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Abstract 

Background:  The purpose of this research was to see how the k-means algorithm can be applied to survival analysis 
with single events per subject for defining groups, which can then be modeled in a shared frailty model to further 
allow the capturing the unmeasured confounding not already explained by the covariates in the model.

Methods:  For this purpose we developed our own k-means survival grouping algorithm to handle this approach. We 
compared a regular shared frailty model with a regular grouping variable and a shared frailty model with a k-means 
grouping variable in simulations as well as analysis on a real dataset.

Results:  We found that in both simulations as well as real data showed that our k-means clustering is no different 
than the typical frailty clustering even under different situations of varied case rates and censoring. It appeared our 
k-means algorithm could be a trustworthy mechanism of creating groups from data when no grouping term exists 
for including in a frailty term in a survival model or comparing to an existing grouping variable available in the current 
data to use in a frailty model.
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Introduction
The k-means algorithm was designed to find natural 
groupings amongst bivariate data, essentially creating 
order from disorder. The method has worked by finding 
the difference between initial group means and in a pro-
cess, moving around these means until these distances 
are minimized. The idea first goes back to Hugo Stein-
haus [1] in 1956. He was a Polish mathematician who 
first came up with the idea as written in his paper. Mac-
Queen also came up with a k-means clustering algorithm 
by 1967 that is now also used extensively [2] and focused 
on setting means and finding the centroid of each parti-
tion by minimizing sums of squares to the cluster cent-
ers, but setting the initial means was never specified. 
Later on, borne out of signal processing in engineering to 
partition n observations into k clusters, the first standard 
algorithm was proposed by Stuart Lloyd of Bells Labs [3]. 

Lloyd’s work was also known as the Voroni iteration. His 
iteration focused on finding even set of points in Euclid-
ean partitions and would also would repeatedly find the 
centroid of each partition and would repeat these opera-
tions until finding the centroid that was closet. This type 
of idea also helped to form the basis behind the k-means 
algorithm.

The k-means algorithm works to minimize the squared 
Euclidean distances between clusters. Different variations 
of this idea have come to fruition over time and several of 
these proposed algorithms are still used. Even the Expec-
tation-Maximization algorithm was modified in use for 
this purpose. Of course utilizing different methods of 
minimizing the distances may produce different results.

In survival analysis, frailty models have allowed incor-
porating unexplained heterogeneity at the individual 
level and grouping level [4, 5]. Specifically at the grouping 
level, there was unmeasured heterogeneity or confound-
ing between groups or clusters of individuals. The models 
for these were then called shared frailty models. Some-
times, grouping of individuals was available in the data at 
hand and that natural grouping can be used in the shared 
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frailty model. However, often such term is not available 
to cluster the individuals but yet, it may suffice that some 
kind of grouping should be imposed on these individu-
als in order to model the frailty between them. This idea 
motivated us to utilize the k-means algorithm to create 
natural grouping between individuals, which then could 
be used in a shared frailty model to allow for modeling 
the heterogeneity between them.

Methods
K‑means algorithm for survival
In general, the k-means algorithm typically has started 
with defining number of clusters to partition a priori. 
In our k-means algorithm for survival, we have allowed 
making this decision at anywhere between 3 and 5 groups 
or clusters. Our algorithm then utilized the Euclidean dis-
tances between a given pair, x and y, which are randomly 
chosen existing data points which will become the initial 
centroids from which to start the algorithm. A typical 
Euclidean distance formula for the k-means algorithm 
has been [1–3]: Distance =

�

∑n

i=�

�

xi − xc
��

+

�

yi − yc
��, 

and we modified this formula for the k-means algorithm 
to be the following for survival data, where we calculate 
the Euclidean distances between x being a main predic-
tor which is continuous and y being a survival time, ti, at 
each ith observation:

We then calculated the distance from each data pair of 
x and survival time for each centroid. Next we sorted the 
distances and reassign data points to the initial centroids 
to which they are closest. We then calculated the mean 
centroid of these groups which became the new centroids 
for the main continuous predictor and survival time as μx 
and μt respectively. We then repeated the step of calculat-
ing the Euclidean distance between each data point pair 
and the current centroids which starts the loop.

We would then calculate this distance and then find the 
(x,t) pair that corresponded to the minimum distance. 
Those points would then become the new centroids and 
the step would be repeated over again until the distance 
between the current centroids and the newly selected 
centroids became zero. If this step was not obtained in 
10 iterations then the loop was completed at 10 itera-
tions and the last set of centroids were then used. These 
final set of centroids are what help define the grouping 
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variable to be used in a shared frailty model then referred 
to as a k-means frailty model.

Cox shared frailty model with smoothing
Survival models, in general, are used to model time to 
some event. In this application we focus, in particular, on 
the Cox proportional hazards (PH) regression model with 
single events per subject. We incorporated a random 
effect term (frailty), incorporated into a shared frailty 
model, where frailty was modeled between groups. The 
frailty term allowed accounting for the unexplained het-
erogeneity between groups and this was accomplished by 
specifying a frailty distribution, which is typically mod-
eled by a non-negative one, like a gamma,or log Gauss-
ian distribution. We chose to allow the frailty distribution 

Table 1  Scenario setup for simulations

Scenario # Number of 
groups

Censoring % Case rate Treatment 
coefficient

1 3 10% 0.0125 trt:-1

2 3 10% 0.0125 trt: 1

3 3 10% 0.1 trt: -1

4 3 10% 0.1 trt: 1

5 3 70% 0.0125 trt:-1

6 3 70% 0.0125 trt: 1

7 3 70% 0.1 trt: -1

8 3 70% 0.1 trt: 1

9 4 10% 0.0125 trt:-1

10 4 10% 0.0125 trt: 1

11 4 10% 0.1 trt: -1

12 4 10% 0.1 trt: 1

13 4 70% 0.0125 trt:-1

14 4 70% 0.0125 trt: 1

15 4 70% 0.1 trt: -1

16 4 70% 0.1 trt: 1

17 5 10% 0.0125 trt: -1

18 5 10% 0.0125 trt: 1

19 5 10% 0.1 trt: -1

20 5 10% 0.1 trt: 1

21 5 70% 0.0125 trt:-1

22 5 70% 0.0125 trt: 1

23 5 70% 0.1 trt: -1

24 5 70% 0.1 trt: 1

Additional simulations

  25 6 10% 0.1 trt: 1

  26 6 70% 0.1 trt: 1

  27 7 10% 0.1 trt: 1

  28 7 70% 0.1 trt: 1

  29 8 10% 0.1 trt: 1

  30 8 70% 0.1 trt: 1
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to have a log-normal distribution for these applications. 
Using a model as we previously described in a previous 
manuscript [6], we again incorporated a dichotomous 
treatment effect as a covariate and again included a con-
tinuous, prognostic variable, which then had a smoothing 
function on it to handle non-linearity as we have previ-
ously shown. In a Cox PH regression model this gave [6]:

where the following terms are defined as: h0(t): base-
line hazard rate, i = 1,…,c groups and j = 1,….,pi persons 
per group, xij: dichotomous treatment variable, yij: prog-
nostic variable, which was age in our analyses, and s(yij): 
smoothed function of yij. In addition, we again included a 
log-normal frailty density for the grouping effect [6], sim-
ilar to Duchateau et al [7]. In Eq.(3), the ith cluster was 

(3)hij(t) = h0(t) exp
(

xijβ + s
(

yij
)

+ wi

)

generated as the grouping variable either via the regular 
method with a variable already available in the dataset 
to cluster in a shared frailty model or through using our 
modified k-means clustering previously described proce-
dure to define the groups. These models have been esti-
mated through a penalized regression where the frailty 
term is treated like an additional covariate but are then 
penalized by a penalty term added to the log-likelihood 
according to Therneau et al [8].

From our prior research, we had learned that there 
are certainly many options for smoothing, and we pre-
viously looked extensively at restricted cubic splines, 
penalized splines, and even fractional polynomials in 
much detail. However, we again opted to use a natu-
ral spline (NS) function as the smoothing function, 
s(yij), because it is easier to implement and did well in 

Table 2  Various estimates for regular shared frailty models from simulations

a coef coefficient, s.e. standard error

Scenario # Trt coef regulara Trt s.e. regulara Trt p-value regular Average Ns 
Basis p-value 
regular

1 NA 0.3987 NA 0.4311

2 1.0266 0.2697 0.0055 0.3827

3 −1.0224 0.2074 0.0003 0.3404

4 1.0307 0.1817 < 0.0001 0.3050

5 −1.0111 0.2324 0.0033 0.3661

6 1.0216 0.1608 < 0.0001 0.2650

7 −1.0104 0.1303 < 0.0001 0.1910

8 1.0139 0.1233 < 0.0001 0.1723

9 −1.0467 0.3989 0.0481 0.4218

10 1.0391 0.2694 0.0045 0.3758

11 −1.0346 0.2070 0.0003 0.3151

12 1.0250 0.1810 < 0.0001 0.2775

13 −1.0264 0.2309 0.0017 0.3372

14 1.0129 0.1599 < 0.0001 0.2535

15 −1.0178 0.1304 < 0.0001 0.1853

16 1.0145 0.1233 < 0.0001 0.1590

17 −1.0471 0.3995 0.0479 0.4427

18 1.0424 0.2706 0.0044 0.3785

19 −1.0416 0.2076 0.0002 0.3306

20 1.0180 0.1808 < 0.0001 0.2908

21 −1.0053 0.2303 0.0013 0.3537

22 1.0129 0.1600 < 0.0001 0.2653

23 −1.0218 0.1309 < 0.0001 0.1928

24 1.0126 0.1235 < 0.0001 0.1674

25 1.0277 0.1819 < 0.0000 0.2830

26 1.0151 0.1239 < 0.0001 0.1650

27 1.0108 0.1818 < 0.0001 0.2950

28 1.0072 0.1237 < 0.0001 0.1760

29 1.0353 0.1825 < 0.0001 0.3000

30 1.0057 0.1235 < 0.0001 0.1680
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our simulations [9, 10]. We have previously described 
and implemented in the ns function in R software. We 
described that natural splines have been essentially 
restricted cubic splines, and these use B-splines in the 
basis expansion of s(yij) [6, 9, 10],

where Bh(yij) the B-spline basis functions. These are 
described in further detail [9]. We again employed the ns 
function in R with df = 4, which happens to be the default 
degrees of freedom (df ) in the software. We then com-
pared this shared frailty model from the grouping using 
our modified k-means algorithm to groupings gener-
ated in simulations and we also compared these separate 
models in a real dataset application with groups defined 

(4)s
(

yij
)

= γ0yij +

H−2
∑

h=1

γh · Bh

(

yij
)

by a pre-existing grouping variable already available in 
the dataset. In the next section, we have described our 
simulations.

Simulation framework
In this section, we utilized the simulation framework as 
described in our previous manuscripts [6, 9, 10], where 
we generated the survival data using methods that simi-
lar to those in Bender et al. [11], and described in more 
detail [9, 12] but adjusted to incorporate a grouping 
effect in the model. The equation below again represents 
the true generating model from the Cox PH model [6],

As in our previous manuscripts we allowed for the fol-
lowing parameters which we describe in this section [6, 

(5)h
(

t|xij , yij ,wi

)

= h0(t) exp
(

βTxij + s
(

yij
)

+ wi

)

Table 3  Various estimates for k-means shared frailty model from simulations

* coef coefficient, s.e. standard error

Scenario # Trt coef k-means* Trt s.e. k-means* Trt p-value k-means Average Ns Basis 
p-value k-means

1 − 1.0914 324.433 0.0526 0.4314

2 1.0202 0.2693 0.0056 0.3829

3 −1.0135 0.2069 0.0005 0.3415

4 1.0210 0.1812 < 0.0001 0.3078

5 −1.0085 0.2323 0.0034 0.3664

6 1.0158 0.1606 < 0.0001 0.2653

7 −0.9974 0.1299 < 0.0001 0.1950

8 1.0030 0.1230 < 0.0001 0.1750

9 −1.0442 0.3988 0.0486 0.4220

10 1.0350 0.2692 0.0047 0.3781

11 −1.0297 0.2067 0.0003 0.3187

12 1.0157 0.1807 < 0.0001 0.2778

13 −1.0238 0.2307 0.0018 0.3386

14 1.0070 0.1598 < 0.0001 0.2563

15 −1.0106 0.1302 < 0.0001 0.1583

16 1.0050 0.1230 < 0.0001 0.1621

17 −1.0445 0.3992 0.0477 0.4439

18 1.0381 0.2702 0.0047 0.3806

19 −1.0346 0.2072 0.0002 0.3326

20 1.0086 0.1803 < 0.0001 0.2935

21 −1.0025 0.2301 0.0014 0.3555

22 1.0059 0.1598 < 0.0001 0.2655

23 −1.0094 0.1304 < 0.0001 0.1953

24 0.9981 0.1231 < 0.0001 0.1715

25 1.0220 0.1817 < 0.0001 0.2880

26 1.0027 0.1234 < 0.0001 < 0.0001

27 1.0035 0.1813 < 0.0001 0.1710

28 0.9953 0.1232 < 0.0001 0.3010

29 1.0253 0.1818 < 0.0001 0.1810

30 0.9934 0.1231 < 0.0001 0.3010



Page 5 of 13Govindarajulu and Bedi ﻿BMC Medical Research Methodology           (2022) 22:11 	

9, 10]. We allowed the subscripts i and j represent the 
grouping and person respectively [6]. We again allowed 
the coefficient βT to be that for the dichotomous treat-
ment effect xij, again, using two treatment scenarios, 
βT = 1, and βT = − 1. We again allowed the s(yij) = log(yij) 
because this was the way to handle any non-linearity in 
the prognostic factor, yij. We again sampled yi j randomly 
with replacement where we again used an age range of 30 
to 66 for the subjects. The grouping effect, wi, was also 
again generated from a N(0,σ2) distribution, with values 
of σ2 = 0.25 [2].

Again through Bender et al [11] similar to before [6, 9, 
10], we again allowed for a baseline Weibull hazard [11, 
13], where h0(t) = θν tθ ‐ 1. The survival times end up being 
found from this generating distribution, when solving 
that equation for survival time, which as we previously 
described [6, 9, 10] is using the relationship between 
the hazard, the survival, and the cumulative distribution 

functions Also, just like previously, the way this was 
obtained has been well described in our previous manu-
scripts [6, 9, 10].

Similar to our previous simulations setups [6, 9, 10], 
we again included a competing risk into the simulations. 
We described previously how the competing risk times 
were generated by employing an exponential distribu-
tion to obtain tcr, the competing risk time. Once we did 
this then we again found the observed survival time to 
be the minimum of either t0, tcr, and a pre-specified end-
of-study time, τ, which we put as 20 years as previously 
described [6, 9, 10]. Also, in order to define right censor-
ing for an observation, we said that an observations was 
censored if t0 was larger than the minimum of tcr and τ. 
The final simulated datasets ended up having the treat-
ment varaible, the prognostic factor which was age, the 
survival times, the event indicators, and then the group-
ing numbers.

Table 4  Mean MSE and AIC for regular & k-means shared frailty models from simulations

Scenario # Frailty p-value 
regular

Frailty p-value 
k-means

AIC regular AIC k-means MSE regular MSE k-means

1 0.4311 0.4708 302.093 302.404 6.087 6.059

2 0.3412 0.3838 589.745 590.649 4.450 4.428

3 0.2709 0.3356 978.151 979.739 4.060 4.039

4 0.2320 0.3120 1318.412 1320.681 3.843 3.849

5 0.3013 0.3581 990.889 992.096 4.079 4.072

6 0.1990 0.2890 1855.438 1858.139 3.590 3.589

7 0.1410 0.2260 2727.565 2732.042 3.578 3.601

8 0.1300 0.2010 3135.058 3139.699 3.742 3.754

9 0.4021 0.4166 304.075 304.314 6.064 6.032

10 0.2976 0.3435 593.701 594.367 4.346 4.351

11 0.2312 0.2883 984.750 986.094 3.827 3.855

12 0.1960 0.2400 1324.327 1326.034 3.725 3.728

13 0.2675 0.3366 1005.633 1006.984 4.083 4.092

14 0.1790 0.2310 1875.053 1877.312 3.619 3.631

15 0.1270 0.1730 2740.402 2743.620 3.576 3.583

16 0.1090 0.1610 3149.836 3153.604 3.555 3.564

17 0.3759 0.4107 301.481 301.947 5.931 5.933

18 0.3058 0.3521 588.084 588.830 4.454 4.450

19 0.2146 0.2817 983.022 984.564 4.117 4.136

20 0.2040 0.2700 1330.645 1332.710 3.938 3.960

21 0.2531 0.3175 997.525 998.560 4.136 4.154

22 0.1820 0.2510 1879.733 1882.331 3.796 3.806

23 0.1100 0.1770 2732.218 736.838 3.663 3.681

24 0.0900 0.1490 3148.873 3154.325 3.627 3.645

25 0.0578 0.0407 1325.762 1327.56 3.637 3.664

26 0.0560 0.0255 3145.217 3150.437 3.629 3.645

27 0.0614 0.0379 1321.419 1323.576 3.813 3.831

28 0.0519 0.0254 3144.961 3149.621 3.663 3.701

29 0.0650 0.0420 1326.753 1328.96 3.986 3.992

30 0.0582 0.0318 3155.085 3160.036 3.637 3.659
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The regular shared frailty model was then compared to 
a k-means shared frailty model via different parameters 
through simulations by varying various parameters: num-
ber of groups (3, 4, or 5 and an additional 6, 7, or 8), rate 
of censoring (10% or 70%), case rate (0.0125 or 0.1), coef-
ficient of treatment (− 1 or 1). These variations then led to 
having 24 possible scenarios and an additional 6 more (25-
30) as observed in Table  1. In the comparisons, we used 

Akaike’s information criterion (AIC) to judge model good-
ness-of-fit and also the root mean square error (rMSE) [6, 
9, 10], which was calculated between the smoothed pre-
dictions of the prognostic variable and the observed val-
ues of the prognostic variable for a given model in order to 
assess bias in the predicted and the observed.

All above programming was done in the R language 
[14]. We developed our modified k-means algorithm for 

Fig. 1  Simulation Scenarios 1 thru 8
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survival in R and we utilized and conducted all other 
analyses in R as well.

Results
Simulation results
We have shown coefficients, standard errors, and p-val-
ues from the regular shared frailty model (Table  2) and 
from the k-means frailty model (Table 3). We have pre-
sented the coefficients and p-value for treatment (trt), the 

main predictor. Since a natural spline was fit on age in the 
model, to summarize this fit, instead of presenting the 
coefficients from each basis function, we have presented 
the average p-values from amongst the 4 basis functions. 
We can see that the trt coefficients, standard errors and 
p-values do not differ much between Tables 2 and 3, nor 
do the average basis coefficient p-values. However, we 
do see that the p-values for the frailty variances (Table 4) 
differs between the models, not initially, however, with 

Fig. 2  Simulation Scenarios 9 thru 16
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increased group size of 5 or greater the frailty variances 
start showing more statistical significance,, and for the 
k-means frailty model, which became even smaller in this 
instance as compared to the regular shared frailty model. 
Somehow there was more heterogeneity in the k-means 
frailty models, which is interesting since it works to mini-
mize error..

In Table 4, we also have laid out side by side compar-
isons of the AIC and MSE of each scenario compared 

between the regular shared frailty model and the 
k-means shared frailty model. We have seen the good-
ness-of-fit and the bias appear similar between the 
two different models for a given scenario for the most 
part. Though the groupings used in the frailty term in 
the separate Cox models were derived from different 
processes, k-means vs simulated grouping creation, 
the results showed many similarities between the two 
processes.

Fig. 3  Simulation Scenarios 17 thru 24
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Higher case rate but more censoring seems to have 
led to a better model fit according to MSE which 
improved with increased group size while the AIC 
reflected better model fit for lower censoring and lower 
case rate. However, in general, the model fits for the 
regular frailty model or for the k-means frailty model 
compared to its true curve per scenario did not differ 
much as seen in Figs.  1, 2, 3 and 4. This reflects what 
has been seen in Table 4 with the MSE and AIC values 
for both models per scenario.

Real dataset example
We used a lung cancer dataset, which is freely avail-
able through the R software [14] in their available data-
sets in the library, survival. This dataset contained 
survival data in patients with advanced lung cancer 
from the North Central Cancer Treatment Group [15]. 

Performance scores rated how well the patient can per-
form usual daily activities. We were able to model a 
shared frailty model using the grouping variable, institu-
tion, and a k-means frailty model with grouping provided 
by our modified k-means algorithm. For both models we 
ran them for k = 3,4,5,6,7 or 8 groups, to match group-
ings used in the simulations. We can see in Tables  5 
and 6, no differences in treatment coefficients between 
groups or between models and very minor differences in 
basis coefficients between groups and models. Various 
estimates computed for these models and groups have 
further reflected minor to no differences between the 
methods, similar to the simulations (Table  6), however 
there did appear to be more heterogeneity in the regular 
shared model than the k-means shared model as reflected 
through the frailty variance. This was opposite of what we 
had seen in the simulations but seems more consistent 

Fig. 4  Simulation Scenarios 25 thru 30
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Table 5  Parameter estimates and measures of fit from lung dataset example for regular and k-means shared frailty models for 3 -5 groups

Coefficient regular Coefficient k-means

Parameter 3 groups 4 groups 5 groups 3 groups 4 groups 5 groups

Trt 0.4718 0.4718 0.4718 0.4512 0.4511 0.4509

Ns basis 1 0.7456 0.7456 0.7456 0.7769 0.7789 0.7779

Ns basis 2 0.3552 0.3552 0.3552 0.3829 0.3882 0.3864

Ns basis 3 2.3404 2.3404 2.3404 2.4377 2.4404 2.4396

Ns basis 4 1.0204 1.0204 1.0204 1.0046 1.0001 1.002

Standard error regular Standard error k-means

Parameter 3 groups 4 groups 5 groups 3 groups 4 groups 5 groups

Trt 0.1201 0.1201 0.1201 0.1174 0.1174 0.1175

Ns basis 1 0.6215 0.6215 0.6215 0.6212 0.6210 0.6210

Ns basis 2 0.5182 0.5182 0.5182 0.5140 0.5140 0.5138

Ns basis 3 1.5051 1.5051 1.5051 1.5028 1.5023 1.5028

Ns basis 4 0.6395 0.6395 0.6395 0.6342 0.6349 0.6349

p-values regular p-values k-means

Parameter 3 groups 4 groups 5 groups 3 groups 4 groups 5 groups

Trt < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Ns basis 1 0.2303 0.2303 0.2303 0.2111 0.2098 0.2103

Ns basis 2 0.4931 0.4931 0.4931 0.4562 0.4501 0.452

Ns basis 3 0.1200 0.1200 0.1200 0.1048 0.1043 0.1045

Ns basis 4 0.1105 0.1105 0.1105 0.1132 0.1152 0.1145

frailty 0.3029 0.3029 0.3029 0.5665 0.4805 0.5003

p-values for non-linearity 0.0003 0.0030 0.0003 0.2046 0.1956 0.1981

AIC 1466.74 1466.74 1466.74 1477.51 1477.44 1477.49

MSE 2.13 2.13 2.13 1.91 1.90 1.90

Frailty variance 0.017 0.017 0.017 0.0007 0.0007 0.0007

Mean time 305.23

Table 6  Parameter estimates and measures of fit from lung dataset example for regular and k-means shared frailty models for 6 -8 groups

Coefficient regular Coefficient k-means

Parameter 6 groups 7 groups 8 groups 6 groups 7 groups 8 groups

Trt 0.4718 0.4718 0.4718 0.4511 0.4524 0.4511

Ns basis 1 0.7456 0.7456 0.7456 0.7764 0.7774 0.7802

Ns basis 2 0.3552 0.3552 0.3552 0.3843 0.3826 0.3872

Ns basis 3 2.3404 2.3404 2.3404 2.4412 2.4460 2.4460

Ns basis 4 1.0204 1.0204 1.0204 1.0055 1.0088 1.0088

Standard error regular Standard error k-means

Parameter 6 groups 7 groups 8 groups 6 groups 7 groups 8 groups

Trt 0.1201 0.1201 0.1201 0.1174 0.1176 0.1174

Ns basis 1 0.6215 0.6215 0.6215 0.6211 0.6212 0.6211

Ns basis 2 0.5182 0.5182 0.5182 0.5138 0.5137 0.5136

Ns basis 3 1.5051 1.5051 1.5051 1.5038 1.5037 1.5028

Ns basis 4 0.6395 0.6395 0.6395 0.6353 0.6360 0.6353

p-values regular p-values k-means

Parameter 6 groups 7 groups 5 groups 3 groups 4 groups 5 groups

Trt < 0.0001 < 0.0001 < 0.0001 0.0001 0.0001 0.0001

Ns basis 1 0.2303 0.2303 0.2303 0.2113 0.2108 0.2091

Ns basis 2 0.4931 0.4931 0.4931 0.4545 0.4563 0.4510

Ns basis 3 0.1200 0.1200 0.1200 0.1045 0.1047 0.1036

Ns basis 4 0.1105 0.1105 0.1105 0.1135 0.1127 0.1124

p-values for non-linearity 0.0003 0.0003 0.0003 0.2047 0.1940 0.1865

AIC 1466.74 1466.74 1466.74 1477.58 1477.43 1477.37

MSE 2.13 2.13 2.13 1.90 1.90 1.90

Frailty variance 0.017 0.017 0.017 0.0007 0.0007 0.0007

Mean time 305.23
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with how the k-means works in minimizing variabil-
ity to create groupings. In addition, the AIC reflected a 
somewhere better fit for the regular shared frailty mod-
els while the MSE reflected a closer fit between observed 
and predicted for the k-means than the regular shared 
frailty model. The graphs for the log(HR)‘s of the prog-
nostic factor, age, in Figs. 5 and 6 also reflected the closer 
fits between the observed age and the predicted HRs 
from the two different frailty models. All curves were 
overlapping for each cluster size, 3-8.

Discussion
Through our research, we attempted to bridge a gap 
between unsupervised learning and statistical mod-
eling of time-to-event data by combining the k-means 
algorithm with survival models, namely shared frailty 
models. We first created our own version of the 
k-means algorithm by adapting it to use survival time 
and one main continuous predictor. We then demon-
strated comparing a regular shared frailty model with 

a regular grouping variable and a shared frailty model 
with a grouping variable created through our modified 
k-means algorithm for survival. We did this first through 
simulations and then on analysis of a real dataset. We 
found that our modified k-means clustering appeared no 
different than the typical frailty clustering even under 
different situations of varied case rates and censoring 
and perhaps had created groups that had roughly the 
same or less amount of heterogeneity between groups.. 
Therefore our modified k-means algorithm could be 
employed as a mechanism of creating groups from data 
for including in a frailty term in a survival model when 
there is no grouping variable available, which is the case 
in many survival datasets, or for comparing to an exist-
ing grouping variable used in a frailty model. Some limi-
tation may be to know how many groups or clusters to 
create but one can always conduct several iterations of 
using our k-means algorithm for such purpose and then 
decide using mean-squared errors and information cri-
terion, similar to our analyses.

Fig. 5  Real dataset plots for estimated log(HR) for truth compared to model fits by number of groups: 3-5
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Conclusions
We were able to demonstrate that through our modified 
k-means algorithm for survival data that our k-means 
approach for survival data could be used to create 
groupings in data where there was no pre-existing 
grouping variable, and therefore, this grouping terms 
could be implemented in a shared frailty model setting 
to capture unexplained heterogeneity not captured by 
covariates. We had compared this with a regular group-
ing term in simulated data as well as a real dataset and 
found there were no significant differences between 
our approach and the more conventional approach. 
Therefore, we recommend use for our approach when 
an investigator would like to implement a frailty model 
with survival data but do not have a clear grouping term 
available in the data to run such a model.
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