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Abstract 

Background:  Mediation analysis methodology underwent many advancements throughout the years, with the most 
recent and important advancement being the development of causal mediation analysis based on the counterfactual 
framework. However, a previous review showed that for experimental studies the uptake of causal mediation analysis 
remains low. The aim of this paper is to review the methodological characteristics of mediation analyses performed 
in observational epidemiologic studies published between 2015 and 2019 and to provide recommendations for the 
application of mediation analysis in future studies.

Methods:  We searched the MEDLINE and EMBASE databases for observational epidemiologic studies published 
between 2015 and 2019 in which mediation analysis was applied as one of the primary analysis methods. Information 
was extracted on the characteristics of the mediation model and the applied mediation analysis method.

Results:  We included 174 studies, most of which applied traditional mediation analysis methods (n = 123, 70.7%). 
Causal mediation analysis was not often used to analyze more complicated mediation models, such as multiple medi-
ator models. Most studies adjusted their analyses for measured confounders, but did not perform sensitivity analyses 
for unmeasured confounders and did not assess the presence of an exposure-mediator interaction.

Conclusions:  To ensure a causal interpretation of the effect estimates in the mediation model, we recommend that 
researchers use causal mediation analysis and assess the plausibility of the causal assumptions. The uptake of causal 
mediation analysis can be enhanced through tutorial papers that demonstrate the application of causal mediation 
analysis, and through the development of software packages that facilitate the causal mediation analysis of relatively 
complicated mediation models.
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Background
Mediation analysis is increasingly being applied in 
many research fields [1], including the field of epi-
demiology. Mediation analysis decomposes the total 

exposure-outcome effect into a direct effect and an indi-
rect effect through a mediator variable [2–4]. For exam-
ple, mediation analysis can be used to investigate BMI as 
a mediator of the relation between smoking and insulin 
levels [5], or to investigate food expenditures as a media-
tor of the relation between socioeconomic status and 
healthiness of food choices [6]. Mediation analysis is 
therefore an important statistical tool for gaining insight 
into the mechanisms of exposure-outcome effects [3].
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Throughout the years, various methods for mediation 
analysis have been described in the literature. Building 
on the path analysis method described by Sewall Wright 
[7, 8], Judd and Kenny described the causal steps method 
in 1981 [9], followed by an adaptation of this method in 
1986 by Baron and Kenny [10]. The causal steps method 
relies on a sequence of significance tests to determine 
the presence of a mediated effect. Later papers recom-
mended estimating the indirect effect based on the 
product-of-coefficients method or the difference-in-
coefficients method to determine the presence of a medi-
ated effect [3, 11–13]. Here we refer to these methods as 
‘traditional mediation analysis’. In the last decade, causal 
mediation analysis gained popularity. Causal mediation 
analysis provides general definitions of causal direct, 
indirect, and total effects, which can be estimated using 
various estimation approaches [4, 14, 15]. Causal and tra-
ditional mediation analysis can provide the same effect 
estimates for mediation models estimated with linear 
regression [16, 17], but this does not necessarily hold 
for mediation models estimated with non-linear regres-
sion [18, 19]. Causal mediation analysis is preferred for 
the latter models, as for these models causal mediation 
analysis provides causal effect estimates, while traditional 
mediation analysis can in some situations only be used to 
test the presence of a mediated effect [19].

Although the theoretical definitions of the causal 
direct, indirect, and total effects are not new [4, 14, 15], 
the uptake of causal mediation analysis in practice has 
remained low for many years [20]. In the past decade, 
various software programs have been developed for the 
estimation of causal mediation effects, enabling research-
ers to perform causal mediation analysis in all major 
software packages (i.e., SAS, SPSS, Stata, R, and Mplus) 
[21–28]. However, it is not clear whether these software 
packages increased the uptake of causal mediation anal-
ysis in epidemiologic research. A recent review showed 
that traditional mediation analysis is still most frequently 
used to analyze data from randomized controlled trials 
[29]. It remains unclear whether this also holds for obser-
vational studies, which are common in the field of epide-
miologic research.

Methods
Aim
The aim of this paper is to review the methodological 
characteristics of mediation analyses performed in obser-
vational epidemiologic studies published between 2015 
and 2019 and to provide recommendations for the appli-
cation of mediation analyses in future studies. In this 
paper we performed a scoping review, as the aim of this 
paper is relatively broad and concerns the collection of 
information on a range of methodological characteristics 

rather than information on a clearly defined substan-
tive question [30]. In the next section, we first provide 
an overview of traditional and causal mediation analysis 
methods. Then we describe the methods and results of 
our scoping review. Finally, we provide recommendations 
for the application of mediation analysis in future studies.

Traditional mediation analysis
Traditional mediation analysis is based on the estimation 
of the four pathways shown in Fig. 1 [3, 10]. In Fig. 1A, 
the c path represents the total exposure-outcome effect. 
In Fig. 1B, the a path represents the exposure-mediator 
effect, the b path represents the mediator-outcome effect, 
and the c’ path represents the direct exposure-outcome 
effect. When the mediator and outcome are both contin-
uous, the paths in Fig. 1 are estimated using the following 
three linear regression eqs. (9):

where the c coefficient in eq. 1 represents the total expo-
sure-outcome effect. The a coefficient in eq. 2 represents 
the exposure-mediator effect. The b coefficient in eq.  3 
represents the mediator-outcome effect when adjusted 
for the exposure, and the c’ coefficient represents the 
direct exposure-outcome effect when adjusted for the 
mediator. The i1, i2, and i3 terms represent intercepts and 
the ε1, ε2, and ε3 terms represent residuals. Finally, Z rep-
resents a set of confounders. The inclusion of confound-
ers in eqs. 1, 2, and 3 should always be considered when 
a mediation analysis is performed based on observational 
data, as the exclusion of confounders will result in biased 
effect estimates [3].

Traditional mediation analysis defines the direct, indi-
rect, and total effects in terms of the linear regression 
coefficients from eqs. 1, 2, and 3 [3, 12]. The total effect 
is defined and estimated as the c coefficient from eq.  1 
and the direct effect is defined and estimated as the c’ 
coefficient from eq. 3. The indirect effect is defined and 
estimated as the product of the a and b coefficients (ab) 
and as the difference between the c coefficient and the 
c’ coefficient (c-c’). These two indirect effects are math-
ematically equivalent when the regression coefficients 
are estimated with linear regression [13]. The relative size 
of the mediated effect can be assessed using the propor-
tion mediated, which represents the size of the indirect 
effect estimate relative to the total effect estimate, or by 
interpreting the standardized indirect effect estimate as a 
Cohen’s d [3].

(1)Y = i1 + cX + d1Z + ε1

(2)M = i2 + aX + d2Z + ε2

(3)Y = i3 + c
′
X + bM + d3Z + ε3
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Some of the first papers on mediation analysis recom-
mended to assess the statistical significance of the indi-
rect effect estimate with a z-test or a confidence interval 
based on the multivariate delta standard error [10, 31–
33]. However, these methods are not recommended, 
as they assume that the indirect effect estimate follows 
a normal sampling distribution, which often does not 
hold [34]. As a result, the z-test and confidence interval 
based on the multivariate delta standard error have rela-
tively low power to detect a statistically significant indi-
rect effect [35–37]. Confidence intervals that do take into 
account the nonnormal sampling distribution of the indi-
rect effect estimator are therefore preferred, such as the 
distribution of the product confidence interval, Monte 
Carlo confidence interval, and bootstrap confidence 
intervals [34, 36, 38].

Mediation analysis is based on the assumption of 
temporal precedence of the exposure, mediator, and 
outcome, which means that changes in the exposure 
are assumed to precede changes in the mediator, and 
that changes in the mediator are assumed to precede 
changes in the outcome [3, 39]. Furthermore, traditional 
mediation analysis is based on parametric regression 
assumptions. In other words, the residuals of the linear 
regression models are assumed to be normally distrib-
uted and homoscedastic across values of the independent 
variables in the model, the a, b, c, and c’ coefficients are 
assumed to represent their correct functional form (e.g., 
linear or quadratic), the observations are assumed to be 
independent, and it is assumed that there are no effect 

modifiers or omitted confounders of the estimated effects 
[3, 40]. Effect modifiers can be taken into account by 
including interaction terms (i.e., exposure-by-covariate 
or mediator-by-covariate) in the models and by subse-
quently estimating the direct and indirect effects for dif-
ferent values of the effect modifier. This can, for example, 
be done by estimating the effects for specific categories of 
a categorical effect modifier or by centering a continuous 
effect modifier at a clinically relevant value [3, 11]. The 
effect estimates can be adjusted for measured confound-
ers by adding the confounder variables to all estimated 
regression equations.

Ambiguities arise when traditional mediation analy-
sis is used to estimate the effects for mediation models 
with non-continuous mediator and outcome variables 
[12, 41, 42]. For example, the product-of coefficients and 
difference-in-coefficients methods provide different indi-
rect effect estimates when based on the coefficients from 
non-linear regression models, such as logistic regres-
sion or Cox proportional-hazards regression [12, 41, 
43]. Furthermore, although it has been recommended to 
assess the presence of exposure-mediator interactions in 
the traditional mediation analysis literature, guidance is 
scarce on the estimation and interpretation of effects for 
mediation models with an exposure-mediator interac-
tion [3, 9]. Recent papers have shown that group-mean 
centering of the continuous mediator variable in tradi-
tional mediation analysis yields effect estimates similar 
to the effect estimates from causal mediation analysis 
for mediation models with a continuous outcome and 

Fig. 1  Path diagram of a single mediator model.
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an exposure-mediator interaction [16], but not necessar-
ily for mediation models with a binary outcome and an 
exposure-mediator interaction [18].

Causal mediation analysis
Causal mediation analysis clarifies the ambiguities that 
arise in traditional mediation analysis [16, 18, 44]. Causal 
mediation analysis is based on the counterfactual frame-
work [4, 14, 15], and distinguishes causal effect defini-
tions from causal effect estimation [45]. A strength of the 
causal effect definitions is that they are non-parametric 
and therefore can be applied to any type of mediation 
model to derive the causal effect estimates. This includes 
models with an exposure-mediator interaction and mod-
els with non-continuous mediator variables or non-con-
tinuous outcome variables [46].

Causal effect definitions
Causal mediation analysis defines causal effects as the dif-
ference between two counterfactual outcomes [47, 48]. A 
counterfactual outcome is an individual’s outcome value 
that would be observed when exposed to a certain expo-
sure value. In the remainder of this section we denote 
the outcome as Y, and the exposure values of interest as 
x and x*. In theory, two counterfactual outcomes can be 
observed for one individual over the same time period, 
one based on exposure value x and one based on expo-
sure value x* [47, 48]. The individual’s counterfactual 
outcome under exposure value x is denoted as Yi(x), and 
the individual’s counterfactual outcome under exposure 
value x* is denoted as Yi(x*). The causal exposure effect is 
defined as the difference between these two counterfac-
tual outcomes observed for the same individual over the 
same time period, i.e., Yi(x) – Yi(x∗).

The counterfactual outcomes in a mediation model 
are not only dependent on exposure values, but also on 

mediator values [4]. We denote the mediator as M and 
the mediator values as m. The counterfactual notation for 
the outcome can be extended by including this media-
tor value. An individual’s counterfactual outcome under 
exposure value x and mediator value m is denoted as Yi(x, 
m), and the same individual’s counterfactual outcome 
under exposure value x* and mediator value m as Yi(x*, 
m). The difference between these two counterfactual out-
comes observed for the same individual over the same 
time period is the controlled direct effect (CDE), i.e., 
Yi(x, m) – Yi(x∗, m). The CDE is the direct effect of chang-
ing an individual’s exposure value from x to x*, while 
holding the mediator value constant at m [4]. The media-
tor value m is determined by the researcher and reflects a 
value of clinical or policy relevance [4].

Instead of holding the mediator constant at a prede-
termined value, we can also let the mediator take on the 
value that would naturally be observed under exposure 
values x and x* [4]. Two counterfactual mediator values 
can be observed for an individual under the two expo-
sure values x and x*: the counterfactual mediator value 
under exposure value x, i.e., Mi(x), and the counterfac-
tual mediator value under exposure value x*, i.e., Mi(x*). 
We can now replace mediator value m with these two 
counterfactual mediator values, resulting in four nested 
counterfactual outcome values: Yi(x, Mi(x)), Yi(x, Mi(x∗)), 
Yi(x∗, Mi(x)), and Yi(x∗, Mi(x∗)) [4, 49]. These four coun-
terfactual outcomes are referred to as nested counter-
factual outcomes, because the counterfactual mediator 
values are nested within the counterfactual outcomes val-
ues [4].

Five causal effects are defined based on the differences 
between these nested counterfactual outcomes: the pure 
natural direct effect (PNDE), the total natural direct 
effect (TNDE), the pure natural indirect effect (PNIE), 
the total natural indirect effect (TNIE), and the total 

Table 1  Overview of the definitions and interpretations of the causal mediation effects

Abbreviations: CDE, controlled direct effect; PNDE, pure natural direct effect; TNDE, total natural direct effect; PNIE, pure natural indirect effect; TNIE, total natural 
indirect effect; TE, total effect

Effect Definition Interpretation

CDE Yi(x, m) – Yi(x
∗, m) The direct effect of changing the individual’s exposure value from x to x*, while holding the mediator value constant 

at m.

PNDE Yi(x, Mi(x
∗)) − Yi(x

∗, Mi(x
∗)) The natural direct effect of changing the individual’s exposure value from x to x*, while holding the mediator for that 

individual constant at the value that would naturally be observed under exposure value x*.

TNDE Yi(x, Mi(x)) − Yi(x
∗, Mi(x)) The natural direct effect of changing the individual’s exposure value from x to x*, while holding the mediator for that 

individual constant at the value that would naturally be observed under exposure value x.

PNIE Yi(x
∗, Mi(x)) − Yi(x

∗, Mi(x
∗)) The natural indirect effect of changing the individual’s mediator value from M(x*) to M(x), while holding the indi-

vidual’s exposure value constant at x*.

TNIE Yi(x, Mi(x)) − Yi(x, Mi(x
∗)) The natural indirect effect of changing the individual’s mediator value from M(x*) to M(x), while holding the indi-

vidual’s exposure value constant at x.

TE Yi(x, Mi(x)) − Yi(x
∗, Mi(x

∗)) The total effect of changing the individual’s exposure value from x to x*.
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effect (TE) [4, 15]. Table 1 provides an overview of these 
causal effects and their respective interpretations. For 
the natural direct effects we block the effect through the 
mediator by holding each individual’s mediator constant 
at either Mi(x) or Mi(x*), while for the natural indirect 
effects we block the effect through the exposure by hold-
ing the exposure constant at either x and x* [1, 50]. For 
the TE, we allow information to flow through both the 
exposure and mediator, varying both the exposure value 
and the counterfactual mediator value.

The causal effects are defined at the individual level, but 
in practice we are unable to observe multiple counterfac-
tual outcomes for the same individual over the same time 
period [47, 48]. Therefore, we are unable to estimate indi-
vidual-level causal effects. This has been referred to as the 
fundamental problem of causal inference [47]. Instead, we 
can estimate the population-average causal effects based 
on the expected difference between two population-
average (nested) counterfactual outcomes [4, 14, 47]. To 
ensure that the PNDE, TNDE, PNIE, and TNIE have a 
causal interpretation at the population-average level, the 
following four assumptions need to hold [4, 46]:

1.	 no unmeasured confounding of the exposure-out-
come effect;

2.	 no unmeasured confounding of the mediator-out-
come effect;

3.	 no unmeasured confounding of the exposure-media-
tor effect;

4.	 no confounders of the mediator-outcome effect that 
are affected by the exposure.

Assumption 4 is also known as the cross-world inde-
pendence assumption. In practice this is often a strong 
assumption [51], for example because often there will be 
multiple mediators of the exposure-outcome effect. For 
the CDE only assumptions 1 and 2 have to hold, and for 
the TE only assumption 1 has to hold. Finally, consist-
ency is assumed, which means that the observed media-
tor and outcome values would also have been observed 
had the individual randomly been assigned the observed 
exposure and mediator values [46, 52].

Causal effect estimation
Various estimation approaches have been developed 
to estimate the causal direct, indirect, and total effects 
at the population-average level, including simulations, 
numerical integration, multiple regression analysis, 
and natural effect models [19, 23, 53–55]. Most of these 
methods use eq.  2 and/or eq.  3 as input. Provided that 
the relevant parametric assumptions hold, the regression 
coefficients from eqs. 2 and 3 can be used to compute the 
causal mediation effects. To accommodate the estimation 

of pure and total natural direct and indirect effects, eq. 3 
is typically extended with an exposure-mediator interac-
tion term.

The simulation-based approach can be applied based 
on both parametric and non-parametric models [25, 
53]. The parametric simulation-based approach uses the 
sampling distributions of the estimated parameters from 
eqs. 2 and 3 to simulate the potential mediator and out-
come values for each subject. Based on the simulated 
potential outcomes, the causal effects are computed for 
each subject. Subsequently, the causal effects are aver-
aged to arrive at the population-average causal effects. 
The non-parametric simulation-based approach esti-
mates possibly non-parametric models for the mediator 
and outcome variables within a prespecified number of 
bootstrap resamples. Based on these models the potential 
mediator and outcome values are simulated for each sub-
ject. Then based on these simulated potential outcomes, 
the causal effects are estimated and averaged to get the 
population-average causal effects.

Numerical integration uses eqs. 2 and 3 as input [4, 23]. 
Based on these equations, average expected outcome val-
ues are estimated conditional on the two exposure levels 
of interest, i.e., x and x*, and all mediator values. These 
expected outcome values are weighted by the mediator 
distributions observed under x and x* to estimate the 
population-average nested potential outcomes, which are 
subsequently subtracted to get the population-average 
causal effect estimates.

The regression-based method estimates the average 
potential outcomes based on the regression coefficients 
in eqs.  2 and 3 [19, 46, 56]. These estimated potential 
outcomes are subsequently subtracted to estimate the 
population-average causal mediation effects. The regres-
sion-based effects for mediation models with a binary 
or time-to-event outcome were originally derived on the 
risk-ratio scale, therefore this method poses an additional 
rare outcome assumption when the causal effects are esti-
mated on the odds-ratio scale or hazard-ratio scale [56, 
57]. This assumption requires the outcome prevalence 
to be low across all strata of the exposure and mediator 
variable [58]. When this assumption is violated, the effect 
estimates on the odds-ratio scale or hazard-ratio scale 
can still be used to assess the presence of a mediated 
effect, but they do not have a causal interpretation [56]. 
To ensure a causal interpretation, the effects can alterna-
tively be estimated on the risk-ratio scale using log-linear 
regression or on the survival-time ratio scale using accel-
erated failure time models [28, 57].

In natural effect models the natural direct effect and 
natural indirect effect are each represented by a single 
regression coefficient [25]. In contrast with the other 
estimation methods, natural effect models require the 
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estimation of only one of the aforementioned regression 
equations, i.e., eqs.  2 and 3, in addition to the natural 
effect model [59]. Natural effect models are estimated 
using a weighting-based approach or a imputation-based 
approach. The weighting-based approach creates an 
expanded dataset with weights for each subject based on 
eq. 2 [54, 60]. The natural effects model is subsequently 
estimated by regressing the outcome on the two expo-
sure values of interested, i.e., x and x*, and the covariates, 
while weighting each observation based on the computed 
weights. The imputation-based approach creates an 
expanded dataset in which the missing potential outcome 
values are imputed based on information from eq. 3 [55]. 
Based on this complete dataset, a natural effects model is 
estimated.

Traditional mediation analysis versus causal mediation 
analysis
For certain mediation models, traditional mediation anal-
ysis provides the same effect estimates as causal media-
tion analysis. Traditional mediation analysis provides 
the same effect estimates as causal mediation analysis 
for single mediator models with a continuous mediator 
and a continuous outcome [16, 17, 45]. This also means 
that traditional mediation analysis fails to provide causal 
effect estimates when the four no (unmeasured) con-
founding assumptions are violated. For mediation mod-
els with a binary or time-to-event outcome, traditional 
and causal mediation analysis do not necessarily pro-
vide the same effect estimates [16, 18]. For these models, 
the effect estimation in traditional mediation analysis is 
most closely related to the regression-based estimation 
approach in causal mediation analysis, which also esti-
mates the indirect effect using the product-of-coefficients 
method in the absence of exposure-mediator interaction. 
However, an important difference is the rare outcome 
assumption posed by causal mediation analysis for medi-
ation models with a binary or time-to-event outcome. 
This rare outcome assumption clarifies that the tradi-
tional effect estimates based on logistic regression and 
Cox proportional hazards regression only have a causal 
interpretation when the outcome is rare.

When there are multiple mediators of the exposure-
outcome effect, it is important to take into account all 
these mediators, because they may be correlated or they 
may influence one another violating the fourth no con-
founding assumption, i.e., no confounders of the medi-
ator-outcome effect that are affected by the exposure. 
Causal mediation analysis clarifies the necessary addi-
tional causal assumptions for models with multiple medi-
ators and various methods have been developed for the 
estimation of causal effects for multiple mediator models 
[25, 61–63].

In recent years, various causal mediation software 
packages have been developed that enable researchers to 
apply causal mediation analysis based on only a few lines 
of code [21–27, 64]. However, it remains unclear whether 
the availability of these causal mediation programs has 
increased the uptake of causal mediation analysis in prac-
tice. In the next section we describe the set-up of our 
scoping review in which we collected information on the 
methodological characteristics of mediation analyses in 
published observational studies, with a special focus on 
the mediation analysis method used.

Study design
This scoping review is reported in accordance with 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) statement [65] and the 
PRISMA-ScR extension [66]. The PRISMA-ScR checklist 
can be found in supplementary appendix 1. The protocol 
for this scoping review was not registered in the interna-
tional register of systematic reviews, because we did not 
extract data on clinical outcomes [67].

Our search strategy is based on the MEDLINE search 
performed by Vo and colleagues [29] who conducted 
a review aimed to assess the methodological character-
istics of mediation analyses conducted in randomized 
controlled trials between 2017 and 2018. We adapted the 
search conducted by Vo and colleagues [29] in four ways. 
First, we searched both the MEDLINE and EMBASE, 
as EMBASE has been shown to contain many unique 
references compared to MEDLINE when performing 
medically-oriented searches [68]. Second, we extended 
the search period to 5 years, including papers published 
between January 1st 2015 and December 31st 2019, as 
estimation methods for causal mediation analysis have 
been implemented in all major software packages since 
2015 [21–28]. Third, in addition to the keywords “media-
tion analysis”, mediation, and mediator used by Vo and 
colleagues [29], we also included the following keywords 
to increase the chances of finding papers that conducted 
a mediation analysis: “mediation analys*”, mediators, 
“indirect effect”, “indirect effects”, “causal steps”, “product-
of-coefficients”, and “difference-in-coefficients”. Fourth, 
we searched for observational studies only, as the ear-
lier study performed by Vo and colleagues [29] exam-
ined the methodological characteristics of mediation 
analyses conducted in randomized controlled trials. The 
MEDLINE (accessed through PubMed) and EMBASE 
(accessed through embase.​com) searches were per-
formed on May 20th 2020. The complete MEDLINE and 
EMBASE search strategies can be found in supplemen-
tary appendix 2.

After removing duplicate records, two authors 
(JJMR and SJL) independently screened the titles and 

http://embase.com
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abstracts of the identified records for eligibility using 
Rayyan software [69]. Records were eligible for inclu-
sion when published between 2015 and 2019, written 
in English, based on observational human subjects 
data, and the title or abstract indicated that it con-
cerned an original research paper in which media-
tion analysis was performed. Full texts of the eligible 
records were obtained. When full texts were not avail-
able, full texts were requested from the corresponding 
author by email. Two authors (JJMR and SJL) indepen-
dently screened the full texts for eligibility. Full texts in 
which mediation analysis was not performed as one of 
the primary analysis methods and conference abstracts 
were excluded, as we expected that these records did 
not contain a sufficient amount of details on the per-
formed mediation analyses. Disagreements at any 
stage of the screening process were resolved by a third 
author (MJV).

A data extraction form was developed and pilot 
tested by one author, who subsequently extracted data 
from all eligible papers (JJMR). To ensure the qual-
ity of the extracted data, two authors (MJV and SJL) 
each independently extracted data from a random sub-
sample of 12.5% of the eligible papers, i.e., 25% of the 
papers in total. Disagreements were resolved through 
discussion. The data extraction included the mediation 
analysis method used, publication year, study design, 
sample size, software used, the number of exposure, 
mediator, and outcome variables, each variable’s meas-
urement level, use of a path diagram, use of repeated 
measurements, single or multiple mediator model, the 
types of estimated regression models, the type of con-
fidence interval for the indirect effect estimates, the 
reporting of standard errors and p-values for the indi-
rect effect estimates, use of effect size measures, inclu-
sion of confounders in the analyses, use of sensitivity 
analyses for unmeasured confounders, assessment of 
exposure-mediator interaction, assessment of effect 
modifiers (i.e., exposure-by-covariate or mediator-
by-covariate), and the discussion of the rare outcome 
assumption for mediation models with a binary or 
time-to-event outcome estimated based on traditional 
mediation analysis or regression-based causal media-
tion analysis. For papers based on longitudinal data we 
extracted the number of measurement waves included 
in the analyses and the type of longitudinal media-
tion model estimated. For multiple mediator models 
we extracted the type of multiple mediator model and 
the assessment of mediator-by-mediator interactions. 
The extracted data were summarized using descriptive 
statistics stratified by the mediation analysis method 
used. Categorical variables were summarized using 
frequencies and percentages, and continuous variables 

were summarized using medians and interquartile 
ranges.

Results
The search returned 369 records through the MEDLINE 
database and 381 records through the EMBASE database 
(Fig. 2). After removing duplicates, 633 records remained 
for the title and abstract screening. Conflicting deci-
sions were made for 25 records (3.9%) and were resolved 
by a third author. A total of 407 records were excluded 
after the title and abstract screening, with the most com-
mon reason for exclusion being that the title or abstract 
did not indicate that mediation analysis was performed 
(n = 323). Two hundred twenty-six records were eligible 
for full-text screening. For one of the eligible records, 
no full text could be obtained. Conflicting decisions 
were made for 10 papers (4.4%) and were resolved by a 
third author. Based on the full text screening, another 
43 records were excluded, of which 34 did not perform 
mediation analysis as one of the primary analyses, 11 
were conference abstracts, 5 provided too little infor-
mation for data extraction, and 1 paper was a methodo-
logical study. A total of 174 papers were included in the 
review. A complete list of included papers can be found 
in the supplementary appendix 3 and the dataset with the 
extracted data in supplementary appendix 4.

Table  2 provides an overview of the methodologi-
cal characteristics of the mediation analyses performed 
by the studies included in this scoping review. Of the 
174 studies included in this scoping review, 123 used 
traditional mediation analysis (70.7%). Twenty-eight 
papers (16.1%) used the causal steps method (n = 14), 
the change-in-coefficient method (n = 9), or the test of 
joint significance (n = 5). In line with a previous paper, 
we define the change-in-coefficient method as the assess-
ment of the presence of a mediated effect based on the 
change in the exposure-outcome coefficient before and 
after inclusion of the mediator in the model [20]. The test 
of joint significance is based on the joint statistical signif-
icance of the exposure-mediator and mediator-outcome 
effect estimates. The causal steps method, change-in-
coefficient method, and test of joint significance are simi-
lar in that they do not provide indirect effect estimates. 
Therefore, we collapsed the descriptive statistics in 
Table 2 across these three methods. Twenty-three papers 
used causal mediation analysis (13.2%), of which 10 used 
the regression-based estimation approach (43.5%), 7 
used the simulation-based estimation approach (30.4%), 
4 used natural effects models (17.4%), 1 used numerical 
integration (4.3%), and for 1 paper it remained unclear 
which estimation method was used.

Twenty-one studies were published in 2015 (12.1%), 29 
in 2016 (16.7%), 27 in 2017 (15.5%), 47 in 2018 (27.0%), 



Page 8 of 17Rijnhart et al. BMC Med Res Methodol          (2021) 21:226 

and 50 in 2019 (28.7%). The cross-sectional study design 
was the most common (48.3%), followed by the prospec-
tive cohort design (44.8%). The case-control design and 
retrospective cohort design were less common (4.0 and 
2.9% respectively). Studies using causal mediation analy-
sis were more often based on a case-control design and 
less often on a cross-sectional design than studies using 
other mediation analysis methods. The median num-
ber of participants eligible for analyses was 428.5 (inter-
quartile range: 157.5–2026.0). SPSS was most commonly 
used to perform mediation analysis (38.5%), followed by 
Stata (15.5%), Mplus (14.9%), SAS (12.1%), R (8.0%), and 

LISREL (0.6%). Thirteen studies did not mention the used 
software program (7.5%). Five studies mentioned the use 
of multiple software programs (2.9%).

Most studies considered one exposure variable 
(66.7%) or one outcome variable (72.4%). Eighty-six 
studies considered one mediator variable (49.4%), 35 
studies considered two mediator variables (20.1%), and 
53 studies considered three or more mediator variables 
(30.5%). The majority of studies performed mediation 
analysis based on continuous exposure, mediator, and 
outcome variables. Causal mediation analysis was used 
relatively often to analyze binary outcomes, but was 

Fig. 2  Flow diagram representing the process of identifying papers eligible for the review of the methodological characteristics of mediation 
analyses performed based on observational epidemiologic studies published between 2015 and 2019
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Table 2  Methodological Characteristics of Mediation Analyses Performed Based on Observational Epidemiologic Studies Published 
Between 2015 and 2019

Methodological characteristics Overall (n = 174) Causal steps, change-
in-coefficient, and joint 
significance (n = 28)

Traditional 
mediation analysis 
(n = 123)

Causal mediation analysis
(n = 23)

Year published, n (%)a

  2015 21 (12.1) 4 (14.3) 16 (13.0) 1 (4.3)

  2016 29 (16.7) 8 (28.6) 16 (13.0) 5 (21.7)

  2017 27 (15.5) 2 (7.1) 21 (17.1) 4 (17.4)

  2018 47 (27.0) 6 (21.4) 34 (27.6) 7 (30.4)

  2019 50 (28.7) 8 (28.6) 36 (29.3) 6 (26.1)

Study design, n (%)a

  Cross-sectional 84 (48.3) 15 (53.6) 64 (52.0) 5 (21.7)

  Case-control 7 (4.0) 1 (3.6) 3 (2.4) 3 (13.0)

  Prospective cohort 78 (44.8) 12 (42.9) 53 (43.1) 13 (56.5)

  Retrospective cohort 5 (2.9) 0 (0.0) 3 (2.4) 2 (8.7)

  Analytical sample size, median 
(IQR)

428.5 (157.5–2026.0) 443.5 (146.5–1442.3) 326.0 (147.0–935.0) 2249.0 (703.0–9484.0)

Software program used, n (%)a

  SAS 21 (12.1) 4 (14.3) 9 (7.3) 8 (34.8)

  Stata 27 (15.5) 5 (17.9) 18 (14.6) 4 (17.4)

  SPSS 67 (38.5) 13 (46.4) 54 (43.9) 0 (0.0)

  Mplus 26 (14.9) 1 (3.6) 25 (20.3) 0 (0.0)

  R 14 (8.0) 0 (0.0) 5 (4.1) 9 (39.1)

  LISREL 1 (0.6) 0 (0.0) 1 (0.8) 0 (0.0)

  Unclear, multiple programs used 5 (2.9) 1 (3.6) 4 (3.3) 0 (0.0)

  Not mentioned 13 (7.5) 4 (14.3) 7 (5.7) 2 (8.7)

Number of exposures, n (%)a

  1 116 (66.7) 19 (67.9) 81 (65.9) 16 (69.6)

  2 35 (20.1) 3 (10.7) 26 (21.1) 6 (26.1)

  3 or more (max. 14) 23 (13.2) 6 (21.4) 16 (13.0) 1 (4.3)

Type of exposure, n (% of studies)b

  Continuous 105 (60.3) 15 (53.6) 84 (68.3) 6 (26.1)

  Binary 51 (29.3) 8 (28.6) 28 (22.8) 15 (65.2)

  Categorical 20 (11.5) 5 (17.9) 11 (8.9) 4 (17.4)

  Latent 10 (5.7) 2 (7.1) 8 (34.8) 0 (0.0)

Number of mediators, n (%)a

  1 86 (49.4) 14 (50.0) 59 (48.0) 13 (56.5)

  2 35 (20.1) 5 (17.9) 28 (22.8) 2 (8.7)

  3 or more (max. 19) 53 (30.5) 9 (32.1) 36 (29.3) 8 (34.8)

Type of mediator, n (% of studies)b

  Continuous 136 (78.2) 19 (67.9) 103 (83.7) 14 (60.9)

  Binary 31 (17.8) 10 (35.7) 13 (10.6) 8 (34.8)

  Categorical 9 (5.2) 3 (10.7) 3 (2.4) 3 (13.0)

  Count 1 (0.6) 0 (0.0) 0 (0.0) 1 (4.3)

  Time-to-event 2 (1.1) 0 (0.0) 2 (1.6) 0 (0.0)

  Latent 10 (5.7) 3 (10.7) 7 (5.7) 0 (0.0)

Number of outcomes, n (%)a

  1 126 (72.4) 22 (78.6) 88 (71.5) 16 (69.6)

  2 26 (15.0) 2 (7.1) 22 (17.9) 2 (8.7)

  3 or more (max. 8) 22 (12.6) 4 (14.3) 13 (10.6) 5 (21.6)
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Table 2  (continued)

Methodological characteristics Overall (n = 174) Causal steps, change-
in-coefficient, and joint 
significance (n = 28)

Traditional 
mediation analysis 
(n = 123)

Causal mediation analysis
(n = 23)

Type of outcome, n (% of studies)b

  Continuous 110 (63.2) 18 (64.3) 86 (69.9) 6 (26.1)

  Binary 47 (27.0) 6 (21.4) 27 (22.0) 14 (60.9)

  Categorical 6 (3.4) 2 (7.1) 3 (2.4) 1 (4.3)

  Count 4 (2.3) 0 (0.0) 2 (1.6) 2 (8.7)

  Time-to-event 8 (4.6) 3 (10.7) 3 (2.4) 2 (8.7)

  Latent 10 (5.7) 3 (10.7) 7 (5.7) 0 (0.0)

Diagram of model included, n (%)a

  Yes 130 (74.7) 14 (50.0) 106 (86.2) 10 (43.5)

  No 44 (25.3) 14 (50.0) 17 (13.8) 13 (56.5)

Repeated measurements, n (%)a

  Yes 41 (23.6) 6 (21.4) 28 (22.8) 7 (30.4)

  No 132 (75.9) 22 (78.6) 94 (76.4) 16 (69.6)

  Unclear 1 (0.6) 0 (0.0) 1 (0.8) 0 (0.0)

Type of mediation model, n (%)a

  Single mediator 114 (65.5) 20 (71.4) 74 (60.2) 20 (87.0)

  Multiple mediator 41 (23.6) 5 (17.9) 34 (27.6) 2 (8.7)

  Both single and multiple mediator 16 (9.2) 3 (10.7) 12 (9.8) 1 (4.3)

  Unclear 3 (1.7) 0 (0.0) 3 (2.4) 0 (0.0)

Regression for the mediator equation, n (% of studies)b

  Linear 122 (70.1) 14 (50.0) 98 (79.7) 10 (43.4)

  Logistic 15 (8.6) 2 (7.1) 7 (5.7) 6 (26.1)

  Poisson 1 (0.6) 0 (0.0) 0 (0.0) 1 (4.3)

  Cox proportional hazards 2 (1.1) 0 (0.0) 2 (1.6) 0 (0.0)

  Multilevel linear 7 (4.0) 0 (0.0) 7 (5.7) 0 (0.0)

  Multilevel logistic 1 (0.6) 1 (3.6) 0 (0.0) 0 (0.0)

  Unclear 16 (9.2) 2 (7.1) 8 (6.5) 6 (26.1)

  Not estimated 12 (6.9) 9 (32.1) 3 (2.4) 0 (0.0)

Regression for the outcome equation, n (% of studies)b

  Linear 109 (62.6) 17 (60.7) 87 (70.7) 5 (21.7)

  Logistic 39 (22.4) 5 (17.9) 23 (18.7) 11 (47.8)

  Probit 1 (0.6) 0 (0.0) 1 (0.8) 0 (0.0)

  Log-linear 1 (0.6) 0 (0.0) 0 (0.0) 1 (4.3)

  Multinomial logistic 1 (0.6) 1 (3.6) 2 (1.6) 0 (0.0)

  Poisson 3 (1.7) 0 (0.0) 0 (0.0) 3 (13.0)

  Negative binomial 3 (1.7) 0 (0.0) 1 (0.8) 2 (8.7)

  Cox proportional hazards 10 (5.7) 4 (14.3) 4 (3.3) 1 (4.3)

  Additive hazards model 1 (0.6) 0 (0.0) 0 (0.0) 1 (4.3)

  Multilevel linear 9 (5.2) 2 (7.1) 7 (5.7) 0 (0.0)

  Multilevel logistic 1 (0.6) 0 (0.0) 1 (0.8) 0 (0.0)

  Multilevel log-linear 1 (0.6) 0 (0.0) 1 (0.8) 0 (0.0)

  Unclear 3 (1.7) 1 (3.6) 1 (0.8) 1 (4.3)

Type of confidence interval for the indirect effect, n (%)a

  Normal-based 7 (4.0) 0 (0.0) 6 (4.9) 1 (4.3)

  Percentile bootstrap 7 (4.0) 0 (0.0) 5 (4.1) 2 (8.7)

  Bias-corrected bootstrap 35 (20.1) 0 (0.0) 35 (28.5) 0 (0.0)

  Bias-corrected and accelerated 
bootstrap

2 (1.1) 0 (0.0) 2 (1.6) 0 (0.0)
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never used to analyze latent variables. One-hundred-
thirty studies reported a diagram of the mediation 
model (74.7%). Ten of these studies included confound-
ers in the diagram (7.7%).

Forty-one studies performed mediation analysis 
based on repeated measurements of the variables in 
the mediation model (23.6%). The median amount of 
measurement waves among these studies was 2.0 (IQR: 
2.0–4.0). The methodology used to analyze repeated 
measurements varied from adjustment for first-wave 

measurements to more complicated models, such as 
cross-lagged panel models, latent growth curve mod-
els, and multilevel models. A detailed table of the 
used methods to estimate mediation models based on 
repeated measurements can be found in supplementary 
appendix 5.

One-hundred-fourteen studies reported single media-
tor models only (65.5%), 41 studies reported multiple 
mediator models only (23.6%), and 16 studies reported 
both single and multiple mediator models (9.2%). Of the 

Table 2  (continued)

Methodological characteristics Overall (n = 174) Causal steps, change-
in-coefficient, and joint 
significance (n = 28)

Traditional 
mediation analysis 
(n = 123)

Causal mediation analysis
(n = 23)

  Percentile and bias-corrected and 
accelerated bootstrap

1 (0.6) 0 (0.0) 1 (0.8) 0 (0.0)

  Bootstrap, not specified 36 (20.7) 1 (3.6) 28 (22.8) 7 (30.4)

  Distribution of the product 3 (1.7) 0 (0.0) 3 (2.4) 0 (0.0)

  Monte Carlo 2 (1.1) 0 (0.0) 2 (1.6) 0 (0.0)

  Bayesian credible intervals 3 (1.7) 0 (0.0) 3 (2.4) 0 (0.0)

  Unclear 18 (10.3) 0 (0.0) 8 (6.5) 10 (43.5)

  Not reported 60 (34.5) 27 (96.4) 30 (24.4) 3 (13.0)

Standard error for indirect effect, n (%)a

  Yes 37 (21.3) 0 (0.0) 35 (28.5) 2 (8.7)

  No 137 (78.7) 28 (100.0) 88 (71.5) 21 (91.3)

Statistical test for indirect effect, n (%)a

  Yes 62 (35.6) 7 (25.0) 46 (37.4) 9 (39.1)

  No 112 (64.4) 21 (75.0) 77 (62.6) 14 (58.3)

Effect size measure, n (%)a

  Proportion mediated 65 (37.4) 3 (10.7) 43 (35.0) 19 (82.6)

  Standardized effect 6 (3.4) 0 (0.0) 6 (4.9) 0 (0.0)

  No effect size measure 103 (59.2) 25 (89.3) 74 (60.2) 4 (17.4)

Inclusion of confounders, n (%)a

  Yes 125 (71.8) 19 (67.9) 88 (71.5) 18 (78.3)

  No 41 (23.6) 8 (28.6) 31 (25.2) 2 (8.7)

  Unclear 8 (4.6) 1 (3.6) 4 (3.3) 3 (13.0)

Sensitivity analyses for unmeasured confounders, n (%)a

  Yes 3 (1.7) 0 (0.0) 0 (0.0) 3 (13.0)

  No 170 (97.7) 28 (100.0) 123 (0.0) 19 (82.6)

  No, but discussed as unnecessary 1 (0.6) 0 (0.0) 0 (0.0) 1 (4.3)

Effect modifiers considered, n (%)a

  Yes, a priori stratification 10 (5.7) 3 (10.7) 5 (4.1) 2 (8.7)

  Yes, through an interaction term 28 (16.1) 6 (21.4) 19 (15.4) 3 (13.0)

  No 136 (78.2) 19 (67.9) 99 (80.5) 18 (78.3)

Assessment of exposure-mediator interaction, n (%)a

  Yes 17 (9.8) 3 (10.7) 5 (4.1) 9 (39.1)

  No 157 (90.2) 25 (89.3) 118 (95.9) 14 (60.9)
a  The percentages are computed based on the column frequencies
b  Because some studies considered multiple exposure, mediator, and outcome variables, the total number is higher than the number of studies. The percentages 
reflect the percentages of the total number of studies, e.g., 60.3% of the studies included analyses with a continuous exposure variable versus 39.7% which did not 
include analyses with a continuous exposure variable
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16 studies reporting both single and multiple mediator 
models, 10 studies reported parallel multiple mediator 
models in addition to single mediator models (62.5%), 
5 studies reported serial multiple mediator models in 
addition to single mediator models (31.3%), and 1 study 
reported both parallel and serial multiple mediator mod-
els in additional to single mediator models (6.3%). Of all 
57 studies reporting multiple mediator models, 37 studies 
reported parallel multiple mediator models (64.9%), 18 
studies reported serial multiple mediator models (31.6%), 
and 2 studies reported both parallel and serial multiple 
mediator models (3.5%). None of these studies reported 
that they assessed mediator-by-mediator interactions. 
Most studies using causal mediation analysis reported 
single mediator models (87.5%).

Most studies used linear regression to estimate the 
mediator and outcome eqs. (70.1 and 62.6%, respec-
tively). Of the 47 studies using a (traditional or causal) 
regression-based estimation approach for models with a 
binary or time-to-event outcome, 1 study discussed the 
rare outcome assumption (2.1%) and 3 studies estimated 
effects on the relative-risk scale or risk-difference scale 
(6.4%). The latter 4 studies all used causal mediation anal-
ysis. Of the 123 studies using traditional mediation analy-
sis, 98 used the product-of-coefficients estimator (79.7%), 
3 used the difference-in-coefficients estimator (2.4%), 16 
did not specify the used method for calculating the indi-
rect effect (13.0%), and 6 did not report indirect effect 
estimates (4.9%). Bias-corrected bootstrap confidence 
intervals were the most commonly reported type of con-
fidence interval for the indirect effect estimates (20.1%). 
Thirty-seven studies reported a standard error for the 
indirect effect estimate (21.3%) and 62 studies reported a 
p-value for the indirect effect estimate (35.6%). The pro-
portion mediated was the most commonly used effect 
size measure (37.5%). Six studies determined effect sizes 
by comparing standardized effect estimates with Cohen’s 
d (3.4%).

Most studies included confounders in the mediation 
analyses (71.8%). Only 3 studies performed sensitivity 
analyses for unmeasured confounders (1.7%), and 1 study 
discussed the no-unmeasured confounder assumptions 
and concluded that the estimated models were adjusted 
for all important confounders (0.6%). All studies per-
forming or discussing sensitivity analyses for unmeas-
ured confounders used causal mediation analysis. Most 
studies did not investigate moderated mediation (78.2%). 
Ten studies stratified the analyses a priori based on an 
effect modifier (5.7%). Twenty-eight studies investigated 
moderation by including interaction terms in the models 
(16.1%), of which 17 studies reported that the coefficient 
for the interaction term was not statistically significant. 
Of the 11 studies with statistically significant interaction 

effects, 5 studies reported overall effects (45.5%), 3 stud-
ies reported the estimated coefficient for the interaction 
term (27.3%), and 3 studies stratified the analyses based 
on the effect modifier (27.3%). Of the 17 studies that 
tested exposure-mediator interaction, 8 reported a sta-
tistically significant interaction (35.3%). Only 2 of these 
studies incorporated the exposure-mediator interaction 
in the effect estimates. Both of these studies used causal 
mediation analysis to estimate the effects.

Discussion
The aim of this paper was to review the methodological 
characteristics of mediation analyses performed in obser-
vational epidemiologic studies published between 2015 
and 2019 and to provide recommendations for the appli-
cation of mediation analyses in future studies. This scop-
ing review showed that traditional mediation analysis 
was frequently used in observational studies published 
between 2015 and 2019. A minority of studies used causal 
mediation analysis and compared to the other media-
tion analysis methods, causal mediation analysis was 
less often used to analyze relatively complex mediation 
models, such as models with latent variables and mul-
tiple mediator models. The majority of studies included 
measured confounders in their mediation analyses. How-
ever, sensitivity analyses for unmeasured confounding, 
exposure-mediator interaction, and the rare outcome 
assumption for binary and time-to-event outcomes were 
only discussed in a few papers, most of which used causal 
mediation analysis. Based on the findings in this scoping 
review, the next section provides recommendations for 
conducting mediation analysis based on real-life data.

Recommendations for conducting mediation analysis
Mediation analysis method
Although the causal steps method, change-in-coefficient 
method, and the test of joint significance are relatively old 
methods for mediation analysis, they were still applied in 
over 15 % of the papers included in this scoping review. 
These methods are not preferred for mediation analysis, 
as they do not necessarily provide mediated effect esti-
mates [70]. Furthermore, the causal steps method and the 
test of joint significance rely completely on the statisti-
cal significance of the estimated coefficients. The causal 
steps method does therefore not account for inconsistent 
mediation models in which the direct and indirect effect 
estimates have opposite signs, where the total effect esti-
mate can approach zero [11, 34, 71]. Therefore, media-
tion effects might be missed when relying on the causal 
steps criteria. The change-in-coefficient method may 
result in biased conclusions for models with a binary or 
time-to-event outcome as the change in the coefficient 
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may reflect a change in the scales of the effect estimates 
(i.e., non-collapsibility) instead of mediation [41, 44, 72].

Although traditional and causal mediation analysis 
provide the same effect estimates for some models, causal 
mediation analysis is generally preferred over traditional 
mediation analysis. Causal mediation analysis explicitly 
lays out all assumptions needed for the causal interpre-
tation of the effect estimates [19, 73]. Although some of 
these causal assumptions are the same as the parametric 
assumptions posed by the other mediation analysis meth-
ods, causal mediation analysis also provides guidance for 
when these assumptions do not hold [74]. For example, 
when there are unmeasured confounders, sensitivity 
analyses might be used to assess how the effect estimates 
change based on a range of plausible assumptions regard-
ing the magnitude of the effect of the confounder on the 
variables in the mediation model [53, 75–77]. The clarifi-
cation of the causal assumptions is an important contri-
bution of causal mediation analysis, as mediation models 
are inherently causal models.

Causal mediation analysis is also preferred over tradi-
tional mediation analysis as it provides causal effect defi-
nitions that can be used to estimate causal effects for any 
mediation model [45]. In contrast, the traditional estima-
tors were originally derived based on linear regression 
coefficients [9], and are also applied based on the coef-
ficients from other types of regression models, such as 
logistic regression and Cox regression [12, 78]. Provided 
that the no (unmeasured) confounding assumptions hold, 
traditional mediation analysis provides causal effect esti-
mates for mediation models estimated with linear regres-
sion [16, 17, 19]. However, when eq. 1 is estimated with 
linear regression and eq.  2 is estimated with non-linear 
regression, e.g., logistic regression or Cox proportional 
hazards regression, traditional and causal mediation 
analysis only provide the same effect estimates when the 
mediator follows a normal distribution, the outcome is 
rare, and interactions are absent [17, 19, 79]. When there 
is exposure-mediator interaction in a mediation model 
with a binary outcome variable, the traditional direct 
effect estimates map onto the causal CDE estimates, 
rather than the causal PNDE and TNDE estimates [18].

Parametric and causal assumptions
It is generally recommended to assess and discuss the 
relevant parametric and causal assumptions. The no 
(unmeasured) confounding assumptions are essential 
to ensure a causal interpretation of the effect estimates 
and are especially relevant for observational studies, as 
all paths in the mediation model are observational and 
adjustment for confounders is essential to ensure the 
causal interpretation of the effect estimates. Directed 

acyclic graphs (DAGs) can be used to help determine 
the confounders of the paths in the mediation model, 
as DAGs visualize the causal paths in the mediation 
model, including the confounders of these paths [49, 
80]. The majority of studies in this review reported a 
path diagram of the mediation model, but these path 
diagrams are different from DAGs, as path diagrams 
typically represent the statistical model, while DAGs 
represent the theoretical model including (unmeas-
ured) confounders of each pathway in the mediation 
model [81]. Future studies could clarify the causal 
structure of their mediation model by reporting a DAG, 
possibly in addition to the path diagram. The potential 
impact of unmeasured confounders on the effect esti-
mates can be assessed through sensitivity analyses [53, 
77]. When the fourth no confounding assumption is 
violated, multiple mediator models can be estimated to 
take into account the additional mediator variables [25, 
61–63].

The presence of covariate-exposure, covariate-media-
tor, exposure-mediator and mediator-mediator interac-
tions can be assessed by adding interaction terms to the 
statistical models. This is important because the overall 
effects ignore important information on the direct and 
indirect effect estimates when statistically significant 
or clinically relevant interactions are not taken into 
account [28, 82].

Finally, it is important to assess the rare-outcome 
assumption when using a regression-based estimation 
approach for the analysis of a mediation model with a 
binary or time-to-event outcome, as the effect estimates 
on the odds-ratio scale and hazard-ratio scale only have 
a causal interpretation when the outcome prevalence 
is low across all strata of the exposure  and mediator 
variables [83]. When the rare-outcome assumption is 
violated it is advised to estimate the effects for models 
with a binary outcome with log-linear regression and 
the effects for models with a time-to-event outcome 
with accelerated failure time models [28, 57].

Statistical inference
Over one-third of the papers in this scoping review 
determined the statistical significance of the indirect 
effect estimate based on a z-test, which has relatively 
low power to detect a statistically significant indirect 
effect [35, 36]. Instead, it is recommended to determine 
the statistical significance of the indirect effect estimate 
based on a confidence interval that takes into account 
the nonnormal sampling distribution of the indirect 
effect estimator, such as the distribution of the prod-
uct confidence interval, Monte Carlo confidence inter-
val, and bootstrap confidence intervals, as these have 
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higher power to detect a statistically significant indirect 
effect [34, 36, 38, 84–86]. Although the bias-corrected 
bootstrap confidence interval was the most often 
reported confidence interval in the studies in this scop-
ing review, percentile bootstrap confidence intervals 
generally perform best in terms of the balance between 
type I and type II error rates [36, 87, 88].

Relative effect size measures
In addition to the (natural) indirect effect estimates, over 
one-third of the studies in this scoping review reported 
the proportion mediated as a relative effect size measure 
for the mediated effect. Although the proportion medi-
ated has an intuitive interpretation, it does suffer from 
a few important limitations. First, a previous simulation 
study showed that the proportion mediated is unstable in 
samples of less than 500 participants [13]. In this review, 
21 papers with a sample of less than 500 participants esti-
mated the proportion mediated. Second, the estimate 
of the proportion mediated can be below zero or above 
one when the mediation model is inconsistent [2, 3]. In 
this situation, the proportion mediated does not have a 
meaningful interpretation. Third, the estimate of the pro-
portion mediated can be misleading when the underly-
ing effect estimates are small and clinically irrelevant, as 
the estimate of the proportion mediated can still be large 
in this situation. Therefore, it is advised to only estimate 
the proportion mediated when none of the aforemen-
tioned situations apply. If the aforementioned situations 
do apply, it may suffice to only report the natural indirect 
effect estimate with a confidence interval. However, when 
the indirect effect is estimated based on variables without 
a naturally meaningful interpretation, such as variables 
measured on a Likert scale, researchers may alternatively 
determine the relative effect size by comparing the stand-
ardized indirect effect estimate to Cohen’s d [89, 90].

Recommendations for enhancing the uptake of causal 
mediation analysis
Although most of the seminal articles on causal media-
tion analysis were published between 2009 and 2012 [45, 
46, 53, 56], and various causal mediation software pack-
ages have been developed in the last decade [21–26, 
28], the uptake of causal mediation analysis in applied 
research remains relatively low. A first reason for this low 
uptake might be the high level of technical details in the 
causal mediation analysis literature [20, 29]. To enhance 
the uptake of causal mediation analysis, Vo et al. [29] sug-
gested that there is a need for detailed tutorial papers. 
As binary and time-to-event outcomes are common in 
epidemiology and causal mediation analysis clarifies the 
ambiguities that arise when these outcomes are analyzed 

with traditional mediation analysis, future tutorial papers 
could demonstrate the application of causal estimators 
and the interpretation of causal effect estimates based on 
real-life data for models with non-continuous mediator 
variables or non-continuous outcome variables. Another 
potential topic for a tutorial paper could be the demon-
stration of the importance of testing the plausibility of the 
causal assumptions, as this review and previous reviews 
found that most studies fail to address the plausibility of 
all causal assumptions [20, 29, 91].

A second reason for the low uptake of causal mediation 
analysis might be that currently available causal media-
tion software packages facilitate the estimation of causal 
effects for a limited range of mediation models. The 
uptake of causal mediation analysis can also be enhanced 
through the expansion of current software packages and/
or the development of new software packages that facili-
tate causal effect estimation for a wider range of more 
complicated mediation models, such as models with 
latent variables and multiple mediator models. To date, 
only Mplus facilitates the estimation of causal effects for 
mediation models with latent variables and the causal 
effect estimation for multiple mediator models is only 
supported by the Mediation and Medflex packages in R 
[23, 25–27]. Also, the causal effect estimation for multi-
level and longitudinal mediation models is limitedly sup-
ported by the currently available software packages and 
warrants attention in future software development [27].

Strengths and limitations
This scoping review assessed the methodological charac-
teristics of mediation analyses published based on obser-
vational data. Observational data is common in the field 
of epidemiology and mediation analysis is becoming an 
increasingly popular method to analyze observational 
data. Two previously published reviews also reported 
that traditional mediation analysis is the most frequently 
used mediation analysis method, but one of these reviews 
focused on the analysis of experimental data [29], and the 
other on mediation models with time-to-event outcomes 
[20]. This scoping review was not restricted to specific 
types of mediation models, providing insight in the use 
of mediation analysis methods across a range of model 
characteristics. Another strength of this review is that 
it covered a relatively wide range of publication years to 
gain insight into the uptake of causal mediation analysis 
in recent years. Based on the current practices observed 
in this scoping review, we provided recommendations for 
applied researchers who wish to apply mediation analysis 
to their data.

A limitation of this study is that the results might not 
be generalizable to all observational mediation analyses 
published between 2015 and 2019, as we only searched 
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two databases and the search strategy was limited to the 
title, abstract and keywords of the papers. Therefore, it is 
likely that not all observational mediation analyses pub-
lished between 2015 and 2019 were identified by our 
search. However, the goal of our paper was to provide 
insight into the methodological characteristics of media-
tion analysis methods used to analyze observational data. 
Even though this scoping review may not have included 
all observational mediation analyses published between 
2015 and 2019, the results demonstrate large heteroge-
neity in the mediation analysis methods used to analyze 
observational data. Based on the findings in this scop-
ing review, we were able to provide recommendations 
to improve the quality of future mediation analyses. Fur-
thermore, compared to the previously published review 
by Vo and colleagues [29] who reviewed the methodolog-
ical characteristics of mediation analysis methods applied 
in randomized controlled trials, we used a more exten-
sive search term, a longer search period, and we searched 
both the MEDLINE and EMBASE databases. MEDLINE 
and EMBASE are two of the largest databases for epide-
miological publications and with 174 included papers 
this is one of the largest reviews on mediation analysis 
methods so far [20, 29, 91, 92].

Another limitation is that the studies included in 
this scoping review might not have been able to report 
all aspects of their mediation analyses due to journal 
requirements such as word limits. For example, although 
the no (unmeasured) confounding assumptions are of 
critical importance in mediation analysis, the studies 
in this review generally provided little information on 
the causal theory underlying the confounder selection. 
That is, information was generally lacking on the spe-
cific pathways that might be confounded by each of the 
confounders. Journal requirements might therefore par-
tially explain the large heterogeneity in the reporting of 
mediation analyses observed in this scoping review and 
in previous reviews [20, 29, 91, 93]. The transparency in 
the reporting of future mediation analyses will likely be 
enhanced by the guideline for the reporting of mediation 
analyses that was recently published [94].

Conclusion
Mediation analysis is becoming increasingly popular 
in the field of epidemiology, as it can be used to gain 
insight into mechanisms of disease development. Even 
though causal mediation analysis is the generally pre-
ferred method for mediation analysis, we showed that 
traditional mediation analysis is still frequently applied 
in practice. We recommend that researchers use causal 
mediation analysis and assess the plausibility of relevant 
causal assumptions to ensure the causal interpretation of 
the direct and indirect effect estimates. Furthermore, the 

uptake of causal mediation analysis could be enhanced 
through tutorial papers and the development of software 
packages that facilitate the estimation of causal effects for 
relatively complicated mediation models.
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