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Abstract 

Background:  Statistical inference based on small datasets, commonly found in precision oncology, is subject to low 
power and high uncertainty. In these settings, drawing strong conclusions about future research utility is difficult 
when using standard inferential measures. It is therefore important to better quantify the uncertainty associated with 
both significant and non-significant results based on small sample sizes.

Methods:  We developed a new method, Bayesian Additional Evidence (BAE), that determines (1) how much addi-
tional supportive evidence is needed for a non-significant result to reach Bayesian posterior credibility, or (2) how 
much additional opposing evidence is needed to render a significant result non-credible. Although based in Bayesian 
analysis, a prior distribution is not needed; instead, the tipping point output is compared to reasonable effect ranges 
to draw conclusions. We demonstrate our approach in a comparative effectiveness analysis comparing two treat-
ments in a real world biomarker-defined cohort, and provide guidelines for how to apply BAE in practice.

Results:  Our initial comparative effectiveness analysis results in a hazard ratio of 0.31 with 95% confidence interval 
(0.09, 1.1). Applying BAE to this result yields a tipping point of 0.54; thus, an observed hazard ratio of 0.54 or smaller 
in a replication study would result in posterior credibility for the treatment association. Given that effect sizes in this 
range are not extreme, and that supportive evidence exists from a similar published study, we conclude that this 
problem is worthy of further research.

Conclusions:  Our proposed method provides a useful framework for interpreting analytic results from small datasets. 
This can assist researchers in deciding how to interpret and continue their investigations based on an initial analysis 
that has high uncertainty. Although we illustrated its use in estimating parameters based on time-to-event outcomes, 
BAE easily applies to any normally-distributed estimator, such as those used for analyzing binary or continuous 
outcomes.
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Background
In scientific research, statistical inference is crucial to 
drawing robust conclusions from data. This is often 
done through testing a parameter estimate for “statisti-
cal significance”, using p-values and confidence inter-
vals. These quantities are strongly dependent on sample 
size; in precision oncology, datasets for rare diseases or 

biomarker-defined cohorts are often small. This leads to 
difficulties in deriving insight from analytic results by 
using standard statistical inference tools.

The primary issue with small sample sizes is that they 
lead to a lack of statistical power in analyses, meaning 
that the probability of declaring a true effect or asso-
ciation as statistically significant is small. Due to well-
known publication bias, and conflation of “absence of 
evidence” with “evidence of absence”, non-significant 
findings are often not reported or published at all [1]. 
As such, there is no opportunity to learn from the 
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analysis conducted. Even if reported, such findings are 
usually qualified as “trending towards” or “approach-
ing” significance, which is an arbitrary designation; it 
does not inform how likely the hypothesis of interest is, 
or whether future research is worthwhile.

Even a statistically significant result may have high 
uncertainty, and be unconvincing on its own if derived 
from a small dataset. This is particularly germane given 
recent attention on the “replicability crisis” in science 
[2]. In this scenario, it would be important to ensure 
the finding is not spurious. Standard analyses do not 
directly determine how likely the result would be to 
hold in future studies. Hence, there is a need for sta-
tistical tools that make it easier to derive utility from 
small sample datasets. In this area, Gelman and Car-
lin (2014) introduced the concept of Type S (sign) and 
M (magnitude) errors, which quantify the probability 
of an estimate being in the wrong direction and the 
expected factor by which its magnitude is exaggerated, 
conditional on being statistically significant [3]. Segal 
(2021) also derived confidence intervals for the prob-
ability that a replication study would yield estimates 
more extreme than a certain value (such as the statisti-
cal significance threshold) [4]. These methods improve 
upon standard inference towards the goal of replicable 
scientific results.

In this article, we introduce a new method, Bayesian 
Additional Evidence (BAE), for better quantifying the 
uncertainty of statistical inference output. Our goal is to 
aid researchers to better interpret results from analyses 
of small datasets and make decisions about the value of 
further pursuing research questions. BAE is based on 
the Bayesian analysis framework, but does not require 
explicitly setting a prior distribution, and is similar to 
the recently proposed Analysis of Credibility (AnCred) 
approach [5]. To implement the BAE approach, we illus-
trate how to “invert” Bayesian posterior computations 
to (1) assess the robustness of a significant result, and 
(2) determine the evidence gap given a non-significant 
result. Specifically, given an observed parameter estimate 
and standard error, BAE computes the range of parame-
ter estimates that would need to be observed in a follow-
up study in order to make a certain conclusion either in 
favor or against the hypothesis of interest.

The rest of this paper is structured as follows: in Sec-
tion  2, we describe the Bayesian normal-normal model, 
on which our method is based. We then introduce BAE, 
and illustrate how to use it for decision making given 
significant or non-significant inferential results. In Sec-
tion 3, we apply our method to a comparative effective-
ness analysis of two treatments for a biomarker-defined 
cohort from an oncology electronic health record-
derived de-identified database, and report the results. We 

conclude with a brief discussion and conclusion in Sec-
tion 4 and 5.

Methods
For the purposes of illustration, we will assume that the 
goal of the analysis is to estimate βtrue, the log hazard 
ratio comparing two treatment arms, adjusting for rele-
vant covariates. We further assume that this parameter is 
estimated through a standard Cox proportional hazards 
model, as is common practice in clinical research. How-
ever, the methods detailed are applicable to any estimand 
with a normally-distributed estimator. We also define a 
statistically significant result as one where the 95% con-
fidence interval excludes the null value, though other sig-
nificance levels may be used.

The methods we describe are based around Bayesian 
analysis, and the concept of incorporating prior informa-
tion to improve precision in estimation. Specifically, we 
use the concept of “inverting” Bayes’ Theorem, or com-
puting priors that would result in specific posterior dis-
tributions of interest.

Bayesian normal‑normal model
A Bayesian analysis computes a posterior distribution for 
βtrue (which is treated as a random variable), based on the 
distribution of the observed estimator and a pre-specified 
prior distribution for the true parameter. For our meth-
ods, we consider a normally distributed estimator, and a 
normal prior distribution; this is known as the Bayesian 
normal-normal model.

We begin with the asymptotic normal distribution of 
the Cox model estimator β̂ (Andersen and Gill, 1982) [6], 
which is:

where n is the sample size, and σ is the standard devia-
tion of the estimator.

Then, we can assume a normal prior for βtrue: ~ N(µ, s )
By conjugacy of the normal-normal model, we then 

have a closed form for the posterior distribution:

where

Based on the posterior, we can calculate a 95% Bayes-
ian credible interval as μP ± 1.96  sP. The posterior mean 
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can be interpreted as a weighted average of the prior and 
observed means, based on how much confidence we have 
in both quantities. Therefore, if n is low (implying more 
uncertainty in the observed data estimator) and s is also 
low (implying high confidence in the prior), then the pos-
terior mean will be pulled towards μ. Conversely, as n 
increases, the posterior mean will tend towards β̂.

The posterior precision, which is defined as the recipro-
cal of the variance, is equal to the sum of the prior and 
observed precision. Therefore, the posterior variance 
will always be less than (or equal) to the observed vari-
ance, and so a Bayesian credible interval will necessarily 
be tighter than the corresponding frequentist confidence 
interval (or the same width).

Note that this model assumes that the standard devia-
tion σ is known, which is often not true in practice. In the 
Cox model setting, σ is a function of βtrue, which is also 
unknown. For the implementation of our method 
described below, we use the estimate σ̂

(

β̂

)

 as a plug-in, 
which should provide a reasonable estimate. A fully 
Bayesian analysis would define an additional prior distri-
bution for σ.

Bayesian additional evidence (BAE)
The goal of our proposed method, leveraging the Bayes-
ian framework, is to answer one of two potential 
questions:

1.	 Given a non-significant frequentist inferential result, 
how much additional supportive evidence is needed 
to result in Bayesian posterior credibility?

2.	 Given a significant frequentist inferential result, how 
much additional opposing evidence is needed to ren-
der the result non-credible in the posterior?

For illustration, we start by considering the first ques-
tion. Suppose we have computed a normally distributed 
test statistic, with a 95% confidence interval that includes 
the null value. BAE then searches over prior distribu-
tions, which represent potential future data, to determine 
which posterior results provide credible evidence against 
the null hypothesis. Specifically, we fix the prior stand-
ard deviation and search over prior means. The direction 
of where to search depends on the hypothesis (i.e., is a 
parameter value greater than or less than the null value of 
substantive interest?) and is specified by the analyst.

The output of the BAE method is then the “tipping 
point” or least extreme prior mean μ∗ that results in a 
posterior credible interval that includes the null value. 
Therefore, all prior means that are more extreme than 
μ∗ will result in posterior credible intervals that exclude 
the null value, yielding 95% credibility. This is depicted 
visually in Fig. 1.

In other words, this method quantifies what type of 
additional result is needed to have sufficient evidence 
for an effect. If the returned tipping point is too extreme, 

Fig. 1  Illustration of the BAE method, given an initial non-significant result, where the hazard ratio confidence interval includes the null value of 
1. Assuming the same standard error in a follow-up study, BAE outputs the tipping point hazard ratio estimate that would result in a posterior 95% 
credible interval that just touches the null value at the upper limit. Therefore, observing the tipping point hazard ratio or anything lower would yield 
posterior credibility
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then that indicates there is not much evidence for an 
effect. However, if the tipping point is within a plausi-
ble range (based on scientific domain knowledge), then 
we can declare that the analysis is worthy of follow-up. 
Although requiring some knowledge of plausible effect 
sizes, this method does not assume a fully known prior 
distribution.

In the normal-normal posterior, the prior and the 
observed quantities are symmetric. Therefore even 
though we are computing the “prior” mean which leads 
to a particular posterior, we can think of our initial result 
as the true prior study in time, and consider the BAE 
output as the range of effect sizes that would need to be 
observed in a future study in order to achieve a posterior 
credible interval that excludes the null. We are essentially 
encoding a replication follow-up study which results in 
sufficiently credible evidence as our prior.

The interpretation of the BAE output is also dependent 
on the prior standard deviation used. For example, if we 
use the same estimated standard error from our frequen-
tist analysis, we can interpret the result as “in a future 
study with the same level of precision as our current 
analysis, this is the range of estimates that would yield a 
posterior credible interval that excludes the null”. We can 
also decrease or increase the prior standard deviation to 
encode future studies having higher or lower precision. 
For example, assuming that σ stays constant as n changes 
implies that dividing the observed standard error by √
X  corresponds to the standard error that would be 

observed in a study with X times more subjects. Due to 
the dependency of σ with βtrue in the Cox model setting, 
this does not hold exactly, but can be used as an approxi-
mate heuristic.

With respect to the second question, given a significant 
initial result, this method can be inverted to see the range 
of prior means which would make the result non-cred-
ible. Here, the output of BAE is then the least extreme 

prior mean μ∗ that results in a posterior credible interval 
that includes the null value. Therefore, all prior means 
that are larger in magnitude than μ∗ will either result 
in posterior credible intervals that include the null value 
yielding non-credibility, or provide credible evidence for 
an effect in the opposite direction.

Interpretations of BAE applied in either scenario can 
be found in Table 1 below. We assume that the standard 
frequentist estimator has been computed, with confi-
dence interval and p-value.

Finally, although the BAE tipping point does not have 
a closed-form solution, implementation is straightfor-
ward, and only requires using a root-finding algorithm. 
Example R code is available in the supplementary mate-
rial. BAE can also be extended to more complex estima-
tors and prior distributions, so long as the posterior can 
be computed within the tipping point search algorithm.

Study design and data sources
A study by Innocenti et  al. (2019) aimed to identify 
genomic factors associated with overall survival (OS) in 
metastatic colorectal cancer (mCRC) patients treated 
with either fluorouracil and leucovorin plus oxaliplatin 
(FOLFOX) or irinotecan (FOLFIRI) chemotherapy and 
either bevacizumab or cetuximab in the first line (1 L) 
setting [7]. The authors analyzed data from primary 
tumor DNA for 843 patients from a larger phase III 
trial. While the original trial found no statistically sig-
nificant difference in OS between the treatment arms, 
the authors reported a very strong clinical benefit of 
bevacizumab compared to cetuximab (HR = 0.13, 95% 
CI [0.06, 0.30]) among 37 patients who were known to 
have microsatellite instability-high (MSI-H) tumors. 
Although statistically significant, this result is based 
on a small sample size, with 21 patients receiving bev-
acizumab and 16 patients receiving cetuximab. The 
authors also note the potential for selection bias due 

Table 1  How to apply and interpret BAE given significant or non-significant results from an initial analysis

Frequentist inference significant Question: The analysis provides evidence of an effect. How robust would this evidence be given additional 
data?
BAE output: BAE provides the range of results that would yield non-credibility from a hypothetical follow-up 
study. If the tipping point is close to the null, then the evidence provided by the current analysis is strong.
Conclusion: If the range beyond the tipping point is considered plausible, then the current evidence is not 
strong enough.

Frequentist inference non-significant Question: The analysis does not provide strong evidence of an effect. Is it worthwhile to obtain more data 
for further study?
BAE output: BAE provides the range of results that would need to be observed in a follow-up study in order 
to yield credible evidence of an effect. If the tipping point is close to the null, then the evidence provided by 
the current analysis is strong.
Conclusion: If the range beyond the tipping point is considered plausible, then we can declare the observed 
data to be useful, and might perform a follow-up study.



Page 5 of 8Sondhi et al. BMC Med Res Methodol          (2021) 21:221 	

to MSI-H status not being available for all patients in 
the original trial. Therefore, it is of interest to attempt 
a replication of this result with a different dataset in 
order to confirm this finding.

We compared OS for these two regimens for relevant 
patients with mCRC from the nationwide Flatiron Health 
EHR-derived de-identified database. This longitudi-
nal database is comprised of de-identified patient-level 
structured and unstructured data, curated via technol-
ogy-enabled abstraction [8, 9]. During the study period, 
the de-identified data originated from approximately 
280 US cancer clinics (~ 800 sites of care). The majority 
of patients in the database originate from community 
oncology settings; relative community/academic pro-
portions may vary depending on study cohort. Survival 
analysis was conducted using a composite mortality vari-
able that aggregates EHR-derived data (structured and 
unstructured) with links to the SSDI and obituary data 
[10].

Specifically, we selected a cohort of patients with 
mCRC diagnosed between 2013 and 2020 who had 
microsatellite instability high (MSI-H) tumors, and 
were treated in the 1 L setting with FOLFOX or FOL-
FIRI chemotherapy plus either bevacizumab or cetuxi-
mab (Supplemental Fig. 1). Follow-up began on the start 
date of 1 L treatment, and ended at the earliest of either 
date of death or last confirmed structured EHR activ-
ity (e.g., non-cancelled medication orders, medication 
administrations, or clinic visits with vital signs meas-
ured). We excluded patients who had a gap of more than 
90 days between their mCRC diagnosis date and their 
first confirmed structured EHR activity date in the Flati-
ron Health network. We also excluded patients whose 
date of death was prior to their recorded 1 L start or MSI 

test result date; such inconsistencies can occur with real 
world EHR-derived data [10].

The conditional association between OS and 1 L treat-
ment was assessed by fitting a Cox proportional haz-
ards model, adjusting for age, sex, race (dichotomized 
to White or non-White), BRAF mutation status (pre-
sent or absent before start of 1 L therapy), and KRAS or 
NRAS mutation status (present or absent before start of 
1 L therapy). Risk set adjustment was applied in order to 
account for the delayed entry of patients who received 
their MSI test after the start of 1 L therapy. This analysis 
is as similar as possible to that conducted by Innocenti 
et al., (2019) though we were not able to adjust for tumor 
location, number of metastatic sites, and synchronous or 
metachronous metastases since those data were not part 
of the core Flatiron Health data model.

Institutional Review Board approval of the study proto-
col was obtained prior to study conduct, and included a 
waiver of informed consent.

Results
After applying the selection criteria for our study, there 
were 118 patients in the bevacizumab cohort and 7 
patients in the cetuximab cohort. Table  2 provides a 
description of baseline patient characteristics. Note that 
due to the small size of the cetuximab arm, we expect 
there to be high uncertainty in the estimation of the haz-
ard ratio comparing treatments, making this analysis rel-
evant to our method.

Fitting a Cox model, we estimate that the adjusted 
hazard ratio of death for patients treated with 1 L chem-
otherapy plus bevacizumab compared to patients only 
treated with 1 L chemotherapy plus cetuximab is 0.42 
(95% CI: 0.14, 1.23), with a p-value of 0.11. Therefore, 

Table 2  Baseline characteristics of MSI-H mCRC patient cohort

Characteristic Chemotherapy and bevacizumab
n = 118

Chemotherapy 
and cetuximab
n = 7

Median age at 1 L start, years (IQR) 62 (50, 73) 65 (60, 76)

Sex, n (%) Female 66 (56) 6 (86)

Male 52 (44) 1 (14)

Race, n (%) White 85 (72) 5 (71)

Other 14 (12) 1 (14)

Black/Afr. Am. 9 (7.6) 0

Unknown 7 (5.9) 1 (14)

Asian 3 (2.5) 0

BRAF mutation 26 (22) 3 (43)

NRAS or KRAS mutation 15 (13) 0

Chemotherapy FOLFOX 89 (75) 3 (43)

FOLFIRI 29 (25) 4 (57)
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we cannot conclude that this association is statistically 
significant at the 5% significance level.

Although we observed a non-significant result, due to 
the small sample size in the chemotherapy plus cetuxi-
mab arm, it is important to quantify the uncertainty in 
the analysis beyond standard methods. We computed 
the Bayesian Additional Evidence from the frequentist 
regression analysis. Using the estimated standard error 
from this analysis as the prior standard deviation, the 
BAE tipping point is 0.52 on the hazard ratio scale. 
Therefore, given a replication study with the same level 
of precision, an observed hazard ratio of 0.52 or smaller 
would result in posterior credibility for the association 
of interest. This is depicted graphically in Fig.  2. Sci-
entifically, such hazard ratios would not be considered 
extreme enough to be implausible. Recall that the simi-
lar analysis by Innocenti et al. (2019) reported a hazard 
ratio of 0.13 with 95% confidence interval (0.06, 0.30) 
[7]. Therefore, we can conclude that it is worth gather-
ing more evidence for this research question.

The BAE output also tells us that using the published 
result of Innocenti et  al. (2019) as a prior combined 
with our observed result in a Bayesian analysis would 
result in 95% posterior credibility. This is because the 
standard error associated with the prior result is less 
than that estimated by our analysis. Therefore, given the 
BAE tipping point of 0.45, a prior mean of 0.13 results 
in a Bayesian analysis that yields posterior credibility.

Discussion
It is difficult to extract useful statistical inference from 
small sample datasets. In this paper, we developed a new 
approach, for interpreting the evidence provided by these 
datasets. This is motivated by settings involving rare dis-
eases or biomarkers, where conducting a well-powered 
study is difficult. Although our method uses the Bayesian 
framework, it does not require an explicit prior distribu-
tion; only domain knowledge of reasonable effect sizes 
is needed. BAE thus allows for easy integration of prior 
knowledge with these analyses in order to inform the 
value of research questions. BAE helps to interpret high-
uncertainty results, which can then result in easier deci-
sion-making for researchers on how to conduct future 
studies. We illustrated this in a real world data example 
involving a small cohort. Here, a standard frequentist 
analysis yields a non-significant result, but additional 
uncertainty quantification using BAE shows that credible 
evidence is plausible with more data. This evidence gap 
is shown to be tractable given results from a previously 
published similar analysis.

Within the literature related to statistical analyses using 
small samples, a change in analytic method is often pro-
posed. Examples include the use of Fisher’s exact test 
for contingency tables  [11], the Firth bias correction 
for certain generalized linear models [12], and the gen-
eralized log rank test statistic for survival analysis [13]. 
These methods aim to correct inference when asymptotic 
results may not hold; moreover, BAE can be applied as 
a complement to analytic results from these methods. 

Fig. 2  BAE output of log hazard ratio and 95% confidence interval (assuming equal standard error to that observed in study) that would need to be 
observed in order to yield a posterior distribution with 95% credible interval that touches the null value
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Despite this, these methods alone do not assist in mak-
ing a decision based on an inferential result with high 
uncertainty, which would likely still occur. As previously 
discussed, Bayesian analyses present a potential solution. 
Given sufficiently strong domain knowledge that can be 
encoded as a prior distribution, we can reduce analytic 
uncertainty. Bayesian methods can also accommodate a 
wide variety of data-generating distributions and analy-
ses. However, selecting an appropriate prior is inherently 
subjective, and may be difficult in many situations due to 
a lack of published evidence.

Other work also attempts to solve this problem by 
improving the understanding of analytic results beyond 
a dichotomous significance threshold. For example, 
Blume et al, 2019 propose adapting p-values to be based 
on interval (instead of point) null hypotheses, to estimate 
the fraction of data-supported hypotheses that are “sci-
entifically null”, without requiring a significance thresh-
old [14]. Similarly, Gannon et al, 2019 define a new type 
of hypothesis test that minimizes a linear combination of 
the false positive and false negative rates [15]. Within the 
classic hypothesis testing framework, Segal, 2021 pro-
vides confidence intervals for replication probabilities 
[16]. These approaches and others (see Wasserstein et al, 
2019 for an overview) [17] may be useful in certain sce-
narios depending on the research goals and prior knowl-
edge available.

Toward the goal of improving decision-making, BAE 
is closely related to the analysis of credibility (AnCred) 
approach developed by Matthews et al. (2018) [5], which 
takes the same general approach of performing an inverse 
Bayesian analysis to find a prior that yields a specific 
posterior. As with our method, a statistic based on this 
prior is then compared to plausible effect sizes to arrive 
at a decision. Although we find this inverse Bayesian 
approach to be appealing and a useful way to contextual-
ize inferential results, AnCred is more difficult to inter-
pret than BAE, since it provides intervals of prior effect 
sizes that are consistent with (non-)credible evidence of 
effects. In the case of non-significant initial results, these 
intervals can be wide enough to effectively contain any 
effect size, which is unhelpful for decision making. On 
the other hand, BAE outputs a clear evidence threshold 
that would need to be observed in a follow-up study to 
make certain conclusions.

A limitation of our method is in using the plug-in esti-
mate σ̂

(

β̂

)

 of the coefficient standard deviation in the 
future study. A fully Bayesian analysis would also model 
the relationship between σ and βtrue. However, this would 
involve selection of appropriate priors and additional 
computational complexity, while our approximation is 
very straightforward and fast to use in practice. An R 

implementation of BAE is available in the online 
supplement.

The use of BAE is also similar to interim analyses of 
clinical trials, where posterior distributions are com-
puted (based on a pre-specified prior) in order to deter-
mine whether the trial should be stopped early due to 
clear efficacy or futility. It is important to note, however, 
that BAE should not be seen as a replacement for con-
firmatory hypothesis testing e.g. in regulatory settings. 
Rather, it should be used to inform the utility and design 
of future confirmatory studies. Although we illustrate our 
approach with a survival analysis of EHR-derived data, 
it can also be applied to other analyses of datasets hav-
ing high uncertainty, when using normally-distributed 
estimators.

Conclusions
We have developed a novel method to determine the 
amount of additional evidence needed for a non-signifi-
cant result to reach Bayesian posterior credibility, or for 
a significant result to reach non-credibility. We believe 
BAE can be used to draw initial conclusions from small 
datasets, which can then be validated with follow-up 
confirmatory studies. This approach could mitigate 
under-reporting of analytic results that are not statisti-
cally significant, but are clinically useful.
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