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Abstract

Background: The natural indirect effect (NIE) and mediation proportion (MP) are two measures of primary interest in
mediation analysis. The standard approach for mediation analysis is through the product method, which involves a
model for the outcome conditional on the mediator and exposure and another model describing the
exposure–mediator relationship. The purpose of this article is to comprehensively develop and investigate the
finite-sample performance of NIE and MP estimators via the product method.

Methods: With four common data types with a continuous/binary outcome and a continuous/binary mediator, we
propose closed-form interval estimators for NIE and MP via the theory of multivariate delta method, and evaluate its
empirical performance relative to the bootstrap approach. In addition, we have observed that the rare outcome
assumption is frequently invoked to approximate the NIE and MP with a binary outcome, although this approximation
may lead to non-negligible bias when the outcome is common. We therefore introduce the exact expressions for NIE
and MP with a binary outcome without the rare outcome assumption and compare its performance with the
approximate estimators.

Results: Simulation studies suggest that the proposed interval estimator provides satisfactory coverage when the
sample size≥500 for the scenarios with a continuous outcome and sample size≥20,000 and number of cases≥500 for
the scenarios with a binary outcome. In the binary outcome scenarios, the approximate estimators based on the rare
outcome assumption worked well when outcome prevalence less than 5% but could lead to substantial bias when the
outcome is common; in contrast, the exact estimators always perform well under all outcome prevalences considered.

Conclusions: Under samples sizes commonly encountered in epidemiology and public health research, the
proposed interval estimator is valid for constructing confidence interval. For a binary outcome, the exact estimator
without the rare outcome assumption is more robust and stable to estimate NIE and MP. An R package mediateP is
developed to implement the methods for point and variance estimation discussed in this paper.

Keywords: Estimating equations, Mediation analysis, Natural indirect effect, Total effect, Product method,
Asymptotically uncorrelated

*Correspondence: c.cheng@yale.edu
1Department of Biostatistics, Yale School of Public Health, New Haven, USA
2Center for Methods in Implementation and Prevention Science, Yale School
of Public Health, New Haven, USA

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-021-01425-4&domain=pdf
mailto: c.cheng@yale.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Cheng et al. BMCMedical ResearchMethodology          (2021) 21:253 Page 2 of 20

Background
Biomedical and epidemiological studies evaluating the
impact of exposure on health outcomes have received
considerable attention in recent years. In addition to esti-
mating the total effect of the exposure on the disease
outcome, it is also of interest to explore potential pathways
and mechanisms underlying these exposure-disease rela-
tionships. An important tool for exploring these pathways
is mediation analysis [1, 2], which examining the extent
to which the third variable (usually termed as mediator)
mediates the observed relationship between the expo-
sure and the outcome. In practice, the identification of
a mediator can facilitate the translation of results from
analytic epidemiology to improve prevention and treat-
ment. For example, if inflammation were to be confirmed
as an important mediator of the obesity–lethal prostate
cancer relationship, new approaches to the prevention,
prediction, and the treatment of prostate cancer would
likely emerge [3]. As another example, the anti-retroviral
intervention referred to as “Early Access to ART for All”
(EAAA) was found effective to improve the retention
in care compared to the standard of care among HIV-
positive patients in the MaxART study [4]. If we can iden-
tify an important mediator in the pathway between the
intervention and HIV care retention, new strategies tar-
geting the mediator may be developed to further improve
outcomes.
The main goal of mediation analysis is decomposition

of the total effect (TE) of the exposure into two compo-
nents, a natural indirect effect (NIE) through the mediator
and a natural direct effect (NDE) whose impact derives
solely from the exposure. Formal definitions of NIE and
NDE were first given in [5, 6] under a causal framework.
Meanwhile, researchers sometimes calculate the ratio of
the NIE and the TE to capture the relative importance of
the mediator in explaining the pathway through which the
exposure has an effect on the outcome [7]. This ratio is
calledmediation proportion (MP) or equivalently, the pro-
portional mediated. There has been an increasing number
of epidemiological studies that report the MP to explain
the exposure-disease mechanism when conducting medi-
ation analysis [8–13], and some of these studies include
only a small to moderate sample size not exceeding 1000.
Given the increasing use of MP, a comprehensive evalu-
ation of the finite-sample operating characteristics of the
point and interval estimators for MP is needed to better
inform practice.
Many statistical methods have been developed to iden-

tify and estimate the natural indirect effect from observa-
tional data, including but not limited to the nonparamet-
ric approach [14, 15], the weighting-based semiparametric
approach [16–18], as well as the parametric outcome
regression approach [2, 19–21]. This paper will focus on

the parametric outcome regression approach. The para-
metric outcome regression approach includes two major
variants, the difference method [21, 22] and the product
method [2]. The difference method is a more traditional
approach for mediation analysis in public health studies.
It considers two regression models for the outcome with
and without adjusting for the mediator. However, because
those two regression models include the same response
variable, they are not necessarily compatible. This model
compatibility issue may restrict the application of the dif-
ference method, especially when the outcome is non-
continuous and common [21]. The product method, on
the other hand, considers one regression model for the
outcome and another regression model for the mediator,
circumventing the model compatibility issue. Because of
this potential advantage, the product method has been
increasingly adopted for mediation analysis in epidemiol-
ogy and public health [2, 7, 20, 23]. However, the empir-
ical performance of the product method has not been
extensively evaluated under realistic epidemiologic set-
tings with different types of mediators and outcomes. In
this article, we conduct an extensive simulation study to
address this knowledge gap and to better inform practical
application of the product method.
While the estimation and inference for the mediation

measures via the difference method have been extensively
studied [1, 19, 21, 22], several important issues remain
less clear when using the product method for mediation
analysis. First, the bootstrap approach has been suggested
by a number of authors to construct valid confidence
intervals of the mediation measures [24–27]. The explicit
expressions of the closed-form asymptotic variance and
interval estimators and their empirical performance have
not previously been sufficiently detailed. Second, when
the outcome is binary, traditional mediation analyses have
make the rare disease or outcome assumption and esti-
mate the approximate NIE andMP under that assumption
[2, 28]. Several recent publications have proposed exact
mediation estimators for a common binary outcome [29–
31], but the empirical performance of these exact estima-
tors has not been extensively evaluated. Specifically, the
relative performance of these exact estimators compared
to the approximate estimators under the rare and com-
mon outcome scenarios has not been studied in detail,
and not at all with a binary outcome and a continuous
mediator. Third, while the empirical performance of the
NIE estimator has been investigated in prior studies [19,
26, 32], there has been relatively little empirical evalua-
tions for the MP estimates via the product method. Given
that the MP is of primary interest in epidemiology and
medicine, a comprehensive empirical evaluation of the
MP estimator based on the product method is valuable to
inform practice.
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To address the aforementioned issues, we conducted an
extensive Monte Carlo study to evaluate the point and
interval estimators for NIE and MP under the four com-
mon data types: Case #1, a continuous outcome and a
continuous mediator; Case #2, a continuous outcome and
a binary mediator; Case #3, a binary outcome and a con-
tinuous mediator; as well as Case #4, a binary outcome
and a binary mediator. We reviewed the counterfactual
outcome framework for estimating the NIE and MP via
the product method, and importantly, derived the closed-
form variance and interval estimators through themethod
of generalized estimating equations and the multivariate
delta method. We provided a comparison between the
closed-form interval estimator and the bootstrap inter-
val estimators via simulations with different sample sizes.
In the scenario with a binary outcome and a continu-
ous mediator, we also developed the exact NIE and MP
expressions, obviating the rare outcome assumption, and
evaluate the performance of the exact versus approximate
expressions under rare and common outcome assump-
tions. Thus, an important goal of our study is to unify
and supplement existing evidence on the empirical per-
formance of the product method, especially when closed-
form variance is considered and when the rare outcome
assumption fails to hold. To better elucidate our contri-
bution to the literature, Table 1 summarizes the scenarios
considered in our study as compared to several prior stud-
ies [19, 26, 29, 30, 32–36], across the four common data
types.
The remainder of this paper is organized as follows.

First, we describe the product method to obtain the point
and interval estimators of NIE and MP in the aforemen-
tioned four cases with different data types. Then, we
describe our Monte Carlo simulation study that investi-
gates the performance of the point and interval estimators
for NIE and MP, and report our findings. To illustrate
the product method, we study how much the effect of an
EAAA intervention on 12-month retention is mediated
by the 6-month visit adherence in the MaxART study [4].
Finally, we offer a brief discussion.

Methods
Mediation measures and the product method
Assume that we have an outcome of interest, Y, an expo-
sure, X, and a mediator, M, where each variable can be
continuous or binary. We also observe W , a vector of
covariates, associated with outcome and measured before
the exposure, some of which may be confounders of
the estimated exposure-outcome association and/or the
mediator-outcome association. A directed acyclic graph
illustrating the causal relationship between those vari-
ables is shown in Fig. 1. We are interested in identifying
two causal effects, the NIE and NDE. To identify these

causal effects, we will follow the counterfactual frame-
work used in the classic causal inference literature [5,
6]. Specifically, we will follow the notation in [21] and
define Yx and Mx as the outcome Y and mediator M,
respectively, that would have been observed when set-
ting X = x. Similarly, let Yx,m be the value of outcome
Y that would have been observed when setting X = x
andM = m.
Based on the classical counterfactual framework, we

made several standard assumptions. The first assumption
is consistency, which assumes that (i) the potential out-
come Yx and potential mediatorMx equal their respective
observed variables Y and M when we set X = x, and
(ii) the potential outcome Yx,m equals to the observed
Y if X = x and M = m are observed [37]. Intu-
itively, item (i) states such that an individual’s potential
outcome (and potential mediator) under his observed
exposure assignment is precisely equal to their observed
outcome (and observed mediator); and item (ii) states that
an individual’s potential outcome given his observed his-
tory of exposure and mediator is precisely equal to his
observed outcome. The consistency assumption requires
that the exposure and mediator are defined and measured
unambiguously. For example, the consistency assumption
is plausible in randomized experiments studying well-
defined medical interventions with precisely measured
mediator observations. The consistency assumption may
bemore questionable in some observational studies where
it difficult to conceptualize how the exposure of inter-
est could be manipulated [38]. The second assumption is
the composition assumption, which requires that Yx,Mx ,
i.e., the potential outcome Y when X = x is equal to
the potential outcome Y when X = x is observed and
M is set to its value corresponding to when X = x [37].
In order to identify NIE and NDE, we also require that
(A.1) Yx,m ⊥ X|W , (A.2) Yx,m ⊥ M|W ,X, (A.3) Mx ⊥
X|W , and (A.4) Yx,m ⊥ Mx∗ |W for all x, x∗, and m.
That is, (A.1)-(A.3) assume that the exposure-outcome,
mediator-outcome, and exposure-mediator relationships
are not confounded conditional on covariates W . (A.4)
is sometimes termed cross-world independence, which
stresses that none of the confounders in the mediator-
outcome relationship can be affected by exposure X [31].
Intuitively, (A.1)-(A.4) requires the investigators to mea-
sure all pre-exposure covariates that may confound the
exposure-mediator-outcome mechanisms.
Under this framework, when changing the exposure lev-

els from x∗ to x conditional on W = w, Nevo et al. [21]
defined the NIE and NDE on a g-function scale:

NIE(x∗, x|w) = g
(
E[Yx,Mx |W = w]

) − g
(
E[Yx,Mx∗ |W = w]

)
,

NDE(x∗, x|w) = g
(
E[Yx,Mx∗ |W = w]

)
− g

(
E[Yx∗ ,Mx∗ |W = w]

)
,

(1)



Cheng et al. BMCMedical ResearchMethodology          (2021) 21:253 Page 4 of 20

Ta
b
le

1
A
co
m
pa

ris
on

of
th
e
cu
rr
en

tw
or
k
w
ith

se
ve
ra
lp
re
vi
ou

s
lit
er
at
ur
e
ev
al
ua
tin

g
th
e
em

pi
ric
al
pe

rfo
rm

an
ce

of
th
e
pr
od

uc
tm

et
ho

d
in
m
ed

ia
tio

n
an
al
ys
is
un

de
rf
ou

rd
at
a
ty
pe

s:
C
as
e
#1
,c
on

tin
uo

us
ou

tc
om

e
an
d
co
nt
in
uo

us
m
ed

ia
to
r;
C
as
e
#2
,c
on

tin
uo

us
ou

tc
om

e
an
d
bi
na
ry
m
ed

ia
to
r;
C
as
e
#3
,b
in
ar
y
ou

tc
om

e
an
d
co
nt
in
uo

us
m
ed

ia
to
r;
an
d
C
as
e
#4
,b
in
ar
y

ou
tc
om

e
an
d
bi
na
ry
m
ed

ia
to
r

N
at
ur
al
In
d
ir
ec
tE

ff
ec
t

M
ed

ia
ti
on

Pr
op

or
ti
on

Li
te
ra
tu
re
s

C
as
e
#1

C
as
e
#2

C
as
e
#3

C
as
e
#4

C
as
e
#1

C
as
e
#2

C
as
e
#3

C
as
e
#4

A
p
p
ro
x.

Ex
ac
t

P.
A
.

A
p
p
ro
x.

Ex
ac
t

A
p
p
ro
x.

Ex
ac
t

P.
A
.

A
p
p
ro
x.

Ex
ac
t

C
ur
re
nt

w
or
k

B.
V.
I

B.
V.
I

B.
V.
I

B.
V.
I

B.
V.
I

B.
V.
I

B.
V.
I

B.
V.
I

B.
V.
I

B.
V.
I

B.
V.
I

B.
V.
I

Ba
rfi
el
d
et

al
(2
01
7)

T
T

T
T

Bi
es
an
z,
Fa
lk
,a
nd

Sa
va
le
i(
20
10
)

I.T

Fr
itz

an
d
M
ac
Ki
nn

on
(2
00
7)

T

G
ay
no

re
ta
l.
(2
01
9)

B.
I

B.
I

M
ac
Ki
nn

on
,W

ar
si
,a
nd

D
w
ye
r(
19
95
)

B.
V

B.
V

M
ac
Ki
nn

on
et

al
.(
20
02
)

T

M
ac
Ki
nn

on
,L
oc
kw

oo
d,
an
d
W
ill
ia
m
s
(2
00
4)

I

Ri
jn
ha
rt
et

al
.(
20
19
)

B.
V

B.
V

B.
V

B.
V

Sa
m
oi
le
nk
o,
Bl
ai
s,
an
d
Le
fe
bv

re
(2
01
8)

B.
V.
I

B.
V.
I

1
N
ot
e:
Th

e
B
,V
,I
,a
nd

T
de

no
te

th
e
bi
as
,v
ar
ia
nc
e,
co
nf
id
en

ce
in
te
rv
al
,a
nd

hy
po

th
es
is
te
st
in
g,
re
sp
ec
tiv
el
y.
If
on

e
of

th
os
e
ap

pe
ar
s
in
on

e
ce
ll,
it
in
di
ca
te
s
th
at
th
is
op

er
at
in
g
ch
ar
ac
te
ris
tic

ha
s
be

en
co
ve
re
d
in
th
is
lit
er
at
ur
e.
In
C
as
es

#3
an
d
#4
,A
p
p
r
o
x
.
,E
x
a
c
t
,a
nd

P
.
A
.
de

no
te

th
e
ap

pr
ox
im

at
e
ex
pr
es
si
on

,e
xa
ct
ex
pr
es
si
on

,a
nd

th
e
pr
ob

it
ap

pr
ox
im

at
io
n
ex
pr
es
si
on

,r
es
pe

ct
iv
el
y
(S
ee

Ta
bl
e
2
fo
rt
he

ir
sp
ec
ifi
c
fo
rm

ul
as
)



Cheng et al. BMCMedical ResearchMethodology          (2021) 21:253 Page 5 of 20

Fig. 1Mediation directed acyclic graph, where Y, X,M andW denote the outcome, exposure, mediator, and confounders of the exposure-outcome
and exposure-mediator relationships. The NIE of exposure X on outcome Y through mediatorM is highlighted in blue and the NDE of exposure X on
outcome Y is highlighted in red

where g(.) is a pre-specified monotone function. In this
article, g(.) is set to the link function of the model for con-
ditional mean Y, which will be discussed later. Given (1),
the TE is defined as summation of NIE and NDE, that is,

TE(x∗, x|w)=g
(
E[Yx,Mx |W =w]

)−g
(
E[Yx∗,Mx∗ |W =w]

)
.

Finally, the MP is given by the ratio of NIE and TE.
The above mediation measures are derived while

fixing W to w while changing the exposure level
from x∗ to x, and therefore are conditional causal
parameters. Alternatively, definitions of mediation
measures have been proposed by averaging over the
distribution of W . As discussed in [14, 15], under
assumptions (A.1)–(A.4), the NIE, NDE, and TE
are given by NIE(x∗, x) = E[Yx,Mx ]−E[Yx,Mx∗ ],
NDE(x∗, x) = E[Yx,Mx∗ ]−E[Yx∗,Mx∗ ], and
TE(x∗, x) = E[Yx,Mx ]−E[Yx∗,Mx∗ ], respectively. Estima-
tion and inference for the marginal mediation measures
has been discussed in [15, 16, 39], based on nonpara-
metric or semiparametric models for the outcome and
mediator, as commonly appear in practice, and will not be
pursued here. The focus of this paper is estimation and
inference mediation measures conditional on W = w, as
shown in (1).
We now introduce the product method for estimat-

ing those mediation effects. Specifically, we assume the
following conditional mean model for the outcome (Y ),

g(E(Y |X,M,W )) = β0 + β1X + β2M + βT
3 W , (2)

where g(.) is a link function, β1 is the exposure effect on
the outcome conditional on the effects of the mediator
and confounders, β2 represents the relationship between
the mediator and outcome conditional on the effect
of the exposure and confounders. Common link func-
tions include the identity function when the outcome is

continuous and logistic function when the outcome is
binary. Because previous empirical evidence suggests that
there are few interaction effects between an interven-
tion/exposure and covariates that replicated across studies
in public health and epidemiology [40], we assume there
are no mediator–exposure interactions in (2). Mediation
analyses in the presence of mediator–exposure interaction
effects are studied elsewhere, for example, [23, 28, 29].
Researchers can empirically verify this assumption in their
data before applying these methods.
In addition to the outcome model (2), the product

method additionally requires fitting the following model
for the mediator:

h (E(M|X,W )) = γ0 + γ1X + γ T
2 W , (3)

where γ1 represents the association between the expo-
sure to the mediator conditional on the effects of the
covariates, h is a link function, which can be a identity
function and a logistic function when the mediator is con-
tinuous and binary, respectively. For simplicity of notation
but without loss of generality, we assume that the medi-
ator model and the outcome model share the same set
of covariates. We can set some elements in β3 or γ 2 to
zero when the covariate sets in the outcome and mediator
models are not exactly the same.
Next, we provide expressions of the mediationmeasures

under the scenarios of continuous and binary mediator,
separately.

Continuous mediator
When the mediator is continuous and h is an identity link
function, model (3) becomes

E(M|X,W ) = γ0 + γ1X + γ T
2 W . (4)
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First consider Case #1, where both the outcome and
mediator are continuous and g is an identity link func-
tion. Case #1 is the most basic scenario in epidemi-
ologic and public health studies. For example, Pandey
and Shrivastava (2017) [41] studied the mediation effect
of social support on the association between hardiness
and immune response, where the immune response was
treated as a continuous outcome and measured by CD4+
T-lymphocyte counts; the level of social support was
considered as a continuous mediator measured by a
social support score developed by Pandey and Shrivas-
tava (2016) [42]. As indicated by [28], if the identification
assumptions hold and the outcome as well as the medi-
ator models are correctly specified, the NIE, NDE and
TE can be expressed as β2γ1(x − x∗), β1(x − x∗) and
(β2γ1 + β1)(x − x∗), respectively. The mediation propor-
tion is given as β2γ1

β2γ1+β1
. Of note, Case #1 only requires

that the conditional mean in (4) is correctly specified and
does not require further distributional assumptions for
the mediator; e.g., even if M|X,W is not normally dis-
tributed or Var(M|X,W ) is heteroskedastic, the above
expressions are valid.
Scenarios with a binary outcome and a continuous

mediator (Case #3) is also a common scenario in public
health research. For instance, VanderWeele et al. (2012)
[43] examined the extent to which the effect of two
genetic variants on lung cancer is mediated by cigarette
smoking, where the presence of lung cancer is consid-
ered as a binary outcome and the amount of smoking
(cigarettes/day) is considered as a continuous mediator.
In this data type, g(.) is usually set to logistic link func-
tion, and the NIE, NDE, and TE can be defined on the
log odds ratio scale. In Web Appendix A (see additional
file 1), we derive exact expressions for the mediation mea-
sures under the conditions that M|X,W in model (4)
follows a normal distribution with a constant variance σ 2.
Specifically, define an integrand

τ(x′, x,m,w) = exp{(γ0 + γ1x′ + γ T
2 w)m/σ 2 − m2/(2σ 2)}

1 + exp(β0 + β1x + β2m + βT
3 w)

we have that

NIE = log
{∫

m exp(β2m)τ (x, x,m,w)dm
∫
m τ(x, x,m,w)dm

}

− log
{∫

m exp(β2m)τ (x∗, x,m,w)dm
∫
m τ(x∗, x,m,w)dm

}
, (5)

NDE = β1(x − x∗)

+ log
{∫

m exp(β2m)τ (x∗, x,m,w)dm
∫
m τ(x∗, x,m,w)dm

}

− log
{∫

m exp(β2m)τ (x∗, x∗,m,w)dm
∫
m τ(x∗, x∗,m,w)dm

}
, (6)

both of which involve one-dimensional logistic-normal
integrals that do not have closed-form solutions. Gaynor
et al. (2019) [29] uses a probit function to approximate
the logistic function in the integral and obtained closed-
form expressions for the mediation measures (Table 2).
However, the probit approximation tends to be inaccurate
as the outcome prevalence deviates from 50%, as dis-
cussed in [29] and Web Appendix A (see additional file
1). Web Figure 1 visualizes the percent bias of the pro-
bit approximation approach. It is show that the probit
approximation method exhibits high bias for calculating
NIE if the baseline prevalence is less than 10% or greater
than 80%. Instead of using probit function to approximate
the logistic-normal integrals, we consider in this paper
the Gauss-Hermite Quadrature (GHQ) approach [44] to
numerically calculate the integrals.
When analyzing data with a dichotomous health out-

come, a frequent scenario is that the health outcome is
rare in that the probability of the outcome is small, e.g.
less than 10%. In epidemiologic cohort studies of can-
cer and heart disease, the outcome is extremely rare.
Although there is no clear cutoff to consider the outcome
as rare, some authors have considered the rare outcome
assumption to be plausible when the outcome rate is less
than 2% (e.g. [45]). In mediation analysis, the mediation
formulas can be simplified when the outcome is rare.
Specifically, we can approximate the NIE, NDE, and TE
by β2γ1(x − x∗), β1(x − x∗), and (β2γ1 + β1)(x − x∗),
respectively, under the rare outcome assumption[23, 28].
It follows that MP ≈ β2γ1

β2γ1+β1
. Here we can obtain simple

and closed-form expressions for the mediation measures
because the logistic link function in model (2) approx-
imates a log link function, and the log binomial model
is collapsible. Therefore, the logistic-normal integrals in
the mediation expressions can be approximated by the
log-normal integrals that have closed-form solutions [23].
In Web Appendix A (see additional file 1), we provide
more details on the validity of the approximate expres-
sions when the outcome is rare. In order to distinguish the
approximate expressions under a rare outcome assump-
tion from the exact expressions, we write those approx-
imate mediation measures as NIE(a), NDE(a), TE(a), and
MP(a), respectively.

Binary mediator
In this section, we describe the product method estima-
tors when M is a binary variable, based on the following
logistic regression model forM:

logit
(
P(M = 1|X,W )

)
= γ0 + γ1X + γ T

2 W . (7)

First, consider the case when outcome is continuous (Case
#2) and g(.) is the identity link function. As an example
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of this data type, Li et al. (2007) [46] evaluated the medi-
ation effect of chronic cerebral infarction in the causal
relationship between the apolipoprotein E ε4 allele and
the cognitive function, in which the cognitive function is
a continuous measure evaluated by 19 neuropsychologi-
cal performance tests and the chronic cerebral infarction
serves as a binary mediator. Throughout this Section,
we define the exponentiated linear component κ(x,w) =
exp(γ0 + γ1x + γ T

2 w). If the identification assumptions
(A.1)–(A.4) hold and the outcome as well as mediator
models are correctly specified, we have

NIE = β2

{
κ(x,w)

1 + κ(x,w)
− κ(x∗,w)

1 + κ(x∗,w)

}

= β2

{
κ(x,w) − κ(x∗,w)

(1 + κ(x,w))(1 + κ(x∗,w))

}

and NDE = β1(x − x∗), as shown in [32]. As a result, the
mediation proportion is given by MP = NIE

NDE+NIE .
Finally, consider a binary mediator and a binary out-

come (Case #4), where we fit the mediator model (7)
and outcome model (2) with logistic link functions. In
the illustrative example shown later, we examine how
much the effect of the EAAA intervention on 12-month
retention is mediated by 6-month visit adherence in the
MaxART study. Here, the 12-month retention and 6-
month visit adherence are considered as a binary outcome
and mediator, respectively. In Case #4, as long as the iden-
tification assumptions (A.1)–(A.4) hold and (2) and (7) are
correctly specified, the NIE and NDE on a log odds ratio
scale is given by [30, 31]:

NIE = log
{
1 + eβ2η(x,w) + κ(x∗,w)(1 + η(x,w))

1 + eβ2η(x,w) + κ(x,w)(1 + η(x,w))

}

− log
{
1 + eβ2η(x,w) + eβ2κ(x,w)(1 + η(x,w))

1 + eβ2η(x,w) + eβ2κ(x∗,w)(1 + η(x,w))

}
,

(8)

NDE =β1(x − x∗) + log
{
1 + eβ2η(x∗,w) + κ(x∗,w)(1 + η(x∗,w))

1 + eβ2η(x,w) + κ(x∗,w)(1 + η(x,w))

}

+ log
{

1 + eβ2η(x,w) + eβ2κ(x∗,w)(1 + η(x,w))

1 + eβ2η(x∗,w) + eβ2κ(x∗,w)(1 + η(x∗,w))

}

,

(9)

where η(x,w) = exp(β0 + β1x + βT
3 w). Given NIE and

NDE, the MP is given by NIE
NIE+NDE . If the outcome is rare,

the following approximate NIE and NDE have been widely
used [2]:

NIE(a) = log
{

(1 + κ(x∗,w))(1 + eβ2κ(x,w))

(1 + κ(x,w))(1 + eβ2κ(x∗,w))

}
,

and NDE(a) = β1(x − x∗). As a result, MP(a) =
NIE(a)

NIE(a)+NDE(a) . When the outcome is rare, we provide an
explanation that the approximate expressions are valid by
exploiting the similarity between the logistic and log link
functions (see Web Appendix B in additional file 1).

Point and interval estimates for NIE and MP
In the previous two sections, we provided expressions
for NIE and MP in Cases #1–4, which are functions of
the unknown parameters in the outcome model β =
[β0,β1,β2,βT

3 ]T , and unknown parameters in the media-
tor model, γ =[ γ0, γ1, γ T

2 ]T . Exact mediation expressions
for mediation measures in Case #3 also involve the vari-
ance of the error term in the mediator model (7), σ 2.
Let θ denote all unknown parameters used in the expres-
sions of NIE and MP, which is [βT , γ T , σ 2]T for the exact
expressions in Case #3 and [βT , γ T ]T for other cases.
Hereafter, we will rewrite the expressions of NIE and MP
asN I E (θ) andMP(θ), respectively, to emphasize that
those expressions are functions of θ .
In practice, the coefficients in the outcome model, β̂ ,

can be obtained by solving the following generalized esti-
mating equation (GEE) [47]:

U(β) =
n∑

i=1
Ui(β) =

n∑

i=1

∂E(Yi|Xi,Mi,W i)

∂β

V−1
i

(
Yi − E(Yi|Xi,Mi,W i)

)
= 0,

where {Yi,Xi,Mi,W i}ni=1 are n observations of
{Y ,X,M,W } and Vi is a working variance term for the
outcome Yi. The optimal asymptotic efficiency of β̂ will
be obtained when Vi = Var(Yi). When Vi is misspecified,
the resultant β̂ is still consistent under mild regularity
conditions but could be less efficient [48]. Similarly, the
coefficients in the mediator model, γ̂ , can be obtained by
solving the GEE below

U(γ ) =
n∑

i=1
Ui(γ ) =

n∑

i=1

∂E(Mi|Xi,W i)

∂γ

V ∗−1
i

(
Mi − E(Mi|Xi,W i)

)
= 0,

where V ∗
i is the working variance for Mi. Also, misspec-

ification of V ∗
i only impacts the efficiency of γ̂ . When

evaluating the exact expressions in Case #3, σ̂ 2 is needed
and can be estimated by solving the GEE

U
(
σ 2)=

n∑

i=1
Ui

(
σ 2)=

n∑

i=1

{
σ 2−(Mi−E(Mi|Xi,W i))

2}=0.

After obtaining θ̂ through the above estimating equations,
we can calculate N̂IE and M̂P by plugging those parameter
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estimates in their expressions introduced in the previous
sections; i.e., N̂IE = N I E (θ̂) and M̂P = MP(θ̂). In
what follows, we develop the closed-form asymptotic vari-
ance expressions of N̂IE and M̂P based on the multivariate
delta method, and review the nonparametric bootstrap
approach to obtain the confidence interval estimators.
The multivariate delta method first estimates the

variance-covariance matrix of θ̂ , abbreviated by �̂θ , based
on the theory of estimating equations [47]. Specifically,
Var(β̂), Var(γ̂ ), and Var(σ̂ 2) can be estimated by the
robust sandwich variance estimators [47] based on their
respective estimating equations. If the working variance
terms, Vi and V ∗

i , are correctly specified when estimat-
ing β̂ and γ̂ , one can also approximate Var(β̂) and Var(γ̂ )

by the negative inverse information matrix, −
{

∂U(β̂)

∂βT

}−1

and −
{

∂U(γ̂ )

∂γ T

}−1
, respectively. In general, to obtain �̂θ ,

we also need to estimate the covariances between β̂ ,
γ̂ , and σ̂ 2. However, as we state below, these asymp-
totic covariances are 0 since the estimating equations
are asymptotically uncorrelated. We formalize this result
below.
Result 1. Estimators β̂ , γ̂ , and σ̂ 2 obtained by solving
U(β) = 0, U(γ ) = 0, and U(σ 2) = 0 are asymptotically
uncorrelated and have zero asymptotic covariances.
Detailed proof of Result 1 is provided in Web Appendix

C (see additional file 1). Following this result, we have that

�̂θ =
⎡

⎣
V̂ar(β̂) 0 0

0 V̂ar(γ̂ ) 0
0 0 V̂ar(σ̂ 2)

⎤

⎦ for the exact expres-

sions in Case #3 and �̂θ =
[
V̂ar(β̂) 0

0 V̂ar(γ̂ )

]
for the

remaining Cases. Finally, the variances of N̂IE and M̂P is
obtained through the multivariate delta method [49]:

V̂ar(N̂IE) =
(

∂N I E (θ)
∂θ

∣
∣
∣
θ=θ̂

)T
�̂θ

∂N I E (θ)
∂θ

∣
∣
∣
θ=θ̂

and

V̂ar(M̂P) =
(

∂MP(θ)
∂θ

∣
∣
∣
θ=θ̂

)T
�̂θ

∂MP(θ)
∂θ

∣
∣
∣
θ=θ̂

.

Given these variance estimators, the 95% confidence inter-
vals of NIE and MP can be computed by normal approx-
imation as

{
N̂IE − 1.96 ×

√
V̂ar(N̂IE), N̂IE + 1.96 ×

√
V̂ar(N̂IE)

}
and

{
M̂P − 1.96 ×

√
V̂ar(M̂P), M̂P + 1.96 ×

√
V̂ar(M̂P)

}
, respectively.

Alternatively, the nonparametric percentile bootstrap
approach [50, 51] can be used to approximate the empir-
ical distributions of N̂IE by resampling the dataset with
replacement and re-estimating all model parameters. The
values for NIE are then calculated for each bootstrap
dataset. This step of resampling and calculating NIE is
repeated for a large of times (e.g., 1,000 times), and then

the bootstrap distribution of NIE is obtained from the col-
lection of estimates based on resampled datasets. Finally,
the percentile bootstrap approach employs the 2.5% and
97.5% percentiles of the bootstrap sample distribution to
obtain a 95% confidence interval of NIE. Similarly, the per-
centile bootstrap approach can be used to obtain a 95%
confidence interval of MP. When implementing the prod-
uct method, several studies [24–27] suggested using the
bootstrap approach to calculate confidence intervals for
the mediation measures, because the finite-sample dis-
tribution of the mediation measure estimators, especially
the MP estimator, can be skewed and may not be well
approximated by the normal distribution. In what follows,
we will compare the empirical performance between the
closed-form sandwich confidence interval estimator and
the bootstrap interval estimator, and assess when each
approach provides accurate empirical coverage for all 4
cases.

Results
Simulation design
We conducted simulation studies under a range of sce-
narios likely to be encountered in practice to assess the
performance of the point and interval estimators of NIE
and MP. To represent a wide range of sample sizes com-
monly seen in practice, we considered 4 levels of sample
sizes: 150, 500, 1,000, and 5,000 for the continuous out-
come cases (Cases #1 and #2). With a baseline outcome
prevalence of 3%, in order to obtain 15, 30, 150, 600 dis-
ease cases in expectation, we considered sample sizes of
500, 1,000, 5,000, 20,000 for the binary outcome scenarios
(Cases #3 and #4). Here, we did not consider a sam-
ple size at 150 for the binary outcome scenarios since
the expect number of cases (about 5 cases in each sim-
ulated dataset) would be too small to obtain stable NIE
and MP estimates. For each data type and sample size,
we considered the exposure (X) as a binary variable and
for simplicity assumed that there were no confounders
in both the mediator and outcome models. When the
outcome was continuous, we set TE ∈ (0.25, 0.5, 1), indi-
cating small, medium and large total effects on the dif-
ference scale. When the outcome was binary, we set the
TE measured on the log odds ratio scale to be log(1.2),
log(1.5), and log(2). For each value of TE, we consid-
ered MP ∈ (0.05, 0.2, 0.5). All the mediation measures are
defined for a change in X from 0 to 1. With a smaller
TE, it is expected that a larger sample size is needed to
obtain a reasonably precise mediation estimator because
the information available or estimating even the overall
exposure effect is rather limited. Furthermore, for a fixed
TE, a smaller MP or equivalently a smaller NIE would
require a larger sample size for reasonably precise medi-
ation analysis since the mediation effect size becomes
limited.
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Case #1, continuous outcome and continuous medi-
ator.We first generated the exposure X ∼ Bernoulli(0.5).
Then, we simulated the mediator M ∼ N(γ0 + γ1X, 1),
where γ0 = 0. γ1 was chosen to 0.408, corresponding
to the exposure-mediator correlation, Corr(X,M) = 0.2.
Finally, given X and M, we simulated Y ∼ N(β0 + β1X +
β2M, 1), where β0 was fixed as 0. We let β1 = (1 −
MP)×TE and β2 = MP×TE

γ1
based on the relationships that

NDE = (1−MP)×TE = β1 and NIE = MP×TE = β2γ1.
Case #2, continuous outcome and binary mediator.

First, we simulated X ∼ Bernoulli(0.5). Then, we gen-
erated M conditional on X by the logistic regression
logit(P(M = 1|X)) = γ0 + γ1X. Noting that γ0 =
log

(
P(M=1|X=0)

1−P(M=1|X=0)

)
, we chose the values of γ0 such that

the baseline prevalence of the mediator P(M = 1|X =
0) = 0.2. Similar to Case #1, we chose γ1 = 0.903 to give
an exposure-mediator correlation 0.2. Finally, we simu-
lated Y ∼ N(β0 + β1X + β2M, 1), where β0 = 0, β1 =
(1−MP)×TE from the definitionNDE = (1−MP)×TE =
β1, and β2 = MP × TE/

{
eγ0+γ1

1+eγ0+γ1 − eγ0
1+eγ0

}
by noticing

MP × TE = NIE = β2
{

eγ0+γ1
1+eγ0+γ1 − eγ0

1+eγ0

}
.

Case #3, binary outcome and continuous mediator.
We first generated X and M using the same procedure
in Case #1. Now, given X and M, we used the following
logistic regression model to simulate Y,

logit
(
P(Y = 1|X,M)

)
= β0 + β1X + β2M. (10)

Since β0 = log
(

P(Y=1|X=0,M=0)
1−P(Y=1|X=0,M=0)

)
, we selected β0 so the

baseline outcome prevalence was 3%. Then, we selected
β1 and β2 by numerically solving the system of equations
MP×TE = N I E (β0,β1,β2, γ0, γ1) and (1−MP)×TE =
N DE (β0,β1,β2, γ0, γ1), where N I E (β0,β1,β2, γ0, γ1)
andN DE (β0,β1,β2, γ0, γ1) refer to the exact expressions
of NIE and NDE, given in (5) and (6).
Case #4, binary outcome and binary mediator. We

first generated X and M using the same procedure in
Case #2, then generated the outcome Y using the logis-
tic regression model (10). The values of β0, β1 and β2
were obtained as follows. We chose β0 such that the base-
line outcome prevalence is around 3%. We then chose
β1 and β2 by solving the system of equations MP ×
TE = N I E (β0,β1,β2, γ0, γ1) and (1 − MP) × TE =
N DE (β0,β1,β2, γ0, γ1), where N I E (β0,β1,β2, γ0, γ1)
andN DE (β0,β1,β2, γ0, γ1) refer to the exact expressions
of NIE and NDE, given in (8) and (9).
For each data type, we obtained N̂IE and M̂P, the vari-

ance estimates of N̂IE and M̂P by the multivariate delta
method, and 95% confidence intervals of NIE and MP by
the multivariate delta method and percentile bootstrap
approach. We did not use the bootstrap approach for the
sample size of 20,000 in Cases #3 and #4, due to the

computational cost of performing the number of boot-
strapping samples with a large dataset across 5,000 repli-
cations. With a binary outcome, we first evaluated the
performance of the estimators based on the approximate
expressions (i.e., NIE(a) and MP(a)), and compared the
performance between the approximate and the exact esti-
mators for themediationmeasures by varying the baseline
outcome prevalence from 1% to 50%.
The percent bias (Bias(%)) was used to evaluate the

accuracy of the point estimates of NIE and MP. It was cal-
culated as the median bias relative to the true value over
5,000 replications. We employed the “median” rather than
the “average” value over all the replications to avoid the
undue influence of outliers on the results when the sam-
ple sizes were not large. The variance ratio was defined
as the ratio between the median of the estimated vari-
ance and the empirical variance, and is used to determined
the accuracy of the variance estimator obtained by the
multivariate delta method. The accuracy of the interval
estimator is determined by calculating the empirical cov-
erage rate (CR) of 95% confidence interval across 5,000
replications. The simulation results for the point, vari-
ance and interval estimates of NIE and MP under the four
data types are shown in Table 3 (Case #1), Web Table 1
(Case #2), Web Table 2 in additional file 1 (Case #3) and
Web Table 3 in additional file 1 (Case #4), respectively.
Detailed findings from the simulation study are reported
below.

Estimation of NIE
When the outcome is continuous, the point estimates of
NIE generally had minimal bias for sample sizes equal
or greater than 500, for all values of TE and MP consid-
ered. When the sample was as small as 150, the NIE point
estimates had relatively small bias (percent bias within
±10%) as long as MP ≥ 0.2 and TE ≥ 0.5. With binary
outcome, however, the point estimates did not show suffi-
ciently small percent bias until the sample size was 1,000,
as shown in Web Table 2 in additional file 1 (Case #3)
and Web Table 3 in additional file 1 (Case #4). When
the outcome was relatively rare and sample size was not
large, there was not enough data to accurately estimate the
NIE by the product method. In Case #3 (Web Table 2 in
additional file 1), we also observed that the percent bias
of N̂IE(a) was notable when TE=log(2) and MP=0.5 even
when the sample size was 20,000, indicating that with a
rare outcome, bias persisted when TE and MP were also
large.
The variance ratio of the NIE under all data types

and sample sizes were very close to 1, indicating that
the variance estimator derived by the multivariate delta
method was accurate. Compared to the multivariate
delta method, the bootstrap provided more accurate NIE
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Table 3 Simulation results for Case #1: continuous outcome and continuous mediator
̂NIE ̂MP

N MP TE Bias(%) CR(d) CR(b) VR Bias(%) CR(d) CR(b) VR

150 0.05 0.25 -16.4 99.2 96.4 0.998 -27.5 99.2 98.8 0.000

0.5 -15.1 96.5 95.7 0.992 -14.1 96.9 96.5 0.058

1 -10.5 92.2 94.7 0.993 -9.8 92.6 95.1 0.949

0.2 0.25 -10.5 92.2 94.7 0.993 -19.7 90.6 97.3 0.000

0.5 -6.2 92.5 94.8 1.001 -2.8 92.9 96.4 0.092

1 -2.1 94.8 94.9 1.012 -1.7 95.7 95.4 0.944

0.5 0.25 -4.7 93.2 94.8 1.007 -14.1 89.1 97.0 0.000

0.5 -1.6 95.1 95.0 1.012 -0.4 96.0 97.0 0.026

1 -0.1 95.5 94.9 1.013 0.2 97.5 95.3 0.710

500 0.05 0.25 -4.4 96.0 94.4 0.997 -3.5 97.8 96.6 0.002

0.5 -3.5 94.7 94.2 0.988 -3.4 95.3 94.5 0.855

1 -2.6 93.1 94.2 0.983 -2.8 93.4 94.4 0.948

0.2 0.25 -2.6 93.1 94.2 0.983 -1.5 92.1 97.0 0.001

0.5 -1.5 93.6 94.5 0.982 -0.8 94.4 94.8 0.801

1 -0.2 94.5 94.5 0.981 -0.1 94.7 94.6 0.945

0.5 0.25 -0.9 94.0 94.5 0.980 -0.4 92.3 97.5 0.000

0.5 -0.1 94.7 94.3 0.982 0.1 95.5 94.9 0.770

1 0.6 94.5 94.5 0.983 0.0 95.6 94.7 0.915

1000 0.05 0.25 -4.0 95.4 94.7 0.969 -3.2 97.0 95.4 0.724

0.5 -2.2 94.8 94.7 0.969 -2.8 95.2 95.1 0.924

1 -2.1 94.1 94.8 0.971 -1.9 94.0 94.7 0.967

0.2 0.25 -2.1 94.1 94.8 0.971 -1.1 93.5 96.3 0.580

0.5 -1.1 94.2 94.6 0.981 -1.2 94.2 94.8 0.923

1 -0.9 94.9 94.8 0.986 -0.8 94.6 94.4 0.981

0.5 0.25 -1.1 94.4 94.6 0.983 -0.5 92.8 96.6 0.441

0.5 -0.5 95.0 94.9 0.987 -0.5 94.9 94.6 0.916

1 -0.3 94.8 94.7 0.988 -0.4 95.0 94.5 0.966

5000 0.05 0.25 -0.5 94.8 94.8 0.990 0.3 95.5 94.8 0.961

0.5 -0.2 94.9 95.0 0.995 -0.3 95.4 95.0 0.990

1 -0.2 95.0 95.1 1.007 -0.3 95.0 95.1 1.006

0.2 0.25 -0.2 95.0 95.1 1.007 0.1 95.6 95.1 0.936

0.5 -0.1 95.0 95.2 1.027 -0.1 95.1 95.3 1.004

1 0.0 95.3 95.2 1.038 0.0 95.1 95.1 1.031

0.5 0.25 0.0 95.3 95.5 1.032 0.1 95.0 94.7 0.920

0.5 -0.1 95.3 95.2 1.040 0.0 95.2 95.0 0.995

1 0.0 95.4 95.2 1.041 0.0 95.3 95.4 1.022

1Note: Bias(%), CR(d) , CR(b) , and VR denote the median percent bias, 95% confidence interval coverage rate of multivariate delta method, 95% confidence interval coverage

rate of percentile bootstrap method, and mediation variance ratio, respectively. The coverage rates outside the 95% confidence boundary, i.e., q ± 1.96 ×
√

q(1−q)
B , were

highlighted in bold, where q denotes the nominal confidence interval threshold (95%) and B denotes the number of replication (5,000). The median percent bias was

calculated as the median of the ratio of bias to the true value over 5,000 replications, i.e., Bias(%) = median( p̂−p
p ) × 100%, where p denotes the true value of the causal

mediation measure, and p̂ is the point estimate of the simulated causal mediation measure. The median variance ratio is defined by the ratio of median delta-method
variance estimators across 5,000 replications to the empirical variance of causal mediation measure estimates from the 5,000 replications

interval estimates especially when the sample size is small.
When the outcome was continuous, the bootstrap cov-
erage rates were close to or greater than 95% even when
the sample size was 150. In general, both the bootstrap
and the multivariate delta method had confidence interval

coverage rates very close to the nominal value when the
sample size ≥500, except for the scenario when both
TE and MP were large in Case #3, in which case both
methods exhibited lower coverage rates than nominal as
sample size increased. This is because the rare outcome
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assumption may be inadequate and so the resulting bias
of N̂IE(a) are more pronounced with a larger sample
size. Overall, these findings suggested that the multivari-
ate delta method is a valid approach for estimating the
variance and confidence intervals for the NIE when the
sample size is at least 500 with a continuous outcome.
For the cases of binary outcome, we also evaluated the

performance of the NIE estimates based on the exact
expressions (i.e., N̂IE). The results are shown in Web
Tables 2 and 3 in (see additional file 1) or Cases #3 and #4,
respectively. As long as the sample sizes are greater than
or equal to 1,000, the estimator based on the exact expres-
sions consistently carried small percent bias and nominal
coverage rate.

Estimation of MP
In contrast to theNIE estimates, the point estimates ofMP
often diverged from the true MP values with smaller sam-
ple sizes. When the outcome was binary, the percent bias
inMPwas usually larger than 30% for sample sizes≤1,000,
and sometimes even larger than 70% for sample size≤500,
as shown in Web Table 2 (Case #3) and Web Table 3
(Case #4) in additional file 1. TheMP point estimates were
more stable with a continuous outcome, in which case
the bias is negligible when the sample size was at least
500. For the binary outcome scenarios, the MP percent
bias was not close to 0 until the sample size was 5,000 or
the number of cases ≥200. For all data types, the percent
bias of M̂P appears larger when the TE is small. For the
same TE, a smaller percent bias occurred when the MP
was larger.
The variance estimators of M̂P obtained from the

multivariate delta method were smaller than their cor-
responding empirical variances, and this phenomenon
became more noticeable with small sample sizes and
a small TE. In general, the multivariate delta method
provided accurate variance estimators when the sam-
ple size was at least 500 for the continuous outcome
scenarios. When the outcome was binary, the multi-
variate delta method only provided accurate variance
estimators when the sample size was at least 5000 and
TE ≥ log(1.5).
Similar to the NIE interval estimates, the bootstrap

provided more accurate MP interval estimates than the
multivariate delta method, especially with smaller sample
sizes, because the distribution of M̂P with small sample
sizes can deviate from normality, which was assumed in
the multivariate delta method. For all data types and sam-
ple sizes, the bootstrap approach generally had coverage
rates higher than 95% and began to provide close to nom-
inal coverage rates for sample size of 500 for scenarios
with continuous outcome and 5,000 for the scenarios with
binary outcome. On the other hand, the multivariate delta

method did not provide accurate confidence intervals for
smaller sample sizes, and its coverage rates sometimes
dropped below 80% in some settings with a binary out-
come. With a continuous outcome, a sample size of 1,000
was needed for the multivariate delta method to provide
satisfactory interval estimates, whereas the sample size
requirement for the binary outcome scenarios was sub-
stantially larger. As shown in Web Table 2 (Case #3) and
Web Table 3 (Case #4) in additional file 1, the multi-
variate delta method provided satisfactory coverage rates
when TE ≥ log(1.5) and sample size ≥ 5, 000 with a
binary outcome.With a small TE (TE= log(1.2)), a sample
size of at least 20,000 will be needed for the multivari-
ate delta method to provide MP interval estimates with
nominal coverage. The performance of the delta method
was also sensitive to the magnitude of TE. When the
TE was small, the MP confidence interval tended to be
much wider than it should be when the MP was also
small, but tends to be narrower than it should be for
larger MP.

The impact of outcome prevalence with a binary outcome
We conducted additional simulations to compare the
mediation analyses based on the approximate expressions
and exact expressions (N̂IE(a) v.s. N̂IE and M̂P(a) v.s. M̂P)
when the baseline outcome prevalence was varied from
1% to 50%. We considered TE∈ {log(1.2), log(2)}, MP∈
{0.1, 0.5} and a large sample size of 20,000 to alleviate
concerns on small-sample biases.
Figure 2 and Web Figure 2 in additional file 1 present

the results for MP and NIE estimates, respectively, for
the binary outcome and binary mediator scenario (i.e.,
Case #4). The estimates based on the exact causal medi-
ation expressions, M̂P and N̂IE, provided accurate point
and interval estimates when the outcome prevalence
> 1%. When TE = log(1.2) and the baseline out-
come prevalence was 1%, M̂P and N̂IE showed sig-
nificant negative percent bias, as the number of cases
(about 200) were quite small. The NIE and MP estimates
based on the approximate expressions did not gener-
ally exhibit satisfactory performance when the outcome
prevalence was high. Specifically, when TE> log(1.2),
the percent bias of M̂P(a) diverged from 0 and the cov-
erage rate of M̂P(a) by the delta method substantially
decreased from 95%. Similarly, N̂IE(a) was also quite dif-
ferent from its true value when the baseline outcome
prevalence ≥ 10% (See Web Figure 1 in additional
file 1).
With a binary outcome and continuous mediator (Case

#3), M̂P and N̂IE provided accurate point and interval esti-
mates among all levels of baseline outcome prevalence, as
shown in Web Figures 3 and 4 (see additional file 1). The
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Fig. 2 Performance of MP(a) estimates (black line) and MP estimates (blue dotted line) when changing baseline outcome prevalence from 1% to
50% in Case #4, where sample size is 20,000. Bias(%), CR(d) , and VR denote the percent bias, coverage rate by the multivariate delta method, and
variance ratio. Upper row: results for TE=log(1.2) and MP=0.1; second row: results for TE=log(1.2) and MP=0.5; third row: results for TE=log(2) and
MP=0.1; bottom row: results for TE=log(2) and MP=0.5

estimator M̂P(a) also provided very robust point and inter-
val estimates (Web Figure 2 in additional file 1) for the
common outcome scenarios, where its percent bias was
less than 1% among all TEs,MPs and outcome prevalences
considered. However, the performance of N̂IE(a) was sen-
sitive to the baseline prevalence and the magnitude of MP.
For example, when MP=0.5, the percent bias of N̂IE(a)

increased as baseline outcome prevalence increased, and
the confidence interval coverage rates rapidly declined.
When the true MP=0.1, the percent bias of N̂IE(a)

was negligible over the range of outcome prevalences
considered.

Homoscedasticity and normality assumptions in case #3
In the above simulations, we simulated M|X under
a homoscedastic normal distribution, as assumed in
deriving the mediation measure expressions in Case #3.
As a sensitivity analysis, here we evaluate the performance
of the product method in Case #3 based on estimands (5)
and (6), whenM is either heteroskedastic or not normally
distributed.
First, we assessed the robustness of the proposed

method when the homoscedasticity assumption is vio-
lated. Specifically, given X, we generated the mediator
M by M|X ∼ N(γ0 + γ1X, σ 2

x ), where σ 2
x = η0 +

η1X. Here, η1 measures the extent to which the variance
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depends upon the exposure and η0 was chosen such that
the expectation of σ 2

x equals to 1 in all cases considered,
thereby holding the overall variance constant to study het-
eroscedasticity. When η1 = 0, homoskedasticity holds,
and a higher value of η1 represents a stronger degree of
heteroskedasticity. We set η1 ∈ {0, 0.25, 0.5, 0.75, 1} such
that the variance of the mediator in the exposed group
is κ ∈ {1, 1.26, 1.67, 2.20, 3} times that in the unexposed
group. We used the proposed exact and approximate esti-
mators to estimate NIE and MP. The results are given in
Web Table 4 (see additional file 1). We found that both
the exact and approximate estimators are relatively insen-
sitive to the violations of the homoscedasticity assump-
tion. In particular, the exact estimators exhibited mini-
mal bias and nominal confidence interval coverage under
all degrees of heteroskedasticity considered and the
approximate estimator also exhibited good performance
when the outcome was rare (outcome prevalence at 3%).
These results suggest that the proposed estimators are
robust to heteroscedasticity, at least the forms of this we
considered.
Second, we examine the sensitivity of proposed esti-

mators when the error term is not normally distributed.
We follow the data generating process for Case #3, except
that we simulated M = γ0 + γ1X + ε, where ε follows
a gamma distribution. Specifically, we let ε ∼ b−E[b]√

Var(b) ,
where b follows a gamma distribution with density f (b) =

1
�(k)θk b

k−1e−b/θ (b > 0), k and θ are shape and scale
parameters. We subtract b with its expectation E[ b]= kθ
and then divide it by its standard deviation

√
kθ in order

to fix the mean and variance of ε at 0 and 1, matching
the first two moments of the standard normal distribu-
tion. Here, we chose k = (2/s)2 and θ = s/2 such that
the coefficient of skewness of ε was s. We choose s to be
1, 1.5 and 2, representing different degrees of skewness,
and then still use our exact NIE and MP estimator based
on (5) and (6), and the corresponding approximate esti-
mators for analysis. The simulation results are presented
in Web Table 5 (see additional file 1). We also included
a scenario that ε follows a standard normal distribution
as a benchmark. We observed that both the exact and
approximate method are robust with regard to violations
of normality assumption, where all the point and vari-
ance estimators and confidence interval coverage rates are
comparable across the two data generating processes. This
finding suggests that our exact NIE and MP estimators
based on (5) and (6) are insensitive to moderate skewness
of the outcome distribution, even though the derivation
assumes normality.

In the presence of a binary confounder
To assess the robustness of our simulation findings
with observed confounding, we conducted additional

simulation studies in the presence of a binary confounder
variable that is associated with the exposure, mediator
and outcome. We investigated the NIE andMP estimators
in terms of percent bias, variance ratio, and 95% confi-
dence interval coverage under each data type, by vary-
ing the confounder-exposure, confounder-mediator, and
confounder-outcome associations. The simulation design
and results are described in detail in Web Appendix
D and Web Tables 6–7 in additional file 1. Over-
all, we observed that the performance of the product
method are robust under confounding of different mag-
nitudes and structures. The percent bias, variance ratio
and 95% confidence interval coverage rate are compa-
rable across the scenarios with and without a binary
confounder.

Application to the maxART study
We performed mediation analysis in the MaxART study
[4], which is a stepped-wedge cluster randomized trial
among HIV-positive participants in Eswatini. The pri-
mary objective of the study was to understand the impact
of early access to antiretroviral therapy (EAAA) versus
standard of care (SoC). From September 2014 to August
2017, the MaxART Consortium randomly assigned 14
participating clinics in pairs to shift from SoC to EAAA
at randomly chosen pre-specified dates. Further details of
the design of thisMaxART study can be found in [52]. The
MaxART study previously found that EAAA improved
retention in HIV care [4], but the mechanisms underly-
ing the intervention-retention relationship is unknown.
In this illustrative example, we investigated the extent to
which the effect of the intervention (SoC v.s. EAAA) on
12-month retention in HIV care was mediated by visit
adherence at 6 months. Participants were classified as
retained in HIV care for 12 months if, at the end of the
12th month post enrollment, the participant was alive
and had not discontinued treatment, where either the last
clinic visit was less than 90 days from the end of study
or next scheduled visit date was within 30 days from
the end of study. In order to obtain 12-month retention,
we required (1) the participant’s enrollment date to be
longer than 12 months from end of the study and/or (2)
if initially receiving SoC treatment, the participant’s tran-
sition date to EAAA was longer than 12 months from
enrollment. Participants who did not meet the above two
requirements were excluded. Finally, 1,731 participants
were used in our illustrative analysis, with 1,335 individ-
uals retained in care for 12 months and 396 individuals
not retained, of whom 1,014 individuals received SoC and
717 individuals received EAAA. Baseline characteristics
of participants are given in Web Table 8 (see additional
file 1). For purpose of illustration, we do not address-
ing clustering of subjects within clinics; we do note,
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however, minimal degree of clustering has been reported
previously in the previous analysis of the MaxART
study [4].
The hypothesized mediator considered here was 6-

month visit adherence, which measures whether a par-
ticipant’s frequency of clinical visits coincides with the
MaxART protocol over the first 6 months following
enrollment. According to the MaxART protocol, partic-
ipants are expected to have a follow-up visit in every
30 days. It follows that at the end of the 6th month
the participants should have completed 6 or more visits.
Here, the definition of 6-month visit adherence com-
pletion 5 or more clinical visits by the end of the 6th
month after enrollment (yes=1, no=0). Based on this def-
inition, 831 participants adhered to the MaxART visit
schedule in the first 6 months, whereas 900 participants
did not.
We considered two scenarios for confounding adjust-

ment (i.e., W ) in the outcome and mediator models. In
Scenario I, we only adjusted for the steptime. In Sce-
nario II, we adjusted for all factors that may have been
confounders of the intervention-retention relationship,
visit adherence-retention relationship, or intervention-
visit adherence relationship. From clinical knowledge and
prior analyses of these data, the comprehensive set of
potential confounders included steptime, age at study
enrollment (< 20 yrs, [ 20, 30) yrs, [ 30, 40) yrs, [ 40, 50)
yrs, [ 50, 60) yrs, ≥ 60 yrs), sex, marital status (married,
divorced/widowed, single), education (illiterate/primary,
secondary, high school, and tertiary), CD4 counts (< 350
cells/ul, [ 350, 500] cells/ul, > 500 cells/ul), WHO stage (I,
II, III and IV stages), BMI (< 18.5, [ 18.5, 25), [ 25, 30), ≥
30 kg/m2), screened for TB symptoms (yes, no), viral load
(< 5000 copies/ml, [ 5000, 30000] copies/ml, > 30000
copies/ml), treatment support (yes, no), level of clinic
(hospital, clinic withmaternity ward, clinic withoutmater-
nity ward), time from HIV tested positive to enrollment
(< 1 yr, 1-3 yrs, > 3 yrs), and clinic volume (low: <

median, high ≥ median). For simplicity and consistency
with the primary analysis of the MaxART study [4], the
missing indicator method [53] was used to account for
missing covariates, where missing data was treated as a
separate group for each of the confounding variables in
the models.
We first implemented the product method based on the

approximate mediation measure expressions assuming a
rare outcome. We coded non-retention as 1 and reten-
tion as 0. We calculated the NIE, TE and MP comparing
EAAA to SoC, conditional on the mode for each model
covariate. Although we estimated the mediation measures
at the mode of each model covariate, these measures
could also be calculated at other values of the covariates
as well. Results are given in Table 4. In Scenario I, the

steptime-adjusted model, we found that the intervention
was protective against 12-month non-retention, with odds
ratios of 0.23 and 0.55 for T̂E(a) and N̂IE(a) respectively.
Because the 95% confidence intervals, either by the delta
method or bootstrap, for both parameters excluded the
null, we conclude that both effects were significantly dif-
ferent from zero. The steptime-adjusted M̂P(a) was 40.8%
(95% CI by delta method: (0.27, 0.54)), implying that over
40% of the intervention effect was mediated by 6-month
visit adherence. In multivariate-adjusted analyses (Sce-
nario II), stronger NIE and TE effects were obtained,
corresponding to odds ratios of 0.08 and 0.38, respec-
tively and the multivariate-adjusted MP estimate was also
around 40%. The bootstrap and multivariate confidence
intervals were very close in this analysis, although the
width of the bootstrap confidence interval was slightly
smaller than that using the delta method variance for
NIE and TE, but slightly larger than the delta method
for MP.
Because the outcome prevalence in the MaxART study

is around 23%, the above analysis based on the rare out-
come approximation may be biased, as suggested by our
simulation study. Thus, we repeated the mediation analy-
sis using the exact expressions given in Table 2. Generally
speaking, the results of the mediation analysis account-
ing for common outcome prevalence were similar to
those obtained using the rare outcome approximation. In
both the steptime-adjusted model and the multivariate-
adjusted model, the adjusted T̂E were slightly weaker
than previous results assuming a rare outcome (steptime-
adjusted T̂E = 0.24 and multivariate-adjusted T̂E = 0.10
on the odds ratio scale, compared to 0.23 and 0.08, respec-
tively). As a result, M̂P slightly increased in the adjusted
analyses (steptime-adjust ed M̂P = 44%, multivariate-
adjusted M̂P = 42%), compared to 41% and 40%, respec-
tively, with the rare outcome approximation. In summary,
for both the results based on and not based on the rare
disease assumption, over 40% of the intervention effect on
the 12-month retention in care was mediated by 6-month
visit adherence.

Discussion
The difference and product methods are two popular
approaches for estimating NIE and MP in mediation
analysis [2]. While there has been comprehensive empir-
ical evaluations of the difference method [21], there were
only a few empirical evaluations of the product method
as shown in Table 1. For this reason, we conducted a
comprehensive simulation study to evaluate the perfor-
mance of N̂IE and M̂P obtained by the product method
under various scenarios likely to be encountered in prac-
tice.We also provided the N̂IE and M̂P estimators without
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the rare outcome assumption for a binary outcome, and
examined extent to which the current approximate medi-
ation analysis was robust to violations of the rare outcome
assumption.
The estimators investigated in our work has been imple-

mented in an R package mediateP freely available at
the Comprehensive R Archive Network (CRAN; https://
cran.r-project.org); installations and instructions for the R
package are given in Appendix A to facilitate their appli-
cations. Comparing to the current software for assessing
conditional mediation measures (e.g., the SAS and SPSS
macros given by [28] and the SAS macro and R pack-
age GEEmediate given by [21]), the mediateP package
gives the exact NIE and MP estimates without rare out-
come assumption, when a binary outcome is modeled by
a logistic regression.
We demonstrated that N̂IE had very little bias and

the variance estimate for N̂IE were quite close to the
true values estimated under all scenarios considered from
Monte Carlo simulations. In general, the multivariate
delta method provided accurate variance estimates and
valid interval estimates once the sample size was at least
500, and the bootstrap remained accurate even when
the same size was even smaller. We found that larger
sample sizes were needed to obtain valid MP point and
interval estimates. Specifically, when the outcome was
continuous, a sample size of 500 was required for valid
point and interval estimates. In the binary outcome sce-
narios with a rare outcome, a sample size of 5000, and
200 cases or more, were required to obtain satisfac-
tory MP point estimate and bootstrap interval estimates.
We observed that the multivariate delta method pro-
vided valid MP confidence intervals when sample size

≥20,000 and number of cases ≥500 in binary outcome
scenario.
We confirmed that the bootstrap method provided bet-

ter interval estimates compared the multivariate delta
method in smaller sample size scenarios, as may be found
in some social science applications. However, the boot-
strap method requires substantially more computational
time to fit the mediation models in order to obtain the
empirical N̂IE or M̂P distribution, which may be com-
putationally burdensome in large epidemiological cohort
studies. While we recommend bootstrap for the interval
estimation with small sample size, when the sample size
is larger, sample size ≥500 for the continuous outcome
scenarios and sample size ≥20,000 and number of cases
≥500 for studies of binary outcome, we recommend the
multivariate delta method for obtaining valid and com-
putationally efficient confidence intervals. To facilitate
application, our R package mediateP implements both
variance estimators.
In addition, our simulation study also showed that the

accuracy of M̂P also depends on the effect size of the TE.
When the sample size is too small, a smaller TE is associ-
ated with a more biased MP point estimates and interval
estimates with under-coverage, especially in binary out-
come scenarios. In many epidemiological studies, when
there is reason to believe that the NIE or NDE is not
close to zero, a relatively smaller sample size may be ade-
quate for obtaining valid point and interval estimates of
the MP. For example, when the outcome is binary, we sug-
gest that a sample size ≥ 20, 000 and number of cases
≥ 500 is needed for the multivariate delta method to
obtain satisfactory MP confidence intervals with close
to nominal coverage rate. If there is reason to believe

Table 4 Mediation analysis of MaxART [4]. (n=1731)

Expression Scenario Parameter Point S.E. Delta 95% CI Bootstrap 95% CI

Steptime adjusted Approximate NIE(a) -0.601 0.091 (-0.779,-0.424) (-0.782,-0.445)

TE(a) -1.472 0.226 (-1.915,-1.030) (-1.973,-1.031)

MP(a) 0.408 0.069 (0.273,0.544) (0.305,0.559)

Exact NIE -0.630 0.093 (-0.813,-0.448) (-0.816,-0.474)

TE -1.444 0.213 (-1.862,-1.027) (-1.922,-1.023)

MP 0.437 0.073 (0.293,0.580) (0.327,0.597)

Multivariate adjusted Approximate NIE(a) -0.972 0.121 (-1.208,-0.735) (-1.287,-0.775)

TE(a) -2.520 0.287 (-3.082,-1.958) (-3.282,-1.975)

MP(a) 0.386 0.050 (0.288,0.483) (0.292,0.494)

Exact NIE -0.970 0.120 (-1.205,-0.735) (-1.282,-0.772)

TE -2.316 0.267 (-2.841,-1.792) (-3.033,-1.819)

MP 0.419 0.054 (0.313,0.525) (0.322,0.539)

1Note: All the mediation measures, including NIE, TE, and MP, are defined on a log odds ratio scale for the intervention in change from SoC to EAAA, conditional on the most
frequent level of the confounding variables. S.E. denotes the standard error of the point estimates, which is calculated by the multivariate delta method. We implemented the
delta method and bootstrap method with 1,000 replications to calculate the 95% confidence interval (95% CI) of each mediation measure

https://cran.r-project.org
https://cran.r-project.org
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that the TE is not too small (TE≥ log(1.5)), we found
that the product method could accurately estimate MP
with a sample size of at least 5000 and number of cases
at least 150.
In the binary outcome scenarios (Cases #3 and #4),

expressions of NIE(a) and MP(a) defined on a log odds
ratio scale have been commonly used in biomedical and
epidemiological studies [54–56]. Those expressions can
be extended to include a log link function in the outcome
model (2) and bypass the rare outcome assumption, and
the corresponding mediation measure expressions can be
defined on a log risk ratio scale. Using the logistic out-
come model, our simulation study suggests that, when
the outcome prevalence was less than 5%, the rare out-
come assumption worked well for both N̂IE(a) and M̂P(a).
When the outcome prevalence was greater than 5% and
with a binary mediator (Case #4), the percent bias of
N̂IE(a) and M̂P(a) was substantial (usually greater than
10%) and the exact expressions are recommended. How-
ever, with a binary outcome and continuous mediator
(Case #3), we found that M̂P(a) always provides satisfac-
tory point and interval estimates even when the outcome
was common.
Our simulation study has several limitations and future

work is needed to supplement the conclusions in this
manuscript. For simplicity, our simulation study did not
consider the impact of unmeasured confounders, future
research is needed to examine the robustness of prod-
uct method in the presence of unmeasured confounders.
In addition, when the outcome is binary, the media-
tion measures can be defined on the odds ratio scale
[2]. Web Appendix E (see Additional file 1) show the
relationship between mediation measures defined on a
log odds ratio scale and odds ratio scale. In summary,
we have found that asymptotic inference performs well
for the product method in sample sizes typically found
in epidemiology and public health settings. In addi-
tion, for common binary outcomes, exact expressions
are needed to obtain unbiased estimates and strategies
for point and variance estimation have been provided
here.

Conclusions
We conducted simulation studies to examine the empir-
ical performance of product method for calculating the
point and interval estimates of two commonly used medi-
ation measures: the natural indirect effect (NIE) and
mediation proportion (MP). Our simulations confirm
that the proposed multivariate delta method based on
the asymptotic theory is valid for constructing confi-
dence interval under sample sizes commonly encoun-
tered in public health. Given that the multivariate delta

method is computationally more efficient than bootstrap,
we therefore recommend to use the multivariate delta
method to calculate the confidence interval when sam-
ple size is adequate (sample size ≥500 in scenarios of
continuous outcome and sample size ≥20,000 number
of cases ≥500 in scenarios of binary outcome). The rare
outcome assumption in the scenarios of binary outcome
generally performs well when baseline outcome preva-
lence less than 5% but can result in substantial bias when
outcome prevalence is less rare. The exact estimator is a
more appropriate choice for a common outcome.

Appendix a: instructions for the mediateP
package
The mediateP package calculates the point and interval
estimates for the NIE, TE and MP, based on the product
method, as described in this paper. The source files for the
mediateP package was provided on CRAN https://cran.
r-project.org.
First, use the following statements to install the

mediateP package

> install.packages("mediateP")

> library("mediateP")

The main function of the "mediateP" package is
mediate(), which provides the mediation analysis
results. It can be called with,

mediate(data, outcome, mediator, exposure,

binary.outcome, binary.mediator,

covariate.outcome, covariate.mediator, x0,

x1, c.outcome, c.mediator, boot, R)

The function has 14 arguments. These are

data= (Required) The name of the dataset.
outcome= (Required) Name of the outcome variable,

which should be either a continuous or binary datatype.
mediator= (Required) Name of the mediator variable,

which should be either a continuous or binary datatype.
exposure= (Required) Name of the exposure variable,

which should be either a continuous or binary datatype.
binary.outcome= (Required) If the outcome is

binary, set to 1. If the outcome is continuous, set to 0.
The default value is 0.

binary.mediator= (Required) If the mediator is
binary, set to 1. If the mediator is continuous, set to 0.
The default value is 0.

covariate.outcome= A vector of names show-
ing the confounding variables used in the outcome
model. The default value is NULL, which represents no

https://cran.r-project.org
https://cran.r-project.org


Cheng et al. BMCMedical ResearchMethodology          (2021) 21:253 Page 18 of 20

confounding variables. We only accepted continuous
and binary confounding variables, if one confounding
variable is categorical, please set it to a series of binary
variables in advance.

covariate.mediator= A vector of names showing
the confounding variables used in the mediator model.
The default value is NULL, which represents no con-
founding variables. We only accepted continuous and
binary confounding variables, if one confounding vari-
able is categorical, please set it to a series of binary
variables in advance.

x0= (Required) The baseline exposure level (i.e., x∗).
The default value is 0.

x1= (Required) The new exposure level (i.e., x). The
default value is 1.

c.outcome= A vector of numbers representing the
conditional level of the confounding variables in the
outcome model. The default value is a vector of 0.

c.mediator= A vector of numbers representing the
conditional level of the confounding variables in the
mediator model. The default value is a vector of 0.

boot= If a percentile bootstrap confidence interval
needed to be added, set to 1. Otherwise, set to 0. The
default value is 0.

R= (Required if boot=1) The number of replica-
tions when apply the percentile bootstrap method to
calculate the confidence interval. The default value
is 2,000.

We now illustrate the usage of the mediate func-
tion. First, using the following statements to simulate
a dataset

> C1=rnorm(2000)>0 # Confounder 1

> C2=rnorm(2000) # Confounder 2

> X = rnorm(2000) # exposure

> M= as.numeric(runif(2000)< 1/

(1+exp(0-0.9*X+0.1*C1))) # mediator

> # outcome

> Y= as.numeric(runif(2000)< 1/

(1+exp(-(-2+0.5*X+0.5*M+0.2*C1+0.2*C2))))

> mydata=as.data.frame(cbind(Y,M,X,C1,C2))

# summarize into a dataset

This dataset, named mydata, includes a continuous
exposure (X), a binary mediator (M), a binary outcome
(Y), as well as two confounding variables (C1 and C2).
mydata has 2,000 observations, where the first 6 obser-
vations are shown as follows

> head(mydata)

Y M X C1 C2

1 0 0 -1.1346302 0 -0.88614959

2 0 1 0.7645571 1 -1.92225490

3 0 1 0.5707101 0 1.61970074

4 0 0 -1.3516939 1 0.51926990

5 0 1 -2.0298855 1 -0.05584993

6 0 0 0.5904787 0 0.69641761

We conducted a mediation analysis using mediate().
In the outcome model, we adjusted for C1 and C2.
In the mediator model, we only adjusted for C1.
We calculated the NIE, TE and MP for exposure in
change from 0 to 1, conditional on C1=0 and C2=1,
as follows

> result=mediate(data=mydata, outcome="Y",

mediator="M", exposure="X",

binary.outcome=1,

binary.mediator=1,

covariate.outcome=

c("C1","C2"),

covariate.mediator=c("C1"),

x0=0, x1=1,

c.outcome=c(0,1),

c.mediator=c(0),

boot=1, R=2000)

Finally, we got the following mediation analysis output

> print.mediateP(result)

Point (S.E.) 95% CI by Delta Approach 95% CI by Bootstrap

NIE: Approximate 0.1069 (0.0224) (0.0631,0.1508) (0.0632,0.1510)

NIE: Exact 0.4568 (0.0645) (0.3304,0.5832) (0.3364,0.5840)

TE: Approximate 0.2341 (0.0588) (0.1190,0.3493) (0.1300,0.3710)

TE: Exact 0.1118 (0.0246) (0.0635,0.1601) (0.0647,0.1614)

MP: Approximate 0.4568 (0.0638) (0.3318,0.5818) (0.3402,0.5827)

MP: Exact 0.2447 (0.0631) (0.1211,0.3683) (0.1333,0.3901)
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More illustrative examples under other datatypes can be
found by using the syntax help(mediate).
Abbreviations
NDE: Natural direct effect; NIE: Natural indirect effect; MP: Mediation
proportion; TE: Total effect
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