictive P-scores 
in short.

When τ decreases toward 0 (i.e., the fixed-effects set-
ting where all studies share common treatment effects), 

(3)Pnew,kh = Pr
(

δnew,1k > δnew,1h
)

,

(4)Pnew,k =
1

K − 1

∑

h�=k
Pnew,kh

Pnew,k =

1

K − 1
E

[

∑

h≠k
I
(

𝛿new,1k > 𝛿new,1h

)

]

= E

[

K − Rnew,k

K − 1

]

,

Pnew, kh converges to 0 if d1k < d1h or 1 if d1k > d1h; that is, 
Pnew, kh becomes I(d1k > d1h). Therefore, the expected 
scaled rank in the new study Pnew,k converges to the 
scaled rank in the NMA Pk , and thus the predictive 
P-score converges to the Bayesian P-score. Conversely, 
when τ increases toward infinity, Pnew, kh converges to 0.5 
for all comparisons, so Pnew,k (and thus the predictive 
P-score) converges to 0.5 for each treatment, represent-
ing a middle rank. This is consistent with the intuition 
that the NMA does not provide much information for the 
new study in the presence of large heterogeneity, as the 
treatment rankings in the new study are dominated by 
between-study variabilities.

Two examples
We give two examples of NMAs with binary outcomes 
to illustrate the different versions of the P-score. The 
first example is from Lu and Ades [40]; it was initially 
reported by Hasselblad [43] (without performing a for-
mal NMA). It investigated the effects of four treatments 
on smoking cessation, including 1) no contact; 2) self-
help; 3) individual counseling; and 4) group counseling. 
The outcome was the smoking cessation status of an 
individual after treatment. In the original NMA, the 
authors found that group counseling was most effective 
for smoking cessation, followed by individual counseling 
and self-help, and no contact was the least effective. The 
dataset contained a total of 16,737 subjects and 24 stud-
ies. A treatment was better if it yielded a higher rate of 
smoking cessation.

The second example was reported by Xu et al. [44]. It 
investigated the effects of seven immune checkpoint 
inhibitor (ICI) drugs on all-grade treatment-related 
adverse events (TrAEs), and aimed to provide a safety 
ranking of the ICI drugs for the treatment of cancer. The 
NMA was limited to phase II/III randomized controlled 
trials that compared two or three of the following treat-
ments: 1) conventional therapy; 2) nivolumab; 3) pem-
brolizumab; 4) two ICIs; 5) ICI and conventional therapy; 
6) atezolizumab; and 7) ipilimumab. The primary out-
come was whether the patient had a TrAE. The authors 
found that there were clinically significant differences 
in safety between ICI drugs for patients with cancer. In 
general, atezolizumab was the safest drug, defined by the 
total number of severe or life-threatening adverse events, 
followed by nivolumab, pembrolizumab, ipilimumab, and 
tremelimumab; taking one ICI was found to be safer than 
taking two ICIs. The dataset contained a total of 126,621 
subjects from 23 studies. Unlike the direction in the first 
example, a treatment was better if it yields a lower rate of 
TrAEs.

In the following analyses, we will use the numeri-
cal labels above to refer to treatments. Appendix A in 
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Additional  file  1 gives the complete datasets of the two 
examples.

Implementations
The Bayesian NMAs were implemented via the MCMC 
algorithm using JAGS (version 4.3.0) through the R (ver-
sion 3.6.2) package “rjags” (version 4–10). We used the 
vague priors U(0, 5) for the heterogeneity standard devia-
tion (SD). We obtained the posterior samples of the log 
ORs of all treatment comparisons, which were then 
used to derive the posterior distributions of the Bayesian 
P-scores and predictive P-scores.

In addition to the vague priors, secondary analyses 
were performed for each NMA using informative pri-
ors [32, 36]. Specifically, based on the recommendations 
from Turner et  al. [32], we used the log-normal priors 
LN(−2.01, 1.642) and LN(−2.13, 1.582) for the heteroge-
neity variances in the smoking cessation and all-grade 
TrAEs data, respectively.

For each NMA, we used three Markov chains; each 
chain contained a 20,000-run burn-in period for achiev-
ing stabilization and convergence. The final posterior 
samples consisted of a run of 50,000 updates after the 
burn-in period with thinning rate 2. We examined the 
stabilization and convergence of MCMC using trace plots 
and the Gelman–Rubin convergence statistics R̂ of log 
ORs and the heterogeneity SD [45]. The R̂ values close to 
1 indicate adequate convergence.

We used the posterior samples to form the posterior 
distributions and calculate the posterior means (i.e., 
Bayesian and predictive P-scores), posterior medians, 
and 95% CrIs for all treatments’ scaled ranks in the NMA 
and expected scaled ranks in a new study. Additionally, 
we calculated the frequentist P-scores using the R pack-
age “netmeta” (version 1.2.0). The code for all analyses is 
in Appendix B in Additional file 1.

Results
Tables 1 and 2 present the treatment ranking measures in 
the examples of smoking cessation and all-grade TrAEs, 
respectively. Appendix C in Additional file  1 presents 
the trace plots. The MCMC iterations stabilized and 
converged well in both examples; all values of R̂ were 
approximately equal to 1. Appendix D in Additional file 1 
presents the treatment ranking measures in the second-
ary analyses using the informative priors. In the two 
examples, the informative priors produced similar treat-
ment ranking measures to the vague priors.

The posterior means (Bayesian P-scores) and posterior 
medians of scaled ranks in the NMAs differed notice-
ably for both examples. Because the posterior samples 
of scaled ranks were discrete, as suggested by Eq. (2), 
the posterior medians took discrete values, while the 

Table 1  Treatment ranking measures in the example of smoking 
cessation

Note: NA, not applicable. The posterior means of the scaled ranks in the NMA are 
the Bayesian P-scores, and those of the expected scaled ranks in a new study are 
the predictive P-scores

Treatment Mean (P-score) Median 95% credible interval

Frequentist P-Score:

  1 0.048 NA NA

  2 0.404 NA NA

  3 0.710 NA NA

  4 0.838 NA NA

Scaled rank in the NMA:

  1 0.038 0.000 (0.000, 0.333)

  2 0.394 0.333 (0.000, 1.000)

  3 0.689 0.667 (0.333, 1.000)

  4 0.879 1.000 (0.333, 1.000)

Expected scaled rank in a new study:

  1 0.192 0.182 (0.061, 0.379)

  2 0.440 0.435 (0.189, 0.719)

  3 0.623 0.624 (0.425, 0.813)

  4 0.746 0.762 (0.456, 0.943)

Table 2  Treatment ranking measures in the example of all-grade 
treatment-related adverse events

Note: NA, not applicable. The posterior means of the scaled ranks in the NMA are 
the Bayesian P-scores, and those of the expected scaled ranks in a new study are 
the predictive P-scores

Treatment Mean (P-score) Median 95% credible interval

Frequentist P-score:

  1 0.365 NA NA

  2 0.821 NA NA

  3 0.677 NA NA

  4 0.174 NA NA

  5 0.096 NA NA

  6 0.944 NA NA

  7 0.432 NA NA

Scaled rank in the NMA:

  1 0.362 0.333 (0.167, 0.500)

  2 0.764 0.667 (0.667, 1.000)

  3 0.780 0.833 (0.500, 1.000)

  4 0.164 0.167 (0.000, 0.500)

  5 0.092 0.000 (0.000, 0.333)

  6 0.924 1.000 (0.667, 1.000)

  7 0.415 0.500 (0.000, 0.833)

Expected scaled rank in a new study:

  1 0.360 0.365 (0.190, 0.509)

  2 0.748 0.749 (0.588, 0.897)

  3 0.757 0.771 (0.488, 0.943)

  4 0.202 0.174 (0.008, 0.573)

  5 0.141 0.124 (0.009, 0.369)

  6 0.873 0.897 (0.613, 0.993)

  7 0.418 0.413 (0.155, 0.729)
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posterior means (Bayesian P-scores) took continuous 
values. Due to heterogeneity, the expected scaled ranks 
in a new study were based on probabilities that could 
continuously range from 0 to 1 as in Eq. (4); thus, both 
their posterior means (predictive P-scores) and posterior 
medians took continuous values.

Example of smoking cessation
In the example of smoking cessation, Table 1 shows that 
treatment 4 had the highest Bayesian P-score and thus 
was likely the best treatment, followed by treatments 
3 and 2. Treatment 1 was likely the worst because its 
Bayesian P-score, 0.038, was closest to 0. The Bayesian 
P-scores and frequentist P-scores slightly differed; their 
differences were up to 0.041. Their orders of treatment 
rankings were identical.

The order of treatment rankings based on the predic-
tive P-scores for the new study also remained consistent 
with that based on the P-scores for the NMA. Treatment 
4 continued to have both the highest P-score in the new 
study, followed by treatments 3 and 2, and treatment 1 
had the lowest value. Compared with P-scores, the pre-
dictive P-scores of all four treatments tended to shrink 
toward 0.5 due to the heterogeneity. For example, the 
Bayesian P-score of treatment 1 increased from 0.038 
to the predictive P-score of 0.192, while the Bayesian 
P-score of treatment 4 decreased from 0.879 to the pre-
dictive P-score of 0.746.

Example of treatment‑related adverse event
In the example of all-grade TrAEs, Table  2 shows that 
treatment 6 had the highest Bayesian P-score and was 
thus likely the best treatment. It was followed by treat-
ments 3 and 2 with very similar Bayesian P-scores (0.780 
and 0.764, respectively), treatments 7 and 1 also with sim-
ilar Bayesian P-scores (0.415 and 0.362, respectively), then 
treatment 4 with a Bayesian P-score of 0.164. Treatment 5 
was likely the worst with a Bayesian P-score of 0.092.

Some frequentist P-scores were noticeably different 
from their Bayesian counterparts. The Bayesian P-score 
of treatment 2 was 0.764, and its frequentist P-score was 
0.821; such P-scores of treatment 3 were 0.780 and 0.677, 
accordingly. Based on the Bayesian P-scores, treatment 
2 was worse than treatment 3, but their rankings were 
reversed based on the frequentist P-scores. These differ-
ences were likely because the Bayesian and frequentist 
P-scores were derived using different models. The Bayes-
ian model accounted for full uncertainties by modeling 
event counts with binomial likelihoods, while the frequen-
tist model approximated the log OR of each treatment 
comparison to the normal distribution within each study.

Compared with the P-scores, the predictive P-scores 
of most treatments did not change much, likely because 

the heterogeneity was relatively small in this NMA. As in 
the example of smoking cessation, the predictive P-scores 
had the trend of shrinking toward 0.5.

Visualizations
Figures 1 and 2 present the posterior distributions of all 
treatments’ expected scaled ranks in a new study in both 
examples, where each bar in the histograms covers a 
range of 0.01. They offer an intuitive tool to compare all 
treatments simultaneously.

The differences between the posterior means (predic-
tive P-scores) and posterior medians of the expected 
scaled ranks were relevant to the symmetry of the cor-
responding posterior distributions. For all treatments 
in both examples, the posterior distributions were uni-
modal. The posterior distributions for all treatments in 
the example of smoking cessation were roughly symmet-
ric, so their posterior medians (predictive P-scores) were 
close to their posterior means (Table 1). For the example 
of all-grade TrAEs, the posterior distributions of treat-
ments 4, 5, and 6 were markedly asymmetric; the poste-
rior means (predictive P-scores) of these three treatments 
were noticeably different from their posterior medians 
(Table  2). The distributions for other treatments were 
approximately symmetric, and their posterior means and 
posterior medians were nearly identical.

Discussion
Implications
While the order of treatment rankings in the two exam-
ples remained mostly the same, there were noticeable 
differences between the frequentist P-scores and Bayes-
ian P-scores for some treatments, primarily owing to the 
different specifications of the frequentist and Bayesian 
NMA models. In addition, there were possibly discrep-
ancies between posterior means (predictive P-scores) and 
posterior medians of the expected scaled ranks in a new 
study (as well as for scaled ranks in the NMA that lead 
to Bayesian P-scores). These discrepancies depended on 
the symmetry of the posterior distributions. Though the 
posterior medians are conventionally used in Bayesian 
(network) meta-analyses, we used the posterior means 
for the Bayesian and predictive P-scores because they 
correspond to the original definition of the P-score under 
the frequentist framework [14]. In practice, both the pos-
terior mean and posterior median may be reported for 
measuring treatment rankings.

Like the conventional frequentist P-scores, the pre-
dictive P-scores should be interpreted with caution, 
and their uncertainties ought to be taken into con-
siderations [46, 47]. The magnitudes of the predictive 
P-scores do not imply statistically significant differ-
ences between treatments. Instead of being designed 
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Fig. 1  Posterior distributions of all treatments’ expected scaled ranks in a new study in the example of smoking cessation

Fig. 2  Posterior distributions of all treatments’ expected scaled ranks in a new study in the example of all-grade treatment-related adverse events
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to test for treatment differences, they are treatment-
specific summary scores that facilitate clinical inter-
pretations in comparative effectiveness research. 
Therefore, in addition to the magnitudes of treatment 
ranking measures, researchers should also pay atten-
tion to their uncertainties [46]. The uncertainties can 
be reflected by the measures’ confidence intervals or 
CrIs. A benefit of the predictive P-scores is that their 
CrIs’ limits take continuous values. The CrIs’ lim-
its of the conventional P-scores must take discrete 
values, which may not accurately reflect the uncer-
tainties. Recently, Wu et al. [48] proposed the normal-
ized entropy to quantify the uncertainties of SUCRA. 
Similar ideas may be used to measure the predictive 
P-score’s uncertainties.

Limitations
This study had several limitations. We have focused on 
NMAs with binary outcomes and used the OR as the 
effect measure. The predictive P-score can be applied to 
generic NMAs by modifying the likelihoods of outcome 
measures in the Bayesian hierarchical model. Moreover, 
we have used the Bayesian NMA model that assumes 
evidence consistency and used a common heterogene-
ity variance τ2 for all treatment comparisons. In practice, 
these assumptions should be carefully examined before 
applying the predictive P-score to clinical decision-mak-
ing [37, 49, 50].

Future directions
This study used two examples to illustrate the predic-
tive P-scores; however, it is unclear how the predictive 
P-scores might differ from the conventional P-scores in 
broader applications of NMAs. As a future topic, it is 
worthwhile to empirically investigate the magnitudes and 
directions of their changes via a comprehensive collec-
tion of NMAs.

Conclusions
This article has proposed the predictive P-score by 
extending the Bayesian P-score to the future study set-
ting. The predictive P-score accounts for heterogene-
ity between the new study and the existing studies in an 
NMA. It can be used to select optimal treatments from a 
potentially large pool of options for new patients in the 
future.
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