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SOFTWARE

Employing multiple synchronous outcome 
samples per subject to improve study efficiency
Roger P. A’Hern*   

Abstract 

Background:  Accuracy can be improved by taking multiple synchronous samples from each subject in a study to 
estimate the endpoint of interest if sample values are not highly correlated. If feasible, it is useful to assess the value of 
this cluster approach when planning studies. Multiple assessments may be the only method to increase power to an 
acceptable level if the number of subjects is limited.

Methods:  The main aim is to estimate the difference in outcome between groups of subjects by taking one or more 
synchronous primary outcome samples or measurements. A summary statistic from multiple samples per subject will 
typically have a lower sampling error. The number of subjects can be balanced against the number of synchronous 
samples to minimize the sampling error, subject to design constraints. This approach can include estimating the opti-
mum number of samples given the cost per subject and the cost per sample.

Results:  The accuracy improvement achieved by taking multiple samples depends on the intra-class correlation 
(ICC). The lower the ICC, the greater the benefit that can accrue. If the ICC is high, then a second sample will provide 
little additional information about the subject’s true value. If the ICC is very low, adding a sample can be equivalent to 
adding an extra subject. Benefits of multiple samples include the ability to reduce the number of subjects in a study 
and increase both the power and the available alpha. If, for example, the ICC is 35%, adding a second measurement 
can be equivalent to adding 48% more subjects to a single measurement study.

Conclusion:  A study’s design can sometimes be improved by taking multiple synchronous samples. It is useful to 
evaluate this strategy as an extension of a single sample design. An Excel workbook is provided to allow researchers 
to explore the most appropriate number of samples to take in a given setting.
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Background
In some circumstances, it is possible to undertake more 
than one synchronous assessment of the same subject to 
estimate a measure of interest. The overall result might 
then be calculated as the average across the assessments 
or perhaps as the maximum or minimum value if they are 
more critical. It is natural to ask whether it is worth mak-
ing multiple measurements to improve the assessment 
quality. This has to be weighed against any disadvantages 

- an assessment may be burdensome to the subject or cli-
nician/scientist undertaking it or more costly. This paper 
offers a quantitative framework, including easy-to-use 
software, for making this decision, developed from first 
principles to outline its basis. The overall variance is the 
sum of the between-subject and within-subject variance, 
so reducing the effect of within-subject variability by per-
forming repeat within-subject observations can be bene-
ficial. As might be anticipated, this strategy is most useful 
when the within-subject variation is a large proportion 
of the overall variation, equivalent to a low to moderate 
intraclass correlation (ICC) between observations.
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Improving study design by taking repeated measure-
ments may be particularly valuable if the number of sub-
jects eligible for the study is limited, for example, in rare 
disease types or restricted subject groups. The degree of 
correlation between repeated measurements is impor-
tant. For example, if the ICC were 85%, taking more 
than one sample would offer little additional information 
about the subject’s actual value.

If the correlation is 10% or lower, multiple samples 
might be considered if there were reasonable grounds for 
this degree of independence. However, in other circum-
stances, it may be concluded the parameter being meas-
ured was of little value because of low repeatability.

As a practical example, many human organs are bilat-
eral, and if a sample were taken from each, these would 
show correlated results because of their shared genotypic 
and environmental background. Is it worth taking meas-
urements from both organs to study organ function? 
The eye provides a useful illustration. Glynn and Rosner 
[1] presented alternative models for predicting the per-
cent of normal visual field in 197 subjects being followed 
up for glaucoma. Inclusion of both eyes (N = 394) in a 
mixed-effects analysis, which allows for correlation, was 
found to improve the accuracy of the estimates of poten-
tial predictive factors compared with the use of only one 
eye. The correlation between the eyes was 0.55 (55%). A 
median reduction in the standard error of the parameter 
estimates in the 394 ‘eye’ based analysis relative to the 
single eye analysis was 15% (for the factor hypertension) 
with a range of 12% (for gender) to 39% (for acuity loss). 
Reductions of this order are worthwhile, a 15% reduc-
tion in the standard error could, for example, increase the 
power to detect a real difference from 66 to 80%, and a 
39% reduction could increase the power from 40 to 80%.

From another viewpoint, employing a summary value 
from several measurements rather than the value of a sin-
gle measure can be seen as improving the ICC by lower-
ing the within-subject variation. For example, Lee et  al. 
[2] studied the ICC’s of 3 representative physical exami-
nations - popliteal angle, Thomas test, and Staheli test, 
performed twice each by three orthopedic surgeons on 
30 cerebral palsy subjects with a mean age of 12.5 years. 
The popliteal angle test is a measure of hamstring tight-
ness; both the Thomas test and the Staheli test are meth-
ods of measuring hip flexion contracture. The single 
test ICC’s were 0.71, 0.46, and 0.22. However, the ICC’s 
of the averages of the three assessments were 0.88, 0.74, 
and 0.46, respectively, suggesting the popliteal test can 
be improved and a more satisfactory ICC for the Thomas 
test can be achieved if they are applied independently 
multiple times.

Examples of specific contexts in which this tech-
nique might be used will now be considered. A sample 

size calculation based on the above Glynn and Rosner 
example suggests that a standardized difference of 0.4 
in a binary predictive factor could be detected with 80% 
power using 197 single eyes; this decreases to a stand-
ardized difference of 0.25 if both eyes (N = 394) are 
studied. Nicholson and Holmes [3] noted that a popu-
lar but improper method for assessing high-throughput 
assays’ precision is by scatter-plotting data. This consists 
of equally dividing a sample and assaying the two halves 
separately, then plotting and correlating all analytes’ 
results in the first half versus the second half. They con-
cluded that precision should not be based on all analytes’ 
plots. The repeatability of individual analytes and a vari-
ance inflation factor should be used to calculate appro-
priate sample sizes to detect changes in specific analyte 
levels that are the focus of the researcher’s interest. The 
biased scatter-plotting method typically gives ‘excellent’ 
correlations of 0.95 or greater, but for four high through-
put assays Nicholson and Holmes reported ICCs of 0.31 
(0.10-0.53) [Median (IQ range)] for 1624 microRNA 
analytes, 0.59 (0.24-0.80) for 17,788 mRNA analytes, 
0.31 (0.20-0.50) for 69 proteins and 0.94 (0.82-0.96) for 
163 metabolites. This suggests ICCs for some analytes 
in high-throughput assays are at levels that may make 
repeat samples worthwhile. Ionan et al. [4] described the 
National Cancer Institute’s Director’s Challenge repro-
ducibility study results. This examined the reproduc-
ibility of 22,283 features from the Affymetrix U133A 
Genechip across a collection of 11 frozen patient tissue 
samples. These were assayed at four different labs. Fifty-
percent of the 22,283 ICC’s were below 0.52, and 25% 
were below 0.23.

The majority of ICC values derived from adjustment 
factors calculated in a study of UK Biobank data by 
Morgan et  al. [5] were observed to be above 70%, but 
not all. The following are below 70%: Diastolic blood 
pressure (60% (95%CI:60-62)); Systolic blood pressure 
(65% (95%CI: 64-65)); Pulse rate (62% (95%CI:61-64)); 
Peak expiratory flow (60%(95%CI:59-61)) and Grip 
strength (65% (95%CI:63-67)). All hematological fac-
tors in this study and a meta-analysis by Coskuna et al. 
[6] had ICCs that were 70% or greater. Multiple meas-
urements are used to measure physical activity. For 
example, Lee et al. [7] found 3 days accelerometer test-
ing was adequate in South Korean patients with stroke 
receiving inpatient rehabilitation but noted that con-
ventionally 7 days testing was used [8]. It is also recom-
mended that blood pressure is measured over several 
different days and while resting to get reliable readings 
[9]. More complex situations can arise if multiple meas-
ures with differing numbers of measures per subject are 
used to calculate an endpoint. In studies of advanced 
cancer, in which subjects may have cancer present at 
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multiple sites, the within-participant sum of tumor 
lesion diameters is used for overall tumor response cal-
culation in RECIST [10]. This sum will decrease if there 
is a positive response to therapy. Caution was initially 
exercised; before 2009, the recommendation was to 
measure up to 10 lesions per subject but subsequently 
[11], a maximum of 5 was found to be sufficient. This 
supports the existence of correlation of the responses 
of different lesions from the same subject.

Random measurement error occurs when measure-
ments vary unpredictably around their true values and 
is the result of both true biological variability and impre-
cise measurement techniques. It presents a widespread 
challenge in clinical practice and medical research [12]. 
This paper considers random error in the outcome being 
assessed but random error can also play an important 
role in independent variables that are used to predict 
outcome, or independent variables used as stratification 
factors. For example, if the relationship of left ventricu-
lar mass to blood pressure was being assessed the ran-
dom error in the measurement of both left ventricular 
mass and blood pressure would be crucial. In this case an 
increase in the error in the measurement of blood pres-
sure would cause a weakening of its predicted relation-
ship to left ventricular volume. Hutcheson, Chiolero and 
Hanley [12] provide an excellent guide to this phenom-
enon. Correction factors can be applied to address this 
issue, if they are known. For example, relevant correc-
tion factors from the UK Biobank have been provided by 
Morgan et al. [5]. If the effect of a randomised treatment 
intervention on left ventricular mass was being assessed 
the random error in mass measurement would be impor-
tant, but typically there would be no error associated 
with the allocation of treatment groups, but confound-
ing could occur if subjects did not adhere to their ran-
domised treatment.

The potential value of synchronous measurements is 
also supported by recognizing that slope (linear trend) 
estimation can be optimized by making as many obser-
vations as feasible at the extreme ends of the ranges of 
independent variables. For example, to estimate a linear 
relationship (decrease or increase) within a subject over 
2 years by making six measurements, three measures at 
baseline and three at 24 m would yield a more accurate 
estimate of change than spacing the measurements, such 
as one each at baseline, 4 m, 8 m, 12 m, 18 m and 24 m. 
However, caution needs to be exercised because trends 
may not be linear and confounders can be important. 
For example, Aadland et  al. [13] noted that systematic 
reviews had generally concluded that there was no asso-
ciation between physical activity and BMI in children less 
than 7 years old. However, in their study of 1120 Norwe-
gian children, these authors found that physical activity 

was more clearly negatively associated with BMI in older 
children in this age group and in girls compared to boys.

In this paper, subjects are considered the basic experi-
mental unit of interest, and single or multiple assess-
ments, measurements, or samples are taken from these 
subjects. The methodology is not new but is identical to 
that of cluster randomized trials. However, the focus is on 
samples within subjects rather than subjects within clus-
ters. The software presented can also be used for cluster 
designs by considering the cluster units as subjects. For 
simplicity, the main focus is on situations where it is pos-
sible to average measures across repeated samples or for 
binary endpoints, the probability that each measure takes 
one of the true possible values, e.g. that it is a ‘success’.

Implementation
The variance of the mean of several identically normally 
distributed random variables can be calculated by noting 
that for two variables, the variance Var(aX+bY) = a2Var
(X) + b2Var(Y) + 2abCovar(X,Y). If X and Y have mean 
(X + Y)/2, ρ is their correlation and Var(X) = Var(Y) = s2, 
then Covar(X,Y) is ρs2 and a = b = 1/2. Hence Var(Mean) 
= s2/4 + s2/4 + 2ρs2/4 = (s2/2)(1 + ρ). By extension, it can 
be shown that the variance of the mean of m samples is 
Var(Mean) = (s2/m)(1 + (m-1)ρ). In the absence of cor-
relation, the variance would be s2/m; hence the quantity 
(m-1)ρ is the variance increase due to the correlation, 
and (1 + (m-1)ρ) is known as the Variance Inflation Fac-
tor (VIF). If m is not consistent across the subjects, it 
is typically replaced by the mean value across subjects; 
however, the coefficient of variation (CV) of m can also 
be incorporated to estimate the variance (see below). 
These formulae mirror those used in cluster randomized 
trials, programs performing sample size calculation for 
cluster randomized trials can therefore be used in the 
current context.

A fundamental relationship, shown in Fig.  1A and B, 
is worth noting. If subjects have normally distributed 
average values with variance Vsubj, and samples have val-
ues normally distributed about these averages with vari-
ance Vsamp, then the intraclass correlation (ICC or ρ) is 
Vsubj/(Vsubj + Vsamp). Figure  1A shows this diagrammati-
cally for a randomly simulated sample with Vsubj = 1 and 
Vsamp = 0.25, an ICCof 0.8. In this simulated data, the 
subject means have been defined to vary randomly about 
zero, and there are 20 subjects each with ten assessments. 
This correlation is also apparent when plotting within-
subject observations, plotting pairs of values from the 
same subject from this simulated data (Fig. 1B). The cor-
relation in this context will typically be close to but not 
the same as the ICC.

An Excel Workbook (STARS.xlsx) is provided, 
which includes worksheets to illustrate sample size 
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calculation incorporating the number of measures, the 
ICC, and the CV of the number of measures, including 
details on the optimum ‘cost’ based choice of the num-
ber of samples. Sample size worksheets for estimating 
ICC are also included, as are examples demonstrating 
techniques of analysis and associated commands in the 
programming language R.

STARS has been designed to calculate sample sizes 
for two group comparisons, hence it cannot be used for 
studies testing effect size of a single group, such as might 

be the case in a single group Phase II trial. It also can-
not be used for studies examining change in a single 
group, e.g. those which intend to use a paired t-test or 
McNemar’s test for analysis. It is pertinent to consider 
longitudinal and other complex designs, two sources of 
correlation need to be considered. In the case of longitu-
dinal designs, these are the correlation between measures 
at the same timepoint and the correlation between meas-
ures at different timepoints.

Fig. 1  A and B Illustrate the joint effects of between and within subject variation and their contribution to correlation. Please see text for more 
detail
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The simplest longitudinal designs are those with paired 
scores, e.g. baseline (pre-test) and post-test. The within 
subject correlation is also important in this case and in 
many situations the focus can be the single ‘change’ end-
point (post-pre), and its standard deviation will be known 
from previous experience. If the intention is to have the 
same number of measures pre and post and the ICC at 
both these timepoints is the same, then the standard 
deviation and ICC can be used in STARS to estimate the 
optimal number of measures. The example below uses 
this method.

If the standard deviation of the change is not known, 
assuming pre and post scores have the same SD (s), 
and the correlation τ between them is known, then the 
change can be shown to have an SD of √(2s2 - 2τs2). In 
this situation, the design contrast D can be represented 
by D = (− 1, 1)1 and the variance covariance matrix as V, 
equal to

The SD is then √(DVDT) = √(2σ2 - 2τσ2), where DT is D 
transposed. Generally, for any design contrast D and any 
variance covariance matrix V, multiple serial scores per 
subject can be combined into a single endpoint DXT with 
SD given by √(DVDT). It is therefore relevant to consider 
how an appropriate variance/covariance matrix can be 
identified to allow this to be done from a specimen data-
set, which represents the structure of the data contrib-
uting to the study to be undertaken. STARS illustrates 
how this can be accomplished using R for four scenarios 
(‘Correlation between Repeated Measures’ option). How-
ever, STARS may not always be suitable for sample size 
calculation in this context and simulation may be more 
relevant.

Sample size considerations
For continuous normal and binomial comparisons 
standard sample size formulae have been employed. For 
example, to detect a difference of D then it is typically 
desirable that the standard error (SE) of the estimated 
difference is approximately D/3 (the ‘Rule of Three’). This 
is on the basis that if a two-sided 5% significance level 
is employed then this will require the estimated effect, 
under the hypothesis of efficacy, is above 1.96 SE’s. For 
the effect to be confidently above this level (e.g. 85% 
chance) its mean should be about 1 SE greater than this 
(adding 1.96 + 1 gives 3). If the sample sizes in the two 
groups are n and kn then D will have a standard error 

(

s
2
τ s

2

τ s
2
s
2

)

of √(V/n + V/kn) = √(V(k + 1)/n), where V is the vari-
ance or standard deviation (SD) squared. Note that it has 
been assumed the SD is the same in both groups, a sin-
gle applicable standard deviation is required for analysis 
of variance to be valid. The sampling distributions have 
been based on the Student’s t distribution rather than 
the standard normal distribution to allow for greater 
variation with smaller sample sizes. Transformation to 
normality with a log transformation has also been men-
tioned, this is relevant if the data are positively skewed 
and variability is better summarised by the coefficient of 
variation (CV) rather than the SD of the untransformed 
values. In the calculations employed the SD is corrected 
for the number of samples/measures employed using the 
variance inflation factor. For binomial sample sizes the 
estimated variance of D is based on the weighted aver-
age of the two rates under H0 and H1, the weighting being 
according to the proportion of subjects in each group. 
Formulae for CI for ICC [14, 15], ICC Sample size [16], 
Cronbach’s alpha [17] are also given in the relevant sec-
tions of STARS. The formulae used in Excel can be seen 
for all calculations on the relevant worksheets, these have 
to be unprotected to view them, the password is given on 
the Contents worksheet.

The model that is assumed for continuous normal vari-
ables is:

where
yij is the jth measure in the ith subject,
c is the intercept (a constant representing the baseline 

effect, e.g. in the reference group).
βi is the between-group effect to be detected, it is 

zero for the reference group and is the difference to be 
detected for the second group.

ui is the random between-subject variation, it is nor-
mally distributed with a mean of zero.

εij is the random within-subject variation, it is also nor-
mally distributed with a mean of zero.

This model cannot be used for paired measurements 
such as might be employed for estimation of the differ-
ence between pre and post-treatment effects, these would 
typically be based on the paired t-test, or McNemar’s test 
in the case of binomially distributed outcomes.

Results
The relationship between sample size and ICC
The measurement variance is composed of between-
subject variability and within-subject variability (Fig. 1A). 
Hypothetically, if the overall variance is considered con-
stant and the within-subject variance decreases, then the 
between-subject variance must increase proportionately 

yij = c+ βi + ui + εij

1  If D = (− 1, 1) and X = (pre, post) then DXT is the post-pre score for each 
subject, where X represents the data and XT is X transposed.
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(Fig.  2). The ICC (x-axis, Fig.  2) is where the specific 
between/within variance relationship occurs for the 
measure. The ICC is the proportion of the overall vari-
ation attributable to between-subject differences, cal-
culated as the between-subject variance divided by the 
overall variance (set to 1 here). The relationship between 
ICC and the % division of the two sources of variance is 
the centered ‘X’ in the plot.

The sample size chosen for a clinical trial or other 
between-group study comparison is directly related to 
the variation of the outcome. For example, setting out to 
detect a 1 unit increase between two equal-sized groups 
and considering outcome variances of 1, 2, and 4, appro-
priate calculated sample sizes might be 146, 292, and 
584 subjects, respectively; these also have a 1:2:4 ratio. 
In Fig. 2, the relative numbers of study subjects required 
for different ICCs with m = 2 and m = 4 are shown as the 
upper diagonal line starting with 50 and 25% of subjects, 
respectively. The pattern shown in Fig. 2 is also shown in 
Table 1, with alternative designs for specific ICCs being 
shown in columns.

For an ICC of 0.5, 100 samples could be taken from 100 
patients (with m = 1), or 201 samples could be taken from 
67 subjects (with m = 3). If the recommended study size 
with one sample were 160 patients, the corresponding fig-
ures for m = 3 would be 1.6 times the values shown (324 

samples in 108 patients). Some scenarios are unlikely to 
ever be of practical value, such as those with ICCs of 0.85 
or greater because of the small efficiency improvement. 
A similar table, with 5% ICC increments, is given in the 
Excel workbook (STARS.xlsx, ‘Introduction’ worksheet), 
together with an example of data analysis, with associ-
ated R code (STARS.xlsx, ‘Analysis Examples’ worksheet).

For binary endpoints the considerations are similar. For 
example, if two measures are being considered and there 
is a high correlation within subjects, then the response to 
the first measure will indicate what the response to the 
second measure is likely to be. Researchers’ decisions will 
vary according to context and simulation may be valuable 
in this context. A two-measure example is presented in 
the software (see ‘Binomial ICC’ worksheet for link).

The Excel workbook (STARS.xlsx), which accompa-
nies this paper, contains worksheets that allow calcula-
tion of sample sizes for continuous normal and binomial 
outcomes, as well as for estimating intraclass correla-
tion. These worksheets can be accessed via the initial 
‘Contents’ worksheet. STARS stands for ‘Sample size 
calculations for Two-group comparisons with Repeated 
Synchronous sampling.’ All formulae employed can be 
found on associated ‘Calculations’ worksheets; this for-
mat has the advantage of transparency and ease of further 
development by interested researchers. The worksheets 

Fig. 2  A schematic illustrating the relationship of overall variability, between-subject variability, within-subject variability, intra-class correlation 
(ICC), number of synchronous samples (m), and study size. For convenience, overall variability is set to 1, between-subject variability is the increasing 
diagonal (left to right), and within-subject variability the decreasing diagonal. The intra-class correlation (ICC) is on the x-axis and summarises the 
relationship between subject and within-subject variability. Study size is statistically linearly related to the two sources of variability and correlation 
and in addition to the number of synchronous samples (m)



Page 7 of 11A’Hern ﻿BMC Med Res Methodol          (2021) 21:211 	

are protected to prevent inappropriate changes, but can 
be unprotected by using the supplied password. Four fea-
tures apparent from the above comments and use of this 
program will now be discussed.

Increasing power and the available alpha
If the number of subjects available for a study is approxi-
mately known, then because the standard error of the 
endpoint is reduced by taking multiple samples, increas-
ing the number of measures can be used to increase the 
power of the study or increase the amount of alpha avail-
able. The first four panels of Fig. 3 show power improve-
ments possible for four different ICCs. The final two 
panels illustrate changes in available alpha. Subjects 
(such as patients) might be willing to donate more sam-
ples or provide more assessments in a study if a benefit 
was that there were more interim futility or efficacy anal-
yses, or greater power.

As a simple example, if it is decided approximately 200 
subjects could be entered into a trial with a single meas-
urement that used an alpha error rate of P = 5% for the 
primary comparison, taking two measurements with an 
ICC of ρ = 0.5 would imply P = 1.54% could be used for 
this comparison. The remaining 3.46% could be used for 
other purposes such as interim analyses, and the overall 
type I error rate of 5% would be maintained.

Unequal number of samples per subject
There may be circumstances in which there is an unequal 
number of samples per subject, for example, for logistic 
reasons or because of subject preference. If the variation 

in the number of samples is small (CV not greater than 
0.23 [18]) the average number of samples per subject 
can be employed for sample size calculations; in other 
circumstances, an adjustment should be used. The vari-
ation can be summarised by its coefficient of variation 
(the CV is the SD of m divided by mean), and a correc-
tion based on this can be employed (Rutherford, Copas, 
and Eldridge [18]). If the CV of the number of samples is 
not known at the outset of a study, the study size could 
be adapted to allow for the observed variation, estimated 
from an early analysis.

Summary endpoints for serial measurements
A linear trend across time is an example of a single meas-
ure that can be used to summarise serial within-subject 
measurements. As mentioned above, linear trends can be 
estimated more accurately by clustering measurements at 
the extreme range of independent factors but more com-
plex relationships may also exist. Matthews et al. [19] pro-
vides an informative introduction to summary endpoints. 
Simulation can be used to compare the accuracy of esti-
mated effects using strategies to summarise multiple syn-
chronous measurements. Simulation was used to mimic 
follow-up over 2 years to identify subjects with rapid 
visual field progression (− 2 dB/year) by Crabb and Gar-
way-Heath [20]; these showed measurement either 2 or 3 
times was superior to every 6 months or every 4 months. 
The ‘Latanoprost for open-angle glaucoma (UKGTS)’ trial 
[21] accordingly incorporated this approach.

The methodology described in this paper can also be 
used where complex relationships exist between repeated 

Table 1  The relationship between the proportion of measures and subjects versus intra-class correlation relative to the proportion 
needed when only one measure is employed (top rows). The lower table shows the effective percentage increase in study efficiency 
(in terms of subjects) that can be achieved by taking multiple samples. For example, a two-sample study with an ICC of 0.5 is 
equivalent to a one-sample study with 33% more subjects (as is also apparent from the first table in the 75 to 100 difference)

%Measures/% Subjects

Intra-Class Correlation
Measures 0 0.15 0.35 0.5 0.65 0.85 0.9 1

1 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

2 100 / 50 116 / 58 136 / 68 150 / 75 166 / 83 186 / 93 190 / 95 200 / 100

3 99 / 33 129 / 43 171 / 57 201 / 67 231 / 77 270 / 90 279 / 93 300 / 100

4 100 / 25 144 / 36 204 / 51 252 / 63 296 / 74 356 / 89 372 / 93 400 / 100

5 100 / 20 160 / 32 240 / 48 300 / 60 360 / 72 440 / 88 460 / 92 500 / 100

Effective Sample Size
Measures
1 100 100 100 100 100 100 100 100

2 200 174 148 133 121 108 105 100

3 300 231 176 150 130 111 107 100

4 400 276 195 160 136 113 108 100

5 500 313 208 167 139 114 109 100



Page 8 of 11A’Hern ﻿BMC Med Res Methodol          (2021) 21:211 

measures, and it is possible to combine them into one 
summary endpoint with an SD it is possible to calculate. 
In some situations, it may be possible to approximate the 
number of subjects required if a single overall outcome 
calculated from true serial measurements is being con-
sidered, in which each component measure is weighted 
equally. It should also be realistic to assume that the rela-
tionship between the measurements can be characterized 

by an overall representative single correlation. This 
approach could be employed to approximate sample sizes 
for studies based on more complex correlation matri-
ces, these sample sizes could be refined using simulation 
employing programs such as SUPERPOWER [22].

Fig. 3  Improvements in power and alpha that can be achieved by increasing the number of measurements and their relationship to the 
correlation. For power (top four panels), a two-sided significance level of 5% has been used (and a CV of zero, see below). Critical alpha values 
(bottom two panels, power 85%) can be lowered by making multiple measurements (see text for explanation). The programs for generating these 
relationships are available in the Excel Web appendix (STARS.xls, under ‘Other’)
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Optimising study design on the basis of ‘cost’
The number of subjects varies with the number of meas-
ures employed, so if a cost is assigned to each, then the 
overall cost can be compared. For example, if the cost per 
subject is 60 and the cost per sample is 10 (and using a 
specific design2), the costs for up to eight measures are: 
1 - 12,180; 2 - 9120; 3 – 8640; 4 – 8400; 5 – 8580; 6 – 
9000; 7 – 9360 and 8 – 9660. This suggests the optimum 
number of measures is 4, but the cost for 3 is similar. 
Cost units could be arbitrary; for example, the assigned 
cost could represent a currency or an alternative such as 
a linear score combining cost to the subject in terms of 
inconvenience and risk, the cost to the staff undertaking 
the procedure, and financial cost. This result is similar to 
that obtained from the formula suggested for the opti-
mum number of patients in the clusters of cluster ran-
domized trials (m = √(c/s x (1- ρ)/ρ) [23], which yields 
m = 3.74, where c is a cost per subject and s the cost per 
measure. This aspect of study design is also included in 
the Excel Workbook (STARS.xlsx, Sample Size calcula-
tion worksheets).

Example
A meta-analysis of trials examining blood pressure lowering treat-
ments found that the average (systolic) blood pressure reduction 
beyond 12 months in placebo-controlled trials was 5.1 mmHg (SE 
0.06, N = 112,934) [2]. A 5 mmHg reduction was associated with a 10% 
reduction in the rate of major cardiovascular events, irrespective of 
cardiovascular disease status at randomization [1].

Suppose a randomized placebo-controlled phase II trial of a new 
anti-hypertensive drug was planned, with the intention of detecting 
a 5 mmHg fall in systolic blood pressure at 12 months, preparatory to 
a larger phase III trial with cardiovascular events as an endpoint. The 
SD of the fall is assumed to be 12.5 mmHg and the cost of enrolling a 
subject is estimated to be 15 times the cost of making an additional 
measurement on an enrolled subject. The ICC for repeat systolic meas-
urements is assumed to be 0.67 [3]. The use of multiple measures at 
baseline and 12 m is being considered. STARS suggests the use of 178 
subjects (89 per group, 85% power, two-sided 5% significance level), 
with three measures at these timepoints per subject or 190 subjects 
with two measures. The cost of three or two measures is 12% or 11% 
less than employing one measure, respectively, which would require 
228 subjects.

References

1) https://​doi.​org/​10.​1016/​S0140-​6736(21)​00590-0

2) https://​www.​medrx​iv.​org/​conte​nt/​10.​1101/​2021.​02.​19.​21252​066v1

3) Morgan et al. [5]

Discussion
If there is an opportunity to repeat assessments in a study, 
it is useful to quantify the benefit of this strategy. There is a 
danger that the use of multiple assessments is dismissed too 
readily, perhaps merely on the basis that assessments will 

be correlated, without thoroughly evaluating the value of 
adding further samples or measures. The additional burden 
of extra samples needs to be considered. If a medical study 
is being prospectively defined, which requires assessments 
over and above those of standard care, public/participant 
involvement (PPI) could be employed to investigate par-
ticipants’ views on the provision of extra samples balanced 
against the benefits this could yield in design. These could 
include a smaller overall study size, shorter trial duration, 
increased power, or more interim analyses. In studies using 
laboratory animals, smaller experiments may be desirable 
to reduce the number of animals required, particularly if 
they have to be sacrificed. Note also that if an outcome is of 
interest, high within-subject variability does not necessarily 
preclude a study from being undertaken if it is possible to 
take multiple samples. A small, intensive study of the value 
of an outcome with high within-subject variability may 
sometimes be useful to evaluate whether it is worth refin-
ing measurement of the outcome to reduce within-subject 
variability. The cost of some samples or measures may be 
reduced with time as more efficient methods of obtaining 
and analyzing them are developed, making it more practi-
cal to obtain multiple samples. It may therefore be useful to 
review decisions when sample costs decrease.

It is important to note that the scale of measurement can 
be critical when measuring ICCs. Repeatability is frequently 
assessed by plotting the values of two measurements on 
the same subject against each other as a scatterplot with 
a line of equality. However, the variability is more easily 
understood by plotting the difference in a subject’s meas-
urements from the two methods against the mean of the 
measurements, known as a Bland–Altman plot [24]. These 
plots illustrate measurement error alongside the necessary 
‘limits of agreement’, which give a range within which 95% 
of future differences in measurements would be expected 
to lie, the latter being calculated from the mean and SD of 
the paired differences [25]. However, this method assumes 
the SD is the same throughout the measurement range. It is 
common for the SD to increase with the mean in biological 
contexts, the coefficient of variation (CV) rather than the 
standard deviation often being quoted to summarise vari-
ability for such measurements. This suggests the measure-
ments have a lognormal rather than a normal distribution 
and a remedy that is frequently successful is to use the loga-
rithm of the two measurements for analysis [25].

A further consideration is that studies that focus on 
subgroups for precision medicine may have a lower ICC 
than an unselected group of subjects, making repeated 
assessments more relevant. If a prognostic factor is used 
to select a subgroup with a more limited outcome range, 
then the between-subject variance of this range would 
be expected to be lower than that in all subjects. How-
ever, the within-subject variance might be expected to be 

2  Difference to detect  =  0.5, SD  =  1, ρ  =  0.3, CV  =  0.5, Power  =  0.85, 
alpha = 0.05, k = 2.

https://doi.org/10.1016/S0140-6736(21)00590-0
https://www.medrxiv.org/content/10.1101/2021.02.19.21252066v1
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similar, lowering the ICC. When focussing on subgroups 
multiple measurements per subject may therefore be rel-
evant, but careful consideration of the context is needed.

Given the potentially high variability seen in high 
throughput assays referred to in the introduction, it is inter-
esting to note that individual results of components of high 
throughput assays are sometimes aggregated to produce 
a single overall score to represent an underlying phenom-
enon of interest. This may offer a way to improve study effi-
ciency without making more measurements because the 
averaging across several components could even out the 
effect of errors in the individual components. For example, 
a multigene assay score that is used to predict recurrence 
in Breast Cancer [26] has a proliferation (tumor growth) 
component that is composed of the expression of five genes 
(Ki67, STK15, Survivin, CCNB1, and MYBL2) combined by 
averaging the five gene scores. It would be expected that the 
components will be correlated if such an approach is used.

The need for a representative sample may override the 
desire to reduce the number of subjects by making multi-
ple measurements. The majority of studies aim to obtain a 
typical sample of the population of subjects being exam-
ined to ensure the study results are generalizable. For 
example, a study of 40 subjects might not be considered 
large enough to represent the diversity seen in the popula-
tion the study was chosen to represent. However, a study 
of 100 subjects may be considered more appropriate.

Note that systematic differences between repeats do 
not necessarily invalidate the use of repeat samples. It 
may be possible to adjust the repeat measurements for 
prognostic factors to quantitatively remove such differ-
ences; this may have the effect of increasing the ICC.

Conclusion
It may be beneficial to undertake multiple synchronous 
observations per subject in some circumstances. This 
option is part of the toolset available to researchers when 
planning effective studies. Both between-subject and 
within-subject variability are critical parameters for deci-
sion-making in this context. An Excel workbook is pro-
vided to aid exploration of the statistical background of 
this feature of study design.

Availability and requirements
Project name: STARS

Project home page: None
Operating system(s): Windows with Microsoft Office 

and Excel
Programming language: Only formulae available in 

Excel are employed
Other requirements: None
License: None required

Any restrictions to use by non-academics: None

Abbreviations
CV: Coefficient of variation; ICC : Intra-class correlation coefficient; STARS: Sam-
ple size calculations for Two-group comparisons with Repeated Synchronous 
sampling.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12874-​021-​01414-7.

Additional file 1. STARS.xlsx

Acknowledgements
The author wishes to thank the editor and reviewers for helpful comments on 
the paper.

Author’s contributions
This is a single author submission. The author(s) read and approved the final 
manuscript.

Authors’ information
That author is a retired medical statistician with experience principally in 
oncology, he is a member of an NHS research ethics committee and under-
takes a limited amount of consultancy work.

Funding
None.

Availability of data and materials
One item, an Excel Workbook, submitted. It contains previously published 
anonymous data.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
None required, apart from single author.

Competing interests
None.

Received: 15 March 2021   Accepted: 24 September 2021

References
	1.	 Glynn RJ, Rosner B. Accounting for the correlation between fellow eyes 

in regression analysis. Arch Ophthalmol. 1992;110(3):381–7. https://​doi.​
org/​10.​1001/​archo​pht.​1992.​01080​15007​9033.

	2.	 Lee KM, Lee J, Chung CY, et al. Pitfalls and important issues in testing 
reliability using intraclass correlation coefficients in orthopaedic research. 
Clin Orthop Surg. 2012;4:149–55. https://​doi.​org/​10.​4055/​cios.​2012.4.​2.​
149.

	3.	 Nicholson G, Holmes C. A note on statistical repeatability and study 
design for high-throughput assays. Stat Med. 2017;36(5):790–8.

	4.	 Ionan AC, Polley M-YC, McShane LM, Dobbin KK. Comparison of confi-
dence interval methods for an intra-class correlation coefficient (ICC). 
BMC Med Res Methodol. 2014;14:121 http://​www.​biome​dcent​ral.​com/​
1471-​2288/​14/​121.

	5.	 Morgan KA, Cook S, Leon DA, Frost C. Reflection on modern methods: 
calculating a sample size for a repeatability sub-study to correct for 

https://doi.org/10.1186/s12874-021-01414-7
https://doi.org/10.1186/s12874-021-01414-7
https://doi.org/10.1001/archopht.1992.01080150079033
https://doi.org/10.1001/archopht.1992.01080150079033
https://doi.org/10.4055/cios.2012.4.2.149
https://doi.org/10.4055/cios.2012.4.2.149
http://www.biomedcentral.com/1471-2288/14/121
http://www.biomedcentral.com/1471-2288/14/121


Page 11 of 11A’Hern ﻿BMC Med Res Methodol          (2021) 21:211 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

measurement error in a single continuous exposure. Int J Epidemiol. 
2019;48(5):1721–6.

	6.	 Coskuna A, Bragab F, Carobenea A, et al. Systematic review and meta-
analysis of within-subject and between-subject biological variation 
estimates of 20 haematological parameters. Clin Chem Lab Med. 
2020;58(1):25–32.

	7.	 Lee J, Kwon S, Hahn SJ, Park J, Paik N. Feasibility, reliability, and validity 
of using accelerometers to measure physical activities of patients with 
stroke during inpatient rehabilitation. PLoS One. 2018;13(12):e0209607. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​02096​07.

	8.	 Hart TL, Swartz AM, Cashin SE, Strath SJ. How many days of monitor-
ing predict physical activity and sedentary behaviour in older adults? 
Int J Behav Nutr Phys Act. 2011;8(1):62. https://​doi.​org/​10.​1186/​
1479-​5868-8-​62.

	9.	 InformedHealth.org [Internet]. What is blood pressure and how is it meas-
ured? Cologne: Institute for Quality and Efficiency in Health Care (IQWiG); 
2006. [Updated 2019 May 23]. Available from: https://​www.​ncbi.​nlm.​nih.​
gov/​books/​NBK27​9251/

	10.	 Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evalu-
ate the response to treatment in solid tumors. J Natl Cancer Inst. 
2000;92(3):205–16. https://​doi.​org/​10.​1093/​jnci/​92.3.​205.

	11.	 Bogaerts J, Ford R, Dan Sargent D, et al. Individual patient data analysis to 
assess modifications to the RECIST criteria. Eur J Cancer. 2009;45(2):248–
60. https://​doi.​org/​10.​1016/j.​ejca.​2008.​10.​027.

	12.	 Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and 
regression dilution bias. BMJ. 2010;340:c2289. https://​doi.​org/​10.​1136/​
bmj.​c2289.

	13.	 Aadland E, Kvalheim OM, Anderssen SF, Resaland GK, Andersen LB. The 
multivariate physical activity signature associated with metabolic health 
in children. Int J Behav Nutr Phys Act. 2018;15(1):77. https://​doi.​org/​10.​
1186/​s12966-​018-​0707-z.

	14.	 PASS Sample Size Software. 2017. https://​ncss-​wpeng​ine.​netdna-​ssl.​com/​
wp-​conte​nt/​themes/​ncss/​pdf/​Proce​dures/​PASS/​Confi​dence_​Inter​vals_​
for_​Intra​class_​Corre​lation.​pdf. Accessed 30 Nov 2020.

	15.	 Arifin WN. wnarifin.github.io > sample size calculator; 2021.
	16.	 Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for 

reliability studies. Stat Med. 1998;17(1):101–10. https://doi.org/10.1002/
(sici)1097-0258(19980115)17:1<101::aid-sim727>3.0.co;2-e.

	17.	 Hooks T. Winona State University; 2020. http://​cours​e1.​winona.​edu/​
thooks/​Media/​Hando​ut%​204%​20-%​20Stat%​20335.​pdf.

	18.	 Rutterford C, Copas A, Eldridge S. Methods for sample size determination 
in cluster randomized trials. Int J Epidemiol. 2015:1051–67. https://​doi.​
org/​10.​1093/​ije/​dyv113.

	19.	 Matthews JNS, Altman DG, Campbell MJ, Royston P. Analysis of serial 
measurements in medical research. Br Med J. 1990;300:230–5. https://​doi.​
org/​10.​1136/​bmj.​300.​6719.​230.

	20.	 Crabb DP, Garway-Heath DF. Intervals between visual field tests when 
monitoring the glaucomatous patient: wait-and-see approach. Invest 
Ophthalmol Vis Sci. 2012;53:2770–6. https://​doi.​org/​10.​1167/​iovs.​12-​9476.

	21.	 Garway-Heath DF, Crabb DP, Bunce C, et al. Latanoprost for open-angle 
glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. 
Lancet. 2015;385:1295–304. https://​doi.​org/​10.​1016/​S0140-​6736(14)​
6211.

	22.	 Caldwell A, Laken D. 2020. https://​github.​com/​arcal​dwell​49/​Super​power. 
Accessed 16 Oct 2020.

	23.	 van Breukelen GJP, Candel MJJM. Calculating sample sizes for cluster 
randomized trials: we can keep it simple and efficient! J Clin Epidemiol. 
2012;65(11):1212–8. https://​doi.​org/​10.​1016/j.​jclin​epi.​2012.​06.​002.

	24.	 Bland JM, Altman DG. Statistical methods for assessing agree-
ment between two methods of clinical measurement. Lancet. 
1986;327(8476):307–10. https://​doi.​org/​10.​1016/​S0140-​6736(86)​90837-8.

	25.	 Bartlett JW, Frost C. Reliability, repeatability and reproducibility: analysis of 
measurement errors in continuous variables. Ultrasound Obstet Gynecol. 
2008;31:466–75.

	26.	 Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence 
of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 
2004;351(27):2817–26. https://​doi.​org/​10.​1056/​nejmo​a0415​88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1371/journal.pone.0209607
https://doi.org/10.1186/1479-5868-8-62
https://doi.org/10.1186/1479-5868-8-62
https://www.ncbi.nlm.nih.gov/books/NBK279251/
https://www.ncbi.nlm.nih.gov/books/NBK279251/
https://doi.org/10.1093/jnci/92.3.205
https://doi.org/10.1016/j.ejca.2008.10.027
https://doi.org/10.1136/bmj.c2289
https://doi.org/10.1136/bmj.c2289
https://doi.org/10.1186/s12966-018-0707-z
https://doi.org/10.1186/s12966-018-0707-z
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/PASS/Confidence_Intervals_for_Intraclass_Correlation.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/PASS/Confidence_Intervals_for_Intraclass_Correlation.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/PASS/Confidence_Intervals_for_Intraclass_Correlation.pdf
http://course1.winona.edu/thooks/Media/Handout%204%20-%20Stat%20335.pdf
http://course1.winona.edu/thooks/Media/Handout%204%20-%20Stat%20335.pdf
https://doi.org/10.1093/ije/dyv113
https://doi.org/10.1093/ije/dyv113
https://doi.org/10.1136/bmj.300.6719.230
https://doi.org/10.1136/bmj.300.6719.230
https://doi.org/10.1167/iovs.12-9476
https://doi.org/10.1016/S0140-6736(14)6211
https://doi.org/10.1016/S0140-6736(14)6211
https://github.com/arcaldwell49/Superpower
https://doi.org/10.1016/j.jclinepi.2012.06.002
https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.1056/nejmoa041588

	Employing multiple synchronous outcome samples per subject to improve study efficiency
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Implementation
	Sample size considerations

	Results
	The relationship between sample size and ICC
	Increasing power and the available alpha
	Unequal number of samples per subject
	Summary endpoints for serial measurements
	Optimising study design on the basis of ‘cost’

	Discussion
	Conclusion
	Availability and requirements
	Acknowledgements
	References


