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Abstract 

Background:  Case-crossover studies have been widely used in various fields including pharmacoepidemiology. 
Vines and Farrington indicated in 2001 that when within-subject exposure dependency exists, conditional logistic 
regression can be biased. However, this bias has not been well studied.

Methods:  We have extended findings by Vines and Farrington to develop a weighting method for the case-crossover 
study which removes bias from within-subject exposure dependency. Our method calculates the exposure prob‑
ability at the case period in the case-crossover study which is used to weight the likelihood formulae presented by 
Greenland in 1999. We simulated data for the population with a disease where most patients receive a cyclic treat‑
ment pattern with within-subject exposure dependency but no time trends while some patients stop and start treat‑
ment. Finally, the method was applied to real-world data from Japan to study the association between celecoxib and 
peripheral edema and to study the association between selective serotonin reuptake inhibitor (SSRI) and hip fracture 
in Australia.

Results:  When the simulated rate ratio of the outcome was 4.0 in a case-crossover study with no time-varying con‑
founder, the proposed weighting method and the Mantel-Haenszel odds ratio reproduced the true rate ratio. When a 
time-varying confounder existed, the Mantel-Haenszel method was biased but the weighting method was not. When 
more than one control period was used, standard conditional logistic regression was biased either with or without 
time-varying confounding and the bias increased (up to 8.7) when the study period was extended. In real-world 
analysis with a binary exposure variable in Japan and Australia, the point estimate of the odds ratio (around 2.5 for the 
association between celecoxib and peripheral edema and around 1.6 between SSRI and hip fracture) by our weight‑
ing method was equal to the Mantel-Haenszel odds ratio and stable compared with standard conditional logistic 
regression.

Conclusion:  Case-crossover studies may be biased from within-subject exposure dependency, even without expo‑
sure time trends. This bias can be identified by comparing the odds ratio by the Mantel-Haenszel method and that 
by standard conditional logistic regression. We recommend using our proposed method which removes bias from 
within-subject exposure dependency and can account for time-varying confounders.
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Background
The case-crossover design has been widely used since 
it was proposed in 1991 [1]. The design has been used 
in various fields including pharmacoepidemiology [2], 
occupational epidemiology [3], studies on traffic safety 
[4] and air pollution health effects [5, 6]. In case-cross-
over studies, individuals who have experienced the out-
come (cases) act as their own controls by including one 
or more periods before the onset of the outcome. The 
period including the outcome is the case period, while 
period(s) prior to the case period act as the controls. 
The number of control periods can be large: for exam-
ple, in the original article [1], one analysis involved 
8766 control periods. The effect of the exposure should 
be brief; exposure in any period should affect the 
outcome in that period only, without any ‘carryover 
effect’ [1, 6, 7]. In addition, in case-crossover studies, 
the rate of outcome occurrence is usually assumed to 
be unchanged during exposed or unexposed periods, 
respectively. However, like other case-only studies, the 
case-crossover study has an advantage that the effect of 
time-invariant confounders is automatically controlled 
because the case period is compared with control 
period(s) of the same individual [7–9]. The case-cross-
over study also has unique characteristics. For example, 
the original unidirectional case-crossover study does 
not include periods after the outcome occurs. Thus, 
there is no bias due to the outcome influencing future 
exposures or future observation periods, unlike other 
case-only studies such as self-controlled case series 
[10–12].

However, case-crossover studies are susceptible to at 
least two types of major biases. The first is bias due to 
time trends in the exposure which can be removed using 
a variant of case-crossover studies, the case-time-con-
trol design [9, 13, 14]. The second is bias due to within-
subject exposure dependency or autocorrelation in an 
individual’s exposure history [6, 15, 16]. This bias is par-
ticularly important in pharmacoepidemiology because 
drug use on 1 day is rarely independent from use in the 
preceding days. However, the potential for this bias has 
had little attention in the pharmacoepidemiology lit-
erature, and standard conditional logistic regression has 
been used without assessing whether bias due to within-
subject exposure dependency exists in many case-crosso-
ver studies [17–21]. This may be in part because this bias 
has been considered rather minor when exposure is sta-
tionary [15].

In this paper, we show that within-subject exposure 
dependency may produce unignorably large bias even if 
exposure is stationary. We also describe how to remove 
bias from within-subject exposure dependency, when 
time trends in the exposure do not exist.

Motivating examples
Our motivation for investigating bias in case-crossover 
studies due to within-subject exposure dependency 
was a hypothetical drug treatment with a specific cyclic 
exposure pattern, where standard conditional logis-
tic regression may produce bias. We also outline real-
world pharmacoepidemiological studies in Japan and 
Australia where our proposed method is used.

Drug treatment with specific exposure pattern
We illustrate our motivating example using a drug 
treatment with a cyclic pattern consisting of two peri-
ods of treatment followed by one period with no 
treatment. The exposure pattern clearly shows auto-
correlation, with the probability of exposure in one 
treatment period dependent on previous periods. We 
show that estimates of the odds ratio for the exposure-
outcome association may be biased, depending on the 
number of control periods chosen.

In a hypothetical unidirectional case-crossover study 
with 4 periods (one case period and 3 control periods), 
only 3 exposure patterns are possible. If exposure and 
non-exposure are indicated by 1 and 0, respectively, 
the 3 exposure patterns are (1101), (1011), and (0110). 
Therefore, subjects with an exposed case period can 
have only 1 unexposed and 3 exposed periods, while 
those with unexposed case period can have only 2 
unexposed and 2 exposed periods. In such a case-
crossover study, when the true odds ratio (OR) is 4.0, 
the OR is underestimated as 3.2 using standard con-
ditional logistic regression for matched case-control 
studies.

However, if there are two control periods, the possi-
ble exposure patterns are (110), (101), and (011). In this 
case, irrespective of whether the case period is exposed 
or unexposed, all subjects have 1 unexposed and 2 
exposed periods and there is no bias in the estimate of 
the OR. Similarly, there is no bias when the total num-
ber of periods (including the case period) is an integral 
number of 3 (the cyclic pattern).

Overview of real‑world examples
We describe two real world pharmacoepidemiologi-
cal studies which will be analyzed by our proposed 
method. The first is an investigation into a previously 
reported association between celecoxib and peripheral 
edema [22] using Japanese data from 25 corporate-type 
health insurance plans [23]. From 99,821 new users of 
celecoxib aged between 20 and 74 years from May 2013 
to April 2018, who used celecoxib after at least 180 days 
of non-use, we selected 311 cases who experienced 
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peripheral edema and had both exposed and unexposed 
days during an 84-day study period.

The second example is an Australian study of the asso-
ciation between hip fracture and psychoactive medicines 
[24, 25]. The data were obtained from the Australian 
Department of Veterans’ Affairs administrative claims 
database. Psychoactive medicines included benzodiaz-
epines, selective serotonin re-uptake inhibitors (SSRIs), 
opioids, antipsychotics and tricyclic antidepressants. 
The hip fracture cases were 8828 patients aged over 
65 years who were hospitalized between 2009 and 2012. 
A previous case-crossover study of this cohort found 
an increased risk of hip fracture for opioids, SSRIs and 
antipsychotics [24]. A related case-control study found 
an association between hip fracture and SSRIs when used 
concurrently with other psychoactive medicines [25].

Methods
To avoid bias due to within-subject exposure depend-
ency, the likelihood for estimating the odds ratio for the 
exposure-outcome association may be modified. At least 
two approaches are effective to modify the likelihood and 
both involve two-step weighting procedures. In the first 
approach, the probability of each exposure permutation 
is estimated in Step 1 and used as weights in the likeli-
hood in Step 2. In the special case where this probability 
is the same for every permutation (“global exchangeabil-
ity”), the modified likelihood is equivalent to that for the 
standard conditional logistic regression.

In this paper, we propose another approach that can be 
used if “pairwise exchangeability” is assumed. Pairwise 
exchangeability holds where there are no time trends in 
the exposure i.e., the proportion exposed in the popula-
tion is stationary over the study period [15]. In this sce-
nario, the probabilities that the case period is exposed 
and unexposed are estimated in Step 1 and used as 
weights in Step 2. When there is pairwise exchangeabil-
ity, an unbiased OR can be obtained by the Mantel-Haen-
szel method as well.

BIAS due to conditional logistic regression 
for case‑crossover studies
In 2001, Vines and Farrington proposed the likelihood 
for case-crossover studies as [15]:

where Xi0 is the exposure level at the case period 
(m = 0) and Xim is the exposure level at the m-th con-
trol period at t (t =  − m: m = 1, 2, −-, M), xi0 denotes 
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 is that where Xi0 = 0. 
Data on Nexposed = k is informative only when the 
positivity (non-zero probability) condition is satis-
fied or ∑P(Xi0 = 1, Nexposed = k) > 0 and ∑P(Xi0 = 0  Nex-

posed = k) > 0. Otherwise, they do not contribute to the 
estimation of exp(β).

Let ORVF be the estimate of exp(β) obtained from Eq. 
(1). The likelihood in Eq. (1) and ORVF are in general dif-
ferent from the following likelihood for the standard 
conditional logistic (SCL) regression for individually 
matched case-control studies and its estimate, ORSCL.

Vines and Farrington showed that the likelihoods in 
Eqs. (1) and (2) are equivalent if P{Xi0 = xi0, − − −, Xi

M = xiM} = P{Xi0 = xiκ(0), − − −, XiM = xiK(M)} for all per-
mutations κ of {0, 1, −---, M}, that is, global exchange-
ability holds. For example, Eqs. (1) and (2) are equivalent 
when the exposure status in one period is independent 
from the status in any other periods and the exposure 
probability is the same in all of case and control periods 
(Appendix 1, Additional File 1). If global exchangeability 
does not hold, ORSCL can be biased.

Vines and Farrington did not show explicitly how to 
estimate P{Xi0 = xiκ(0), − − −, XiM = xiκ(M)} in Eq. (1). These 
probabilities may be estimated by the proportion of each 
permutation in the population which contain cases, or in 
samples representing the population such as time-controls 
in the case-time-control design proposed by Suissa [14]. In 
the next section, however, we introduce a different approach 
to remove the bias from within-subject exposure depend-
ency by assuming that pairwise exchangeability is satisfied 
but global exchangeability may not necessarily hold.
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Weighting method to remove BIAS due to within‑exposure 
dependency
Case‑crossover studies with a binary exposure
When pairwise exchangeability, P{Xi0 = 1, Xim = 0} = P(Xi0 
= 0, Xim = 1} is satisfied for a binary exposure in all control 
periods m (m = 1, 2, −-, M), the estimate of exp(β) using 
the Mantel-Haenszel method (ORMH) is unbiased whether 
within-subject exposure dependency exists or not [15]. 
In line with this finding, we will show that when pairwise 
exchangeability holds, the probabilities that the individ-
ual is unexposed (π0) and exposed (π1) at the case period, 
can be estimated from the cases in a case-crossover study 
(without requiring data from the population or time-con-
trols). Once π0, π1, and the relative exposure probability π10 
= π1 / π0 are estimated, the following likelihood for case-
crossover studies proposed by Greenland [26] can be used 
to obtain an unbiased estimate of exp(β), defined as ORG:

In the left-hand side of Eq. (3), πik is the probability 
that individual i has the k-th exposure level at the case 
period (k = 0, 1 for binary exposure), πic is πik observed, 
and xic is the exposure level observed when individual i 
has the outcome. In the middle of Eq. (3), subscript i is 
omitted in the exposure probabilities as πik is replaced by 
the expected value in the population in the current study. 
In the right-hand side of Eq. (3) πk0 = πk/π0. Eq. (3) stands 
for the model where xik is a binary variable, multi-level 
exposure variable, or a vector of the observed exposure 
and time-varying confounders.

For a binary exposure, the right-hand side of Eq. (3) can 
be rewritten as

where xic = 1 and πc0 = π10 = π1/π0 when the indi-
vidual i was exposed at the case period and  xic = 0 and 
πc0 = π00 = π0/π0 = 1 when unexposed. As Vines and Far-
rington showed [15], Greenland did not estimate πk for 
case-crossover studies in Eq. (3) when within-subject 
exposure dependency exists.

We outline a novel weighting method using a modified 
version of Greenland’s likelihood. We propose that πk 
can be estimated, with or without within-subject expo-
sure dependency, by assuming pairwise exchangeability. 
Let Pkl[m] denote the joint probability that the subject has 
the k-th exposure level at the case period and has the l-th 
exposure level at the m-th control period:
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In Eq. (5), X0 is the exposure status at the case period 
and Xm is the exposure status at the m-th control period. 
When the exposure variable is binary, both X0 and Xm have 
two levels (k = 0, 1 and l = 0,1) and pairwise exchangeabil-
ity is equivalent to stationary exposure (no time trends): 
when the exposure process is stationary,   P10[m] +  P11[m] 
= P01[m] + P11[m] and this relationship leads to the pairwise 
exchangeability condition P10[m] = P01[m] (m = 1, 2, −-, M).

Using conditional probabilities, pairwise exchangeability, 
P{Xi0 = 1, Xim = 0} = P(Xi0 = 0, Xim = 1} can be rewritten as:

where π0 = P(X0 = 0) and π1 = P(X0 = 1). When both 
sides of Eq. (6) are summed up over M control periods 
(m = 1, 2, −-, M), we obtain:
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mated by the average number of unexposed control peri-
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When standard statistical software is used for condi-
tional logistic regression analysis of case-crossover stud-
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where m1
i  is the number of exposed periods and m0

i  is 
the number of the unexposed periods (including both 
case and control periods) in case i and π10 is estimated 
from Eq. (9). In most statistical software, wik (k = 0,1) 
may be specified as an offset variable in conditional 
logistic regression which uses the following likelihood:

where wij = wi1 and wij = wi0 when j-th period is 
exposed and unexposed, respectively, in case i.

Using a1 and a0, Eq. (4) can be rewritten as

Equation (12) gives (see Additional File 1, Appendix 2) 
the following maximum likelihood estimate for ORG:

When π10 estimated by Eq. (9) is considered as a con-
stant, the variance is given by:

In order to allow for the variance of the weights esti-
mated by Eq. (9), we recommend the use of bootstrap-
ping to estimate the 95% confidence interval using the 2.5 
to 97.5 percentiles of ORG.

From Eqs. (8), (9) and (13) we obtain:

Equation (15) shows that when the model involves only 
one binary exposure variable, the point estimate of ORG 
is the same as ORMH.

Case‑crossover studies with a binary exposure and a binary 
time‑varying confounder
The Mantel-Haenszel estimator is unbiased for binary 
exposures when there is pairwise exchangeability. When 
there is a binary time varying confounder (z), Maclure 
in his original proposal of the case-crossover design rec-
ommended further stratification when using the Mantel-
Haenszel method [9]. In a simulation, we followed this 
recommendation and stratified each subject by z. As a 
result, control periods where z = 0 were excluded from 
subjects with z = 1 at the case period. Similarly, control 
periods where z = 1 were excluded from those with z = 0 
at the case period. We have shown that excluding these 
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control periods can lead to bias (see Tables  3 and 4 in 
Results section).

On the other hand, our method can be extended to 
studies with time-varying confounder to analyze data 
of all case and control periods and all periods can be 
included in the analysis. For example, when there is 
a binary exposure (x) and a binary time-varying con-
founder variable (z), βxij in the likelihood in Eq. (11) is 
specified as (β, γ)(xij, zij)T, which is equal to 0 when (xij, zij) 
=(0,0), β when (xij, zij) =(1,0), γ when (xij, zij) =(0,1), 
and β + γ when (xij, zij) = (1,1) where exp(γ) is an esti-
mate of the odds ratio of z. Similarly to the finding that 
ORSCL in Eq. (2) is unbiased when within-subject expo-
sure dependency does not exist (Appendix 1, Additional 
File 1), we may estimate an unbiased ORG in the model 
involving the exposure and time-varying confounder 
by calculating the weight from the exposure variable x 
(Eq. 10), if within-subject dependency does not exist for 
z during exposed periods (where the probability that 
the confounder is positive is f1) and during unexposed 
periods (f0) and the confounder is adjusted for as in the 
standard conditional logistic regression. Similarly as for 
a case-crossover study with a binary exposure, we rec-
ommend bootstrapped 2.5 to 97.5 percentiles of ORG to 
estimating the 95% CI to allow for the variance of the 
weights (see Appendix 3, Additional File 1 for the detail; 
as to the relevant SAS codes, see 4-1 h and 4-2f in Appen-
dix 4, Additional File 1).

Simulation studies
We simulated data relevant to drug therapy with no 
time trends and with autocorrelated exposure patterns 
(within-subject dependency) (Appendix  4, Additional 
File 1). The simulated data is created based on the fol-
lowing observations (i) drug treatment sometimes has a 
cyclic pattern which often produces within-subject expo-
sure dependency, (ii) some outcomes (e.g., acute adverse 
events) tend to occur soon after the treatment is initiated 
but they may also occur later during the drug therapy, 
and (iii) some patients stop treatment for various reasons 
while some patients start treatment. When the rate of 
stopping treatment is the same as that of starting treat-
ment, the stationarity of the exposure may be maintained 
in the population as follows. We simulated scenarios with 
and without time varying confounding.

Assume that drug treatment involves a cyclic pattern 
where one cycle consists of 7 days and a patient has a 
drug on days 1 and 4 but no drug on days 2, 3, 5, 6, and 
7. Figure  1 depicts three cycles of drug treatment with 
8 subgroups consisting of 1 case period and 21 control 
periods, where 1 period is 1 day. Subgroup A represents 
stoppers who stop treatment at the case period while 
Subgroup H represents new users who start treatment 
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at the case period. Subgroups B to G represent patients 
being treated with a different timing relative to the start 
of the treatment cycle. In Fig. 1, the proportion of those 
exposed to a drug in the population is always ¼, indicat-
ing stationarity (no time trends).

Figure 2a shows 140 cases who had the outcome at the 
case period when the size of each of Subgroups A to H, 
N = 10,000, the event rate in an unexposed period (r0) is 
0.001 per period and the rate ratio is 4. We assume that 
the expected number of cases is determined by expo-
sure at the case period only, or Nr0 when unexposed and 
N RR r0 when exposed at the case period.

Figure 2b shows 184 cases who had the outcome at the 
case period when N = 10,000, the event rate in the unex-
posed period without time-varying confounding is 0.001 
per period and the rate ratio is 4 and 2 for the exposure 
and time-varying confounder, respectively. The status 
of the time-varying confounder in the unexposed or 
exposed period is related to the exposure status of that 
period only, and f0 = 0.2 and f1 = 0.4 where f0 and f1 are 
the expected values of the proportion of exposed peri-
ods and unexposed periods in the population, respec-
tively, when the confounder is positive (See Appendix 3, 
Additional File 1). We assume that the number of cases 
is as expected, or Nr0(1 − f0), N RRz r0f0, N RR r0(1 − f1), 
and N RR RRz  r0f1, when the combination of the expo-
sure and time-varying confounder variables (x, z) at the 
case period is (0, 0), (0, 1), (1, 0), and (1, 1), respectively. 
The status of the time-varying confounder in the control 
periods was randomly generated and is therefore inde-
pendent of the exposure or time-varying confounder at 
different periods.

To determine the effect of the length of each time 
period on the estimated odds ratio, we also analyzed the 
data by dividing 22 days in Fig.  1 into 11, 7, 5, 3, and 2 
periods (M = 10, 6, 4, 2, and 1) where 1 period included 
2, 3, 4, 7 and 11 days, respectively. The status of the expo-
sure and time varying confounder was defined by the 

last day of each period (Definition I in Table 1). We ana-
lyzed the data by standard conditional regression, the 
Vines and Farrington method, Mantel-Haenszel meth-
ods, and our modified Greenland’s method for the fixed 
study period of 22 days. With time-varying confounder 
(z), case and control periods of each subject were further 
stratified by z in the Mantel-Haenszel method. We used 
bootstrapping to estimate 2.5 to 97.5 percentiles for ORG. 
Data simulation and analyses were performed using SAS 
9.4 and SAS codes including those for bootstrap method 
are shown in Appendix 4 in Additional File 1.

Case‑crossover studies of real‑world data
The method was also applied to data from Japanese 
and Australian databases. The Japanese study on the 
association between celecoxib and peripheral edema 
from a previous study [22] was approved by the ethics 
committee of Tokyo University of Science (approval 
number: 18023) where obtaining the informed consent 
from study subjects was waived for the current study. 
The Japanese data came from 25 corporate-type health 
insurance plans extracted from Cross-Fact database 
[23]. Claims data covering 60 months between May 2013 
to April 2018 included 1,163,968 males (age (SD) = 42.5 
(13.2) years old) and 1,349,901 females (42.2 (13.1) years 
old) who were 20 years old or older (but younger than 
75 years old). As detailed in Additional File 1 (Appen-
dix 5), we examined 99,821 new users of celecoxib, who 
used celecoxib after at least 180 days of non-use. The 
occurrence of peripheral edema was defined by new 
use of furosemide after at least 180 days of non-use and 
the index date was the day when the outcome occurred. 
Daily exposure during an 84-day study period was deter-
mined using a 7-day grace period. We selected 311 cases 
who had both exposed and unexposed days during the 
study period. The 84-day study period was divided into 
(M + 1) periods where M = 1, 2, 5, 11, 27 and 83, result-
ing in periods of 42, 28, 14, 7, 3 and 1 days, respectively. 

Fig. 1  Exposure pattern in a hypothetical dynamic population of 80,000 patients. Patients receiving drug treatment with a cycle of 7 days are 
divided into 8 Subgroups A to H where 1 period is defined as 1 day. Subgroup A represents stoppers that stop treatment, Subgroup H represents 
starters that start treatment, and Subgroups B to G represent different exposure patterns of those being treated at the case period. The bolded 
outline indicates that 21 control periods can be divided into 3 cycles with the same exposure pattern. N: size of each subgroup; c0: exposure status 
at the case period; cm (m = 1, 2, −--, 21): exposure status at the m-th control period; Tx: treatment
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Four different definitions were used to determine expo-
sure in the case and control periods as shown in Table 1. 
Cases who started celecoxib on the index date were 
excluded from the analysis since furosemide could have 
been prescribed for prevention rather than treatment of 
edema.

The data was analyzed by standard conditional logis-
tic regression (Eq. (2)) and the Mantel-Haenszel method 
with their 95% CIs, and the weighting method for a 
binary exposure (Eq. (11)) with 2.5 to 97.5 percentiles 
estimated by the bootstrap method. We also extended the 
study period to 168 and 336 days. All the analyses were 
performed using SAS 9.4. Data and SAS codes to analyze 
the data are available upon request.

The data for the Australian study on the association 
between hip fracture and psychoactive medicines [24, 25] 
were obtained from the Australian Department of Vet-
erans’ Affairs administrative claims database. The study 
was approved by Department of Defense and Veterans’ 
Affairs Human Research Ethics (E016–007) and Univer-
sity of South Australia Human Research Ethics (P203/04) 
where obtaining the informed consent from study sub-
jects was waived for the current study. The cases were 
8828 patients aged over 65 years who were hospitalized 
for hip fracture between 2009 and 2012. The index date 
for each case was the date of hospitalization. We have re-
analyzed the data from the previous case-control study 
[25] as a case-crossover study with SSRIs as the exposure 
using the same methods as the Japanese study.

Both of the studies in Japan and Australia were carried 
out in accordance with the Declaration of Helsinki, and 
all methods were carried out in accordance with relevant 
guidelines and regulations in Japan and Australia.

Results
Simulation studies: comparison of methods 
with or without time‑varing confounding
Table  2 and Fig.  3a show ORSCL, ORVF, and ORMH with 
their 95% CIs, and ORG with its 2.5 to 97.5 percentiles 
estimated for the scenario in Fig. 2a for M control peri-
ods (1 period = 1 day). The difference between ORSCL and 

Fig. 2  Expected frequency of cases by subgroup in Fig. 1. (a) 140 cases who had the outcome at the case period involving one binary exposure 
variable only, where the incidence rate per period at unexposed period (r0) is assumed to be 0.001 and the rate ratio of the exposure (RR) is 
assumed to be 4. (b) 184 cases who had the outcome at the case period involving one binary exposure variable and one binary time-varying 
confounder where the incidence rate per period at unexposed period without confounder (r0) is assumed to be 0.001, the rate ratio of the exposure 
(RR) is assumed to be 4, and that of the time-varying confounder (RRz) is assumed to be 2. The proportion of the time-varying confounder at 
unexposed periods (f0) is 0.2 and that at exposed periods (f1) in the population 0.4. The status of the confounder at control periods is randomly 
assigned . n: frequency of cases belonging to each ID_Subgroup in Fig. 1; c0: exposure status at the case period; z0: status of time-varying 
confounder at the case period

Table 1  Exposure Definitions

Last day = exposure status of the period was the exposure status on the last 
day; Half or more days = exposure status of the period is defined as ‘exposed’ if 
at least half of days during the period was exposed and ‘unexposed’ otherwise; 
Any 1 day = exposure status of the period is defined as ‘exposed’ if at least 1 day 
during the period is exposed and ‘unexposed’ otherwise

Case period Control periods

Definition I Last day Last day

Definition II Last day Half or more days

Definition III Last day Any 1 day

Definition IV Any 1 day Any 1 day
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true RR (4.0) was more than 10% of the true value when 
M = 6 or > 7 and increased when M increased. When 
control periods were extended to 10 and 20 cycles (69 
and 139 control periods), the estimate (95% CI) of ORSCL 
was 7.92 (5.22–12.03) and 8.71 (5.59–13.57), respectively 
(not shown in Table 2). On the other hand, odds ratios 
from the remaining 3 methods (ORVF, ORMH, and ORG) 
were unbiased irrespective of the value of M. The esti-
mate of ORVF cannot be estimated when M = 7, 10, 14, 17 
and 21 because the positivity condition was not satisfied 
for any data. For example, when M = 7, ∑P(Xi0 = 0, Nex-

posed = 1) = 0 because Xi0 = 1 in Subgroup H which is only 
one subgroup where Nexposed = 1 and similarly for Nex-

posed = 2 or 3, Xi0 was the same for all subgroups.
Table  3 and Appendix Fig.  3b show ORSCL, ORVF, 

and ORMH with their 95% CIs, and ORG with its 2.5 to 
97.5 percentiles estimated for the time varying con-
founding scenario in Fig.  2b for M control periods 
(1 period = 1 day). The difference between ORSCL for 
exp(β) and the true RR (4.0) was more than 10% of the 

true value when M > 5 and increased when M increased. 
The ORSCL estimate for exp(β) was larger than the cor-
responding value in Table 2. When control periods were 
extended to 10 and 20 cycles, the point estimate of ORSCL 
for exp(β) was 9.18 (6.23–13.52) and 10.84 (7.09–16.56), 
respectively. On the other hand, ORVF and ORG for both 
exp(β) and exp(γ) were in general unbiased, particularly 
when M > 7 where the estimates of ORVF and ORG for 
exp(β) were within 3% of the true value. The estimate of 
ORMH for exp(β) varied between 3.82 (M = 2) and 4.65 
(M = 13). Though not shown in Table  3 and Fig.  3bb, 
ORMH for exp(β) estimated by ignoring the time-varying 
confounding was stable but overestimated as 4.67 (17% 
above the true value). When M = 1, ORVF was 4.27 for 
exp(β) (about 7% overestimated) and 1.86 for exp(γ) (7% 
underestimated). Similarly, when M = 1, ORG was 4.26 
for exp(β) (7% overestimated) and 1.68 for exp(γ) (16% 
underestimated). When N was increased to 1,000,000, 
exp(β) and exp(γ) were 3.96 and 2.09 for ORVF and 3.97 
and 2.04 for ORG when M = 1 (not shown in Table 3).

Table 4 and Fig. 4a and b show ORSCL, ORVF, and ORMH 
with their 95% CIs, and ORG with its 2.5 to 97.5 percen-
tiles for the scenarios in Fig. 2a and b, where the length 
of the study period was fixed as 22 days but the length 
of each time period varied between 1 and 11 days. For 
the scenario in Fig.  2a with one binary exposure vari-
able only, ORSCL   for exp(β) varied between 4.00 and 6.61 
when the length of the time period varied, but ORVF, 
ORMH, and ORG were stable and unbiased (see Table  4 
and Fig. 4a). For the scenario in Fig. 2b with one binary 
exposure variable and one time varying confounder ran-
domly generated in the control periods, the ORSCL esti-
mate for exp(β) varied between 4.34 (1 period = 11 days) 
and 6.79 (1 period = 7 days) when M and the length of 
the time period varied, while ORVF and ORG for exp(β) 
were stable and close to the true value, though the odds 
ratio was a little overestimated as 4.34 when the time 
period was 11 days (see Table 4 and Fig. 4b). On the other 
hand, ORMH for exp(β) varied 3.54 (1 period = 4 days) and 
5.56 (1 period = 11 days). Though not shown in Table  4 
and Fig.  4b, ORMH for exp(β) estimated by ignoring the 
time-varying confounding was stable but overestimated 
as 4.67. When M = 1 (1 period = 11 days), ORVF was 4.31 
(8% overestimated) for exp(β) and 1.94 (3% underesti-
mated) for exp(γ). Similarly, when M = 1, ORG was 4.34 
(9% overestimated) for exp(β) and 1.35 (32% underesti-
mated) for exp(γ). When N was increased to 1,000,000, 
exp(β) and exp(γ) were 3.97 and 1.95 for both ORVF and 
ORG when M = 1 (not shown in Table 4).

Analyses of case‑crossover studies of real‑world data
Tables 5 and 6 show the estimates using Exposure Defini-
tion I in Table 1 in the Japanese study. In general, ORSCL 

Table 2  The estimates of ORSCL,  ORVF, ORMH, and ORG 
from simulated data with a binary exposure only (study 
period = M + 1 days). Results are shown graphically in Fig. 3a

M is the number of control periods and study period = (M + 1) days. 1 
period = 1 day for all values of M

ORSCL: odds ratio by the standard conditional logistic regression; ORVF: odds ratio 
by the Vines and Farrington’s method; ORMH: odds ratio by the Mantel-Haenszel 
method; ORG: odds ratio by the Greenland’s method; 95%CI: 95% confidence 
interval; 2.5–97.5pct: 2.5 to 97.5 percentiles

M ORSCL (95%CI) ORVF (95%CI) ORMH (95%CI) ORG (2.5–
97.5pct)

1 4.00 (2.45–6.53) 4.00 (2.45–6.53) 4.00 (2.45–6.53) 4.00 (2.57–7.33)

2 4.00 (2.74–5.85) 4.00 (2.74–5.85) 4.00 (2.74–5.85) 4.00 (2.80–6.00)

3 3.55 (2.47–5.10) 4.00 (2.64–6.06) 4.00 (2.73–5.86) 4.00 (2.80–5.72)

4 3.84 (2.72–5.41) 4.00 (2.80–5.71) 4.00 (2.81–5.69) 4.00 (2.82–5.64)

5 4.28 (3.04–6.03) 4.00 (2.86–5.59) 4.00 (2.85–5.61) 4.00 (2.84–5.73)

6 4.60 (3.27–6.48) 4.00 (2.80–5.71) 4.00 (2.89–5.53) 4.00 (2.84–5.70)

7 4.38 (3.10–6.20) – 4.00 (2.87–5.57) 4.00 (2.85–5.66)

8 4.73 (3.34–6.70) 4.00 (2.34–6.84) 4.00 (2.89–5.54) 4.00 (2.88–5.63)

9 5.01 (3.53–7.10) 4.00 (2.58–6.20) 4.00 (2.91–5.50) 4.00 (2.83–5.65)

10 4.86 (3.41–6.94) – 4.00 (2.89–5.54) 4.00 (2.84–5.70)

11 5.09 (3.57–7.26) 4.00 (2.00–8.00) 4.00 (2.91–5.51) 4.00 (2.84–5.64

12 5.33 (3.73–7.62) 4.00 (2.49–6.42) 4.00 (2.92–5.48) 4.00 (2.85–5.60)

13 5.54 (3.88–7.92) 4.00 (2.64–6.06) 4.00 (2.93–5.46) 4.00 (2.85–5.67)

14 5.39 (3.75–7.73) – 4.00 (2.92–5.49) 4.00 (2.85–5.66)

15 5.60 (3.90–8.05) 4.00 (2.34–6.84) 4.00 (2.92–5.47) 4.00 (2.87–5.61)

16 5.79 (4.02–8.33) 4.00 (2.58–6.20) 4.00 (2.93–5.46) 4.00 (2.84–5.60)

17 5.66 (3.92–8.18) – 4.00 (2.92–5.48) 4.00 (2.84–5.65)

18 5.83 (4.03–8.43) 4.00 (2.00–8.00) 4.00 (2.93–5.46) 4.00 (2.84–5.64)

19 6.00 (4.14–8.69) 4.00 (2.49–6.42) 4.00 (2.93–5.45) 4.00 (2.84–5.61)

20 6.16 (4.25–8.92) 4.00 (2.64–6.06) 4.00 (2.94–5.44) 4.00 (2.85–5.65)

21 6.02 (4.14–8.75) – 4.00 (2.93–5.46) 4.00 (2.85–5.66)
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was different from ORG and ORMH except when M = 1, 
and ORSCL estimated from Eq. (2) increased when study 
period increased: ORSCL was between 1.91 and 2.82 when 
study period = 84 days (Table  5), between 2.13 and 4.19 
when study period = 168 days (Table  6), and between 
3.73 and 7.16 when study period = 336 days (Table 6). The 
point estimate of ORG from Eq. (4) was always the same 
as that of ORMH, as expected.

In Appendix Tables 5a and 5b in Additional File 1, the 
results corresponding to Table  5 and Table  6 for Expo-
sure Definitions II, III and IV (Table  1) are presented. 
Those results indicated, as in Tables 5 and 6, that ORSCL 
varied when M varied as well as when the study period 
varied, while  ORMH and ORG were relatively stable. 
Detailed description for Definition II, III and IV is given 
in Appendix 5 in Additional File 1.

In the Australian study, after excluding the concord-
ant cases, there were 1316 discordant cases with daily 
exposed and unexposed periods to SSRIs in the 180 days 
before the index date. Exposure on the index date was 
excluded since hip fracture may have occurred the day 
before admission to hospital.

We used periods of 1, 5, 20, 30, 60 and 90 days with 
M = 179, 35, 8, 5, 2 and 1, respectively. Exposure within 
each period was defined using Definition I (Table  1). 
Estimates of the ORSCL were biased upwards (Table 7). 
When M = 1 (exposure period = 90 days), estimates 
for ORSCL was identical to ORMH and ORG as expected. 
As in the Japanese study, ORSCL from Eq. (2) increased 
with M for M > 1.

Discussion
Methods to remove BIAS from within‑subject exposure 
dependency with or without time‑varying confonders
Using simulated data, we showed that ORSCL can be 
biased when there is within-subject exposure dependency 
but no exposure time trend, except when only one con-
trol period is used. When only one control period is used 
(M = 1), pairwise exchangeability is equivalent to global 
exchangeability and bias due to within-subject expo-
sure dependency in standard conditional logistic regres-
sion does not occur (although bias due to time trends 
may occur). In Tables 2 and 3, ORSCL increased with the 
increase of study period. This observation is similar to 

Fig. 3  Estimates of OR_SCL, OR_VF, OR_MH and OR_G for simulated data in Fig. 1. OR_SCL, OR_VF and OR_MH with their 95% CI, and OR_G with its 
2.5–97.5pct for the exposure (exp(β)) for M = 1, 3, 6, 9, 13, 20, 69, and 139, where M is the number of control periods and study period = M + 1 days 
(1 period = 1 day). (a) shows results for the population in Fig. 2a with one binary exposure variable only. (b) shows results for the population 
in Fig. 2b with one binary exposure variable and one binary time-varying confounder. OR_SCL: odds ratio by the standard conditional logistic 
regression (ORSCL); OR_VF: odds ratio by the Vines and Farrington’s method (ORVF); OR_MH: odds ratio by the Mantel-Haenszel method (ORMH); OR_G: 
odds ratio by the Greenland’s method (ORG); 95%CI: 95% confidence interval; 2.5–97.5pct: 2.5 to 97.5 percentiles
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Table 3  Estimates of ORSCL, ORVF, ORMH, and ORG from simulated data with a binary exposure and a binary time-varying confounder 
(study period = M + 1 days). Results are shown graphically in Fig. 3b

M is the number of control periods and study period = (M + 1) days. 1 period = 1 day for all values of M

ORSCL: odds ratio by the standard conditional logistic regression; ORVF: odds ratio by the Vines and Farrington’s method; ORMH: odds ratio by the Mantel-Haenszel 
method; ORG: odds ratio by the Greenland’s method; 95%CI: 95% confidence interval; 2.5–97.5pct: 2.5 to 97.5 percentiles; exp(β): estimate for the exposure variable; 
exp(γ): estimate for the time-varying confounder

M variables ORSCL (95%CI) ORVF (95%CI) ORMH (95%CI) ORG (2.5–97.5pct)

1 exp(β) 4.26 (2.72–6.66) 4.27 (2.73–6.68) 4.55 (2.37–8.73) 4.26 (2.85–7.33)

exp(γ) 1.68 (1.02–2.78) 1.86 (1.11–3.11) 1.68 (1.03–2.96)

2 exp(β) 4.04 (2.85–5.75) 4.04 (2.85–5.73) 3.82 (2.49–5.86) 4.04 (2.78–6.11)

exp(γ) 1.84 (1.15–2.94) 2.06 (1.28–3.30) 1.84 (1.19–2.92)

3 exp(β) 3.62 (2.60–5.04) 4.11 (2.83–5.97) 4.17 (2.71–6.43) 4.10 (2.93–5.82)

exp(γ) 2.12 (1.43–3.12) 1.93 (1.31–2.86) 2.21 (1.45–3.37)

4 exp(β) 3.91 (2.86–5.34) 4.19 (3.03–5.79) 3.91 (2.66–5.75) 4.09 (3.00–5.67)

exp(γ) 2.14 (1.48–3.11) 2.43 (1.66–3.54) 2.20 (1.45–3.26)

5 exp(β) 4.36 (3.18–5.97) 4.07 (3.00–5.51) 4.04 (2.78–5.86) 4.02 (2.93–5.57)

exp(γ) 1.86 (1.29–2.66) 2.35 (1.62–3.41) 1.92 (1.28–2.86)

6 exp(β) 4.78 (3.51–6.52) 3.98 (2.88–5.50) 4.15 (2.93–5.88) 4.12 (3.00–5.77)

exp(γ) 1.92 (1.36–2.71) 2.00 (1.37–2.92) 1.87 (1.33–2.63)

7 exp(β) 4.48 (3.26–6.15) – 4.42 (3.10–6.30) 4.04 (2.94–5.59)

exp(γ) 1.89 (1.34–2.67) 2.03 (1.33–3.08) 1.86 (1.30–2.70)

8 exp(β) 4.90 (3.57–6.74) 4.07 (2.50–6.63) 3.88 (2.79–5.42) 4.07 (2.93–5.68)

exp(γ) 1.81 (1.29–2.53) 1.76 (1.17–2.64) 1.79 (1.24–2.51)

9 exp(β) 5.24 (3.81–7.22) 4.10 (2.76–6.08) 4.47 (3.22–6.19) 4.08 (2.96–5.65)

exp(γ) 1.77 (1.27–2.48) 2.10 (1.42–3.10) 1.75 (1.23–2.48)

10 exp(β) 5.08 (3.67–7.03) – 4.13 (2.99–5.70) 4.06 (2.94–5.61)

exp(γ) 1.77 (1.28–2.45) 1.62 (1.08–2.42) 1.76 (1.26–2.50)

11 exp(β) 5.33 (3.85–7.38) 4.07 (2.17–7.64) 4.15 (3.01–5.72) 4.07 (2.96–5.65)

exp(γ) 1.78 (1.29–2.46) 1.86 (1.26–2.76) 1.73 (1.23–2.38)

12 exp(β) 5.61 (4.06–7.75) 4.12 (2.69–6.32) 4.51 (3.29–6.18) 4.07 (2.95–5.62)

exp(γ) 1.92 (1.39–2.66) 1.81 (1.24–2.64) 1.86 (1.34–2.62)

13 exp(β) 5.81 (4.19–8.04) 4.06 (2.79–5.91) 4.65 (3.40–6.36) 4.02 (2.90–5.56)

exp(γ) 1.93 (1.39–2.68) 1.87 (1.28–2.73) 1.88 (1.34–2.61)

14 exp(β) 5.60 (4.02–7.79) – 4.05 (2.96–5.55) 3.99 (2.87–5.53)

exp(γ) 1.93 (1.40–2.66) 2.10 (1.40–3.13) 1.87 (1.35–2.57)

15 exp(β) 5.83 (4.17–8.13) 3.94 (2.42–6.42) 3.85 (2.85–5.21) 3.97 (2.86–5.50)

exp(γ) 1.91 (1.38–2.63) 2.04 (1.39–3.00) 1.86 (1.35–2.57)

16 exp(β) 6.05 (4.35–8.43) 3.98 (2.68–5.92) 3.88 (2.87–5.25) 3.98 (2.88–5.52)

exp(γ) 2.04 (1.47–2.82) 2.11 (1.45–3.07) 1.98 (1.41–2.72)

17 exp(β) 5.94 (4.25–8.30) – 4.21 (3.09–5.73) 3.97 (2.87–5.51)

exp(γ) 2.06 (1.49–2.84) 2.19 (1.48–3.23) 2.02 (1.46–2.79)

18 exp(β) 6.14 (4.39–8.59) 4.08 (2.18–7.64) 4.13 (3.05–5.59) 3.99 (2.89–5.51)

exp(γ) 2.02 (1.47–2.77) 2.16 (1.48–3.15) 1.95 (1.43–2.65)

19 exp(β) 6.32 (4.52–8.85) 4.00 (2.60–6.14) 3.94 (2.94–5.29) 3.98 (2.87–5.48)

exp(γ) 2.07 (1.51–2.85) 1.98 (1.37–2.88) 2.01 (1.50–2.71)

20 exp(β) 6.49 (4.64–9.08) 3.94 (2.71–5.74) 3.99 (2.98–5.34) 3.98 (2.90–5.46)

exp(γ) 2.16 (1.57–2.98) 2.14 (1.47–3.11) 2.05 (1.52–2.76)

21 exp(β) 6.35 (4.52–8.91) – 4.16 (3.09–5.61) 3.96 (2.88–5.46)

exp(γ) 2.20 (1.60–3.01) 2.20 (1.51–3.22) 2.10 (1.53–2.81)
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Table 4  Estimates of ORSCL, ORVF and ORMH (95% CI), and ORMH (2.5–97.5pct): Simulated data (study period = 22 days). Results are 
shown graphically in Fig. 4

M is the number of control periods while study period is fixed as 22 days (precisely, study period = Int(22/(M + 1)) *(M + 1)) days)

ORSCL: odds ratio by the standard conditional logistic regression; ORVF: odds ratio by the Vines and Farrington’s method; ORMH: odds ratio by the Mantel-Haenszel 
method; ORG: odds ratio by the Greenland’s method; 95%CI: 95% confidence interval; 2.5–97.5pct: 2.5 to 97.5 percentiles; exp(β): the estimate for the rate ratio for the 
exposure; exp(γ): the estimate for the rate ratio for the time-varying confounder

Days in 1 period 1 day 2 days 3 days 4 days 7 days 11 days
M 21 10 6 4 2 1

One binary exposure variable only

ORSCL exp(β) 6.02 (4.14–8.75) 5.30 (3.73–7.53) 4.60 (3.27–6.48) 5.23 (3.65–7.50) 6.61 (3.27–13.33) 4.00 (2.45–6.53)

ORVF exp(β) – 4.00 (2.58–6.20) 4.00 (2.80–5.71) 4.00 (2.45–6.53) – 4.00 (2.45–6.53)

ORMH exp(β) 4.00 (2.93–5.46) 4.00 (2.92–5.48) 4.00 (2.89–5.53) 4.00 (2.87–5.57) 4.00 (2.19–7.29) 4.00 (2.45–6.53)

ORG exp(β) 4.00 (2.85–5.66) 4.00 (2.82–5.60) 4.00 (2.84–5.70) 4.00 (2.82–5.81) 4.00 (2.12–9.00) 4.00 (2.57–6.69)

One binary exposure variable and 
one binary time-varying confounder

ORSCL exp(β) 6.35 (4.52–8.91) 5.57 (4.04–7.68) 4.76 (3.49–6.51) 5.29 (3.81–7.35) 6.79 (3.59–12.86) 4.34 (2.76–6.82)

 exp(γ) 2.20 (1.60–3.01) 1.78 (1.28–2.48) 1.80 (1.27–2.54) 2.06 (1.39–3.06) 1.91 (1.25–2.91) 1.35 (0.83–2.20)

ORVF exp(β) – 4.08 (2.74–6.07) 4.02 (2.90–5.58) 4.02 (2.57–6.29) – 4.31 (2.75–6.74)

 exp(γ) 2.20 (1.51–3.22) 1.78 (1.20–2.63) 1.83 (1.25–2.67) 2.02 (1.24–3.31) 2.34 (1.43–3.85) 1.94 (1.16–3.24)

ORMH exp(β) 4.16 (3.09–5.61) 4.36 (3.15–6.03) 4.40 (3.11–6.24) 3.54 (2.49–5.04) 4.11 (2.17–7.80) 5.56 (2.73–11.30)

ORG exp(β) 3.96 (2.88–5.46) 4.06 (2.93–5.61) 4.11 (2.97–5.78) 4.00 (2.85–5.67) 4.04 (2.26–8.80) 4.34 (2.86–7.40)

 exp(γ) 2.10 (1.53–2.81) 1.77 (1.25–2.47) 1.76 (1.23–2.53) 2.01 (1.39–2.83) 1.90 (1.27–2.86) 1.35 (0.80–2.26)

Fig. 4  Estimates of OR_SCL, OR_VF, OR_MH and OR_G for simulated data with a fixed study period. OR_SCL, OR_VF and OR_MH with their 95% CI, 
and OR_G with its 2.5–97.5pct for the exposure (exp(β)) where study period is fixed as 22 days but the number of days in 1 period is varied. When 1 
period = 1 or 7 days, OR_VF is not obtainable because the positivity condition is not satisfied. (a) one binary exposure variable only. (b) one binary 
exposure variable and one binary time-varying confounder. OR_SCL: odds ratio by the standard conditional logistic regression (ORSCL); OR_VF: odds 
ratio by the Vines and Farrington’s method (ORVF); OR_MH: odds ratio by the Mantel-Haenszel method (ORMH); OR_G: odds ratio by the Greenland’s 
method (ORG)
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that in the previous case-crossover studies, where the 
odds ratio increased when a longer study period was 
employed [27–29]. In Table  2, ORVF, ORMH, and ORG 
were unbiased. Of those 3 unbiased estimates, ORVF may 
be difficult to calculate when analyzing real-world data 
because it requires population data (or samples from 
the population) to estimate the exposure probabilities, 
unlike ORMH and ORG. In addition, probabilities for many 

exposure permutations must be reliably estimated which 
may be intractable. For example, in Fig. 1 with 21 control 
periods, only 8 subgroups A to H were assumed to exist, 
but in real-world data, many more exposure patterns 
would occur. It is possible that the positivity condition is 
not satisfied for certain permutations, and these do not 
contribute to the estimation of ORVF. These limitations 
make ORVF difficult to use in practical applications.

Table 5  Estimates of ORSCL and ORMH (95% CI), ORG (2.5–97.5pct): Japanese data on celecoxib-peripheral edema with study 
period = 84 days and Exposure Definition I

M is the number of control periods

ORSCL: odds ratio by the standard conditional logistic regression; ORMH: odds ratio by the Mantel-Haenszel method; ORG: odds ratio by the Greenland’s method; 95%CI: 
95% confidence interval; 2.5–97.5pct: 2.5 to 97.5 percentiles

Study period 84 days

Days in 1 period 1 day 3 days 7 days 14 days 28 days 42 days

M 83 27 11 5 2 1

ORSCL 2.82 (2.14–3.71) 2.73 (2.08–3.60) 2.53 (1.93–3.33) 2.28 (1.74–2.99) 2.05 (1.54–2.74) 1.91 (1.38–2.64)

ORMH 1.99 (1.58–2.51) 1.98 (1.57–2.50) 1.97 (1.55–2.50) 1.94 (1.51–2.48) 1.93 (1.46–2.56) 1.91 (1.38–2.64)

ORG 1.99 (1.49–2.65) 1.98 (1.48–2.64) 1.97 (1.48–2.62) 1.94 (1.44–2.58) 1.93 (1.43–2.62) 1.91 (1.36–2.72)

Table 6  Estimates of ORSCL and ORMH (95% CI), and ORG (2.5–97.5pct): Japanese data on celecoxib-peripheral edema with study 
period = 168 and 336 days and Exposure Definition I

M is the number of control periods

ORSCL: odds ratio by the standard conditional logistic regression; ORMH: odds ratio by the Mantel-Haenszel method; ORG: odds ratio by the Greenland’s method. 95%CI: 
95% confidence interval; 2.5–97.5pct: 2.5 to 97.5 percentiles

Study period 168 days 336 days

Days in 1 period 1 day 14 days 84 days 1 days 14 days 168 days

M 167 11 1 335 23 1

ORSCL 4.19 (3.16–5.55) 3.39 (2.58–4.45) 2.13 (1.54–2.95) 7.16 (5.27–9.74) 5.97 (4.43–8.05) 3.73 (2.42–5.75)

ORMH 2.45 (1.94–3.09) 2.38 (1.87–3.03) 2.13 (1.54–2.95) 2.95 (2.28–3.82) 2.92 (2.24–3.79) 3.73 (2.42–5.75)

ORG 2.45 (1.87–3.25) 2.38 (1.82–3.15) 2.13 (1.57–2.99) 2.95 (2.14–4.09) 2.92 (2.12–4.03) 3.73 (2.49–6.06)

Table 7  Estimates of ORSCL and ORMH (95% CI), and ORG (2.5–97.5pct): Australian data on SSRI-hip fracture (Study period = 180 days, 
Exposure Definition I)

M is the number of control periods

ORSCL: odds ratio by the standard conditional logistic regression; ORMH: odds ratio by the Mantel-Haenszel method; ORG: odds ratio by the Greenland’s method; 95%CI: 
95% confidence interval; 2.5–97.5pct: 2.5 to 97.5 percentiles

Study period 180 days

Days in 1 period 1 day 5 days 20 days 30 days 60 days 90 days

M 179 35 8 5 2 1

ORSCL 2.02 (1.71–2.37) 1.85 (1.58–2.17) 1.76 (1.49–2.06) 1.72 (1.46–2.02) 1.59 (1.33–1.91) 1.51 (1.24–1.83)

ORMH 1.67 (1.46–1.92) 1.60 (1.39–1.84) 1.59 (1.37–1.84) 1.61 (1.38–1.88) 1.55 (1.30–1.85) 1.51 (1.24–1.83)

ORG 1.67 (1.49–1.90) 1.60 (1.40–1.83) 1.59 (1.39–1.83) 1.61 (1.41–1.87) 1.55 (1.30–1.81) 1.51 (1.24–1.85)
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As Vines and Farrington showed, when no exposure 
time trend exists and there is one binary exposure vari-
able which is pairwise exchangeable, ORMH and ORG are 
unbiased even when ORSCL is biased. However, when the 
model involves a time-varying confounder in addition to 
the exposure variable, ORMH may be biased when periods 
of each subject are further stratified by the time-varying 
confounder as in Tables  3 and 4. In contrast, the time-
varying confounder can be handled by ORG. Results 
shown in Tables  3 and 4 indicate that our proposed 
method is unbiased when both within-subject exposure 
dependency and time-varying confounding occur at the 
same time, provided that the time-varying confounder is 
independent between periods.

In Tables 3 and 4, when M = 1 (i.e., only 1 control period 
is used), ORG and ORVF for exp(β) were overestimated and 
those for exp(γ) were underestimated, but the estimates 
approached to the true values when N was increased, sug-
gesting that the deviation from the true values observed 
when M = 1 was due to random error. Conversely, it is likely 
that employing a larger number of control periods can pro-
duce more precise point estimates of exp(β) and exp(γ).

Real‑world data analysis
In the Japanese and Australian studies, we found a dis-
crepancy between ORSCL and ORG when more than one 
control period was used. In the Japanese study, ORSCL 
was more than 2 times larger than ORG when the study 
period increased. We believe that this discrepancy 
occurred mainly due to within-subject exposure depend-
ency, which increases as the study period increases. The 
estimates of ORG were the same as ORMH as expected.

In the Australian study, the discrepancy between 
ORSCL and ORG was modest compared with the Japa-
nese study. This was compatible with the finding by 
Vines and Farrington that the bias due to within-subject 
exposure dependency is minimal when exp(β) ≈ 1 [15].

Limitations of the current study and future direction
In the current study, our focus was on bias from within-
subject exposure dependency. However, biases can occur 
from other sources as well. First, we have not applied the 
weighting method when a time trend in the exposure 
exists [14]. Though it was shown in the methods sec-
tion that if there is no time trend, probabilities that the 
individual is exposed (π1) and unexposed (π0) at the case 
period can be estimated without data from population or 
time-controls, to check whether assumptions of pairwise 
exchangeability (no exposure time trend) are satisfied, 
we need data of the population or time-controls. When 
the proportion of periods exposed in the population or 
time-controls is roughly constant over study periods, 
this will support pairwise exchangeability assumptions. 

When time trend exists, case-time-control design [14] 
may be used, but more study is needed when both expo-
sure time trend and within-subject exposure depend-
ency exist. Second, a ‘washout period’ has been used in 
some case-crossover studies [16, 17, 19] to allow for the 
uncertainty in the optimal length of one period and to 
reduce within subject exposure dependency. In the cur-
rent study, when the length of the time period varied, 
ORG (and ORMH) was stable in both the simulation study 
and real-world data. Since exposure was defined by the 
last day of the period, any period with 2 or more days was 
equivalent to using a ‘washout period’ at the beginning 
of the period. However, much more analyses are needed 
to examine the need for a ‘washout period’ and to deter-
mine the optimal length of one period particularly when 
within-subject exposure dependency exists. Another bias 
may occur when the event rate is not constant. For exam-
ple, the event rate may be particularly high soon after the 
exposure is started, compared to later after treatment 
was started. One solution for this problem is to divide 
the exposed periods into high-risk and low-risk peri-
ods and considering this as different levels of exposure. 
When within-subject exposure dependency exists, this 
will require weighting for at least 3 exposure levels and 
the weighting method for binary exposures described in 
this study should be expanded for multi-level exposures.

Limitations of our study include that we assumed 
a time-varying confounder with no within-subject 
dependency. If within-subject dependency exists for a 
time-varying confounder, the weighting method may 
need to allow for both the exposure and time-varying 
confounders. Furthermore, when unmeasured time-
varying confounders exist, the results still can be biased 
even when using our weighting method.

Finally, as mentioned earlier, the variance of ORG in 
Eq. (14) is estimated assuming the weight in Eq. (10) is 
a constant. To allow for uncertainty in estimating the 
weights in Eq. (10), bootstrapping was used to estimate 
to 95% CI from 2.5 to 97.5 percentiles of ORG. However, 
an analytical method to estimate the variance of ORG 
which accounts for the variance of the weights may be 
useful and be developed in a future study.

Conclusion
Despite autocorrelated exposures being common in phar-
macoepidemiology, bias due to within-subject exposure 
dependency in the case-crossover study has had little 
attention in the pharmacoepidemiology literature and 
standard conditional logistic regression has been widely 
used without assessing whether this bias exists. Although 
using only one control period can avoid bias due to 
within-subject exposure dependency, this will reduce the 
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accuracy of the estimate due to random error, as seen 
in our simulation study (the odds ratio when M = 1 in 
Tables 3 and 4). To assess for the possibility of bias, we rec-
ommend comparing the Mantel-Haenszel odds ratio with 
the standard conditional logistic regression odds ratio 
before starting analysis of case-crossover data. If time-
varying confounders exist in data set, they may be ignored 
when comparing two odds ratios to assess the possibility 
of bias due to within-subject exposure dependency. If a 
substantial discrepancy is found (e.g., more than a pre-
specified threshold such as 5 to 10% of the Mantel-Haen-
szel odds ratio), standard conditional regression should 
not be used. Either the Mantel-Haenszel method or our 
weighting method should be used instead. The weighting 
method has less bias than the Mantel-Haenszel method 
when a time-varying confounder exists and in such a 
case we recommend using our proposed method to esti-
mate ORG in the analysis of case-crossover data because 
it removes bias from within-subject exposure dependency 
and can account for time-varying confounders.

Future research will extend our weighting method 
to allow for time trends in the exposure, ‘washout 
periods’, multi-exposure levels which are potentially 
important when the event rate changes during exposed 
periods, and analytical method to have the variance of 
ORG by making allowance for the uncertainty in esti-
mating the weight.
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