
Shi et al. BMC Medical Research Methodology          (2021) 21:258  
https://doi.org/10.1186/s12874-021-01449-w

RESEARCH

Instrumental variable estimation for a time-
varying treatment and a time-to-event outcome 
via structural nested cumulative failure time 
models
Joy Shi1,2*, Sonja A. Swanson1,2,3, Peter Kraft1,4, Bernard Rosner4,5, Immaculata De Vivo1,5 and 
Miguel A. Hernán1,2,4 

Abstract 

Background:  In many applications of instrumental variable (IV) methods, the treatments of interest are intrinsically 
time-varying and outcomes of interest are failure time outcomes. A common example is Mendelian randomization 
(MR), which uses genetic variants as proposed IVs. In this article, we present a novel application of g-estimation of 
structural nested cumulative failure models (SNCFTMs), which can accommodate multiple measures of a time-varying 
treatment when modelling a failure time outcome in an IV analysis.

Methods:  A SNCFTM models the ratio of two conditional mean counterfactual outcomes at time k under two 
treatment strategies which differ only at an earlier time m. These models can be extended to accommodate inverse 
probability of censoring weights, and can be applied to case-control data. We also describe how the g-estimates of 
the SNCFTM parameters can be used to calculate marginal cumulative risks under nondynamic treatment strategies. 
We examine the performance of this method using simulated data, and present an application of these models by 
conducting an MR study of alcohol intake and endometrial cancer using longitudinal observational data from the 
Nurses’ Health Study.

Results:  Our simulations found that estimates from SNCFTMs which used an IV approach were similar to those 
obtained from SNCFTMs which adjusted for confounders, and similar to those obtained from the g-formula approach 
when the outcome was rare. In our data application, the cumulative risk of endometrial cancer from age 45 to age 72 
under the “never drink” strategy (4.0%) was similar to that under the “always ½ drink per day” strategy (4.3%).

Conclusions:  SNCFTMs can be used to conduct MR and other IV analyses with time-varying treatments and failure 
time outcomes.
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Introduction
Instrumental variables (IVs) provide an approach to 
consistently estimate an average causal effect of a treat-
ment on an outcome, even in the presence of unmeas-
ured confounding. In many randomized trial designs, IV 
methods allow one to estimate the per-protocol effect 
by using randomization assignment as an IV [1]. In 
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observational studies, an increasingly popular applica-
tion of IVs is Mendelian randomization (MR), in which 
genetic variants are used as proposed IVs [2, 3]. In many 
IV studies, including those which use MR, the treatments 
of interest (e.g. blood lipids, smoking, alcohol intake) are 
intrinsically time-varying and many outcomes of inter-
est are failure time outcomes. However, conventional IV 
methods were designed to handle time-fixed treatments 
and IV methods for failure time outcomes are less com-
monly used in practice [4]. Thus, there is a mismatch 
between the goal of these studies and the availability of 
IV methods.

We have previously described extensions of IV meth-
ods based on g-estimation of structural mean models to 
incorporate time-varying treatments in MR analyses [5]. 
Others have described structural nested accelerated fail-
ure time [6] and structural nested cumulative survival 
[7–9] models to incorporate failure time outcomes in 
an IV analysis with time-varying treatments. However, 
unlike our approach, parameter estimation in structural 
nested accelerated failure time models requires artificial 
censoring (which is statistically inefficient and makes 
estimation numerically difficult because estimating equa-
tions are not differentiable), and structural nested cumu-
lative survival models only compare static treatment [9].

Structural nested cumulative failure time models 
(SNCFTMs) overcome both of these limitations [10]. 
SNCFTMs have been previously discussed as a method of 
estimating the causal effect of a time-varying treatment 
on a failure time outcome under the sequential exchange-
ability assumption that all time-varying confounders 
have been measured and that failure is rare under all pos-
sible treatment values [10]. Here we describe an adapta-
tion of this use of SNCFTMs that, under the same rare 
failure assumption, replaces the sequential exchangeabil-
ity assumption with IV-type assumptions. We first intro-
duce notation and describe SNCFTMs when estimating 
the parameters using an IV. Next, we examine the per-
formance of the proposed method in simulation studies. 
Then, we present an MR study estimating the effect of 
alcohol intake on endometrial cancer risk based on data 
from the Nurses’ Health Study I.

Methods
Notation and identifying assumptions
Let k = 0, 1, 2, …, K + 1 denote a time interval where 
k = 0 denotes start of follow-up. For each individual, let 
Z represent the value of a time-fixed instrument (e.g., 
germline genetic variants in MR studies), Ak the treat-
ment value during interval k, and Yk an indicator (1: yes, 
0: no) for the outcome before start of interval k = 1, 2, 
…, K + 1. We use an overbar to represent history from 
time 0, that is Ak = (A0,A1, . . . ,Ak) , and an underbar 

to represent treatment up to the end of the study, that is 
Ak =

(

Ak ,Ak+1, . . . ,AK

)

.
A static treatment strategy g is defined as 

g ≡ gK ≡ (a0, a1, . . . , aK ) where treatment ak is assigned 
to each individual at time k. For example, for a dichoto-
mous treatment, the strategy “never treat” is represented 
by g = 0 and the strategy “always treat” is represented 
by g = 1 . In failure time settings, the strategy “always 
treat” is more precisely specified as “always treat before 
failure” and thus can be viewed as a dynamic strategy 
g ≡ gK ≡

(

g0, g1, . . . , gK
)

 , where gk = 1 when Yk − 1 = 0 
and gk = 0 otherwise. In this paper, we will also consider 
the strategy “receive the treatment actually received 
through k but no treatment thereafter”, which is repre-
sented by g =

(

Ak , 0
)

.
Let Y g

k  represent the counterfactual outcome at time 
k had they followed the treatment strategy g. By con-
sistency, the counterfactual outcome Y g

k  is equal to the 
observed outcome Yk among individuals whose observed 
treatment history is equal to that specified by g between 
times 0 and k − 1.

The instrumental variable Z is defined by meeting the 
three instrumental conditions: (1) the instrument and 
the treatment are associated, or Z

∐

Ak does not hold 
for any k (a stronger version is often needed for esti-
mation, e.g., for linear models, the Z and Ak need to be 
correlated); (2) the instrument affects the outcome only 
through the treatment, or Y z,g

i,k = Y
z′,g
i,k = Y

g
i,k for all indi-

viduals i, k, z, z′, g; and (3) there are no shared causes, 
or other sources of lack of exchangeability, between the 
instrument and the outcome, or Z

∐

Y
z,g
k  for all z, k, g. 

The last two conditions, taken together, imply exchange-
ability between the instrument and the counterfactual 
outcome under a given treatment strategy, Z

∐

Y
g
k .

The three instrumental conditions alone are generally 
insufficient to obtain a point estimate. To do so, we can 
make a fourth assumption of homogeneity. One version 
of this assumption asserts that the instrument Z does 
not modify the effect of the treatment Ak on the outcome 
Yk + 1 on the multiplicative scale. As we describe below, 
this assumption precludes us from including a product 
term between the instrument and the treatment in the 
model.

G‑estimation of structural nested cumulative failure time 
models with an instrumental variable
Let E

[

Y
g

k

]

 represent the counterfactual risk of developing 
the outcome by time k had everyone followed the treat-
ment strategy g. SNCFTMs compare the counterfactual 
risks at k under the strategies 

(

Am, 0
)

 and 
(

Am−1, 0
)

 , for 
each time m < k, among individuals who are free of the 
outcome through m (i.e., Ym = 0) and had treatment his-
tory Am and the same covariate history through m. When 
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adjusting for confounders, “covariate history” means con-
founder history [10]; when using instrumental variable 
estimation, “covariate history” means the instrument Z. 
“Covariate history” may additionally include instrument-
outcome confounders or effect modifiers to allow for a 
weaker variation of the instrumental conditions or the 
homogeneity assumption—a point we will describe fur-
ther in the discussion.

Specifically, an SNCFTM models the ratio of two coun-
terfactual cumulative risks at time k under treatment 
strategies that differ only at time m for each time m < k:

where γk
(

Am,Z;ψ
)

 is a function of the treatment history 
through m and the instrument, indexed by the parameter 
ψ. That is, the SNCFTM models the conditional effect 
of a “blip” of treatment at time m on outcome at time k. 
Hence, γk

(

Am,Z;ψ
)

 is also referred to as a “blip func-
tion”. This model is semi-parametric as it allows for the 
counterfactual cumulative risks to remain unspecified; 
however, under a non-saturated SNCFTM, the choice of 
the blip function will impose restrictions on the assumed 
distribution of the data. For example, the simple blip 
function

assumes the effect of treatment at time m on outcome at 
time k to be constant for all m < k and across levels of the 
instrument Z. Note that SNCFTMs with an instrument 
are necessarily non-saturated because the fourth condi-
tion of homogeneity (i.e., the effect of Am on Yk is con-
stant across levels of Z among both the treated and the 
untreated) implies the absence of product terms between 
the instrument Z and the treatment Am  [11]. Therefore, 
for our IV analysis, the blip function cannot depend on 
the instrument Z, or γk

(

Am,Z;ψ
)

= γk
(

Am;ψ
)

 . The blip 
function should be chosen such that exp

[

γk
(

Am; 0
)]

= 1 
when treatment at time m has no effect on outcome at 
time k [10]. For our analyses, we use

in which ψ = 0 corresponds to no effect, ψ < 0 to pro-
tective effect, ψ > 0 to harmful effect, and allows for the 
effect of Am to diminish as time since m increases. The 
choice of blip function should be based on a priori sub-
ject matter knowledge, although one could also consider 
fitting models under a suite of possible blip functions 
as a sensitivity analysis to assess how that affects one’s 

exp
�

�k

�

Am,Z;�
��

=

⎧

⎪

⎨

⎪

⎩

E

�

Y
(Am ,0)
k

�Am ,Z,Ym=0

�

E

�

Y
(Am−1 ,0)
k

�Am ,Z,Ym=0

� if Ym = 0

1 if Ym = 1

γk
(

Am,Z;ψ
)

= ψAm

exp
[

γk
(

Am;ψ
)]

= 1+
exp (ψAm)− 1

k −m

conclusions. Other choices of blip functions have been 
previously described [10].

The interpretation of the parameter ψ depends on the 
choice of blip function [10]. Under certain conditions, 
as described in the next section, the parameter ψ can be 
mapped into the counterfactual risks under treatment 
strategies of interest, which have a natural interpreta-
tion for causal inference. In the remainder of this sec-
tion, we describe g-estimation of ψ. In the next section, 
we describe how to use the estimate to compute the risks 
under the strategies of interest.

G-estimation has been previously described under the 
assumption of no unmeasured treatment-outcome con-
founders [10]. For IV estimation, the estimating function 
is [10, 11]:

where Hm, k(ψ†) is defined as

We use ψ† to denote candidate values of the true value 
ψ where E

[

Hm, k
(

�
†
)

|Am,Z

]

 is equal to the mean coun-

terfactual outcome, E

[

Y

(

Am−1,0

)

k
|Am,Z

]

 , when ψ† is equal 

to ψ.
Under the IV assumptions, the value ψ† that solves 

E[U(ψ†; Z)] = 0 is our g-estimate [11]. The equation can 
be numerically solved, as previously described, using 
the Newton-Raphson procedure [10]. The 95% confi-
dence interval for ψ̂ can be obtained by bootstrapping. 
Selection bias due to censoring during follow-up can be 
addressed by inverse probability weighting, as has been 
previously described [10].

Computing marginal risks under two treatment strategies
The parameter ψ of the SNCFTM can be used to calcu-
late the counterfactual risks under a given treatment 
strategy [10]. The risk E

[

Y
0

k

]

 under the “never treat” strat-
egy 0 is obtained by “removing” the effect of an individu-
al’s non-zero treatment at each time period k from the 
end of the study period (k = K + 1) to the beginning 
(k = 0). This calculation, referred to as “blipping down” 
procedure, is carried out using the formula that is a func-
tion of the observed data when γk

(

Am;ψ
)

 is known

U
(

�
†
;Z
)

=
∑K

m=0

(

1 − Ym

)
∑K+1

k=m+1

(

Z − E
[

Z|Ym = 0
])

Hm,k

(

�
†
)

Hm,k

�

�
†
�

=

�

Yk exp
�

−
∑k−1

j=m
�j

�

Aj ;�
†

��

if Ym = 0

1 if Ym = 1

E
[

Y
0
k

]

= E

[

Yk

k−1
∏

m=0

exp
[

−�k

(

Am;�
)]

]
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The risk E
[

Y
g

k

]

 under the “always treat” treatment strat-
egy g is obtained by “adding” the effect of treatment to 
E

[

Y
0

k

]

 from the beginning of the study period (k = 0) to 
the end of the study period (K + 1). Assuming no effect 
measure modification of the treatment by time-varying 
covariates on the multiplicative scale, we can estimate 
this quantity using only E

[

Y
0

k

]

 and γk
(

Am;ψ
)

 . Under this 
assumption, this calculation, referred to as “blipping up”, 
is carried out using the formula

where ta
(

k , j, i
)

 for i =  − 1, 0, 1, …k − 2 are recursively 
defined as:

with j ≤ s and ea(p,m) = exp
[

γp(am;ψ)
]

 . These recursive 
definitions of ta

(

k , j, i
)

 weight the probability of develop-
ing the outcome at each time j < k by the cumulative 
probability of survival through j − 1. In the presence of 
effect measurement modification by time-varying covari-
ates, estimation of nuisance functions, in addition to 
E

[

Y
0

k

]

 and γk
(

Am;ψ
)

 , are required for the calculation of 
E
[

Y
g

k

]

[10].

Analysis of case‑control data using SNCFTMs
In some cases, data on treatment and outcome are avail-
able for all individuals in the study cohort, but the pro-
posed instrument, such as a given genetic variant, is 
difficult or expensive to measure in the full cohort. One 
solution is to limit the measurement of the instrument to 
cases (individuals who develop the outcome during the 
follow-up) and incidence-density sampled controls.

Case-control sampling allows us to consistently esti-
mate the parameter ψ of the SNCFTM and the marginal 
risks under static treatment strategies. To see why, note 
that only the cases contribute to the sum in the estimat-
ing equation because Hm, k(ψ†) is equal to 0 for all m and k 
among individuals who remain free of the outcome over 
follow-up. Therefore, if all cases or a random sample of 
the cases are included in the case-control sample, then 
the g-estimate ψ̂ remains unbiased as long as E[Z| Ym = 0] 
is correctly estimated in the full cohort or in randomly 
selected controls that are representative of the underlying 

E
[

Y
g

k

]

=

k−1
∑

j=0

E

[

Y 0

k−j

]

× ta
(

k , j,−1
)

ta(k , 0, k − 2) = ea(k , k − 1)

ta
(

k , j, k − 1 − [s + 1]
)

= ta
(

k , j, k − 1 − s
)

× ea
(

k − j, k − 1 − s
)

, for j < s

ta(k , s, k − 1 − [s + 1]) =

[

1 −
∑s−1

j=0
ta
(

k , j, k − 1 − s
)

]

× ea(k − s, k − 1 − s)

at-risk population that gave rise to the cases. As such, the 
case-control sample is sufficient to estimate ψ, even when 
sampling fractions are unknown.

Once the g-estimate ψ̂ is obtained, the marginal counter-
factual risks under static treatment strategies can be esti-
mates as described in the previous section. This is the case 
because the blip function cannot be a function of the instru-
ment under the homogeneity assumption, and the data on 
treatment and outcome is available for the full cohort.

Simulation study
We simulated datasets of 25,000 individuals compatible 
with the three scenarios shown in Fig. 1: (i) a time-fixed 
treatment A0, a time-fixed outcome Y1 and a time-fixed 
confounder L0, (ii) a time-fixed treatment A0, a time-
varying outcome Y1, Y2 (where Yk is an indicator for 
having developed the event by time k) and a time-fixed 
confounder L0, and (iii) a time-varying treatment A0, A1, 
a time-varying outcome Y1, Y2 and a time-varying con-
founder L0, L1. In all settings, there was a causal instru-
ment Z. For simplicity, we assume no loss to follow-up 
and considered all variables as binary. We used the fol-
lowing data-generating model:

Pr
(

Yk+1 = 1|Ak , Lk ,Yk = 0
)

= expit
(

log
(

�

1−�

)

+ �AY Ak + 0.5Lk

)

 for 
scenarios (i) and (iii).

Pr
(

Yk+1 = 1|A0, L0,Yk = 0
)

= expit
(

log
(

�

1−�

)

+ �AY A0 + 0.5L0

)

 for 
scenario (ii).

where αZA = 0.25, αAY = 0 when data was generated 
under the null and αAY = 0.5 otherwise; and baseline 
constant hazards (λ) took on values of 5, 10 and 25%. 
Additional simulations were conducted with datasets of 
10,000 or 50,000 individuals, and with varying strengths 
of association between the instrument and the exposure 
(αZA = 0.10 and αZA = 0.45) (Supplementary Fig. 1). Also, 
to create a case-control study, we selected all individuals 
who developed the outcome as cases and randomly sam-
pled two controls per case.

We fit a SNCFTM defined by the blip function 
exp

[

γk
(

Am;ψ
)]

= 1+
exp (ψAm)−1

k−m  and g-estimated the 
parameters of the model using three approaches:

Pr (L0 = 1) = 0.25

Pr (L1 = 1|L0,A1) = 0.25+ 0.25L0 + 0.25A1

Pr (Z = 1) = 0.5

Pr (Ak = 1|Z, Lk) = αZAZ + 0.5Lk
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1.	 Adjusting for confounder L
2.	 Using the instrumental variable Z
3.	 Neither adjusting for confounder L nor using the 

instrumental variable Z

We calculated differences and ratios in marginal risks 
under the “never treat” strategy and the “always treat” 
strategy by using the ψ̂ estimates from each SNCFTM 
and by applying the g-formula, a generalization of stand-
ardization to time-varying treatments and confounders. 
When the data were simulated under the null, 0 was the 
true ψ parameter. When the data were simulated not 
under the null, we considered the mean ψ̂ value obtained 
by adjusting for confounder L as the true value of the 
parameter ψ.

Distributions of ψ̂ estimates across simulated itera-
tions with λ = 5% are given in Fig.  2 and Table  1. Com-
pared with the mean ψ̂ estimates from SNCFTMs which 
adjusted for confounder L, the mean ψ̂ estimates from 
SNCFTMs which used an IV approach were similar. 
The variance of the IV estimates was larger than that of 
the confounding-adjusted estimates. There was addi-
tional loss in efficiency when IV was applied to data 

from a case-control design compared to a full cohort 
due to increased variability in estimating E[Z| Ym = 0]. 
As expected, ψ̂ estimates were very biased when we nei-
ther appropriately adjusted for confounding nor used 
an IV, with the bias ranging between 0.23 to 0.27. Esti-
mates for marginal risk differences and risk ratios were 
similar between the SNCFTM approach and the g-for-
mula approach (Supplementary Fig. 2A-B). As the base-
line hazard increased, the SNCFTM approach resulted 
in an overestimate of the risk differences and the risk 
ratios compared to using the g-formula (Supplementary 
Fig. 3A-B).

Application: the effect of alcohol intake on endometrial 
cancer
Alcohol intake may increase endometrial cancer risk by 
increasing estrogen levels or may decrease endometrial 
cancer risk by improving insulin sensitivity and reduc-
ing fasting insulin concentrations [12, 13]. To estimate 
this effect, we emulated a target trial of alcohol intake 
interventions among middle-age women using observa-
tional data from the Nurses’ Health Study (NHS), a pro-
spective study of female registered nurses [14]. Below we 

Fig. 1  Causal diagrams depicting the relationship between a time-fixed instrument and (i) a time-fixed exposure and outcome; ii a time-fixed 
exposure and a time-varying outcome; iii a time-varying exposure and outcome
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summarize the protocol of the target trial and describe 
how to emulate each of its components using the NHS 
observational data.

Target trial specification
The eligibility criteria for the women in the target trial 
would be 45–48 years of age, no history of cancer (except 
for non-melanoma skin cancer), no history of alcohol-
ism, and an intact uterus. The two (static) strategies to 
be compared would be (1) “never drink”, or (2) “always 
½ drink per day, unless an absolute contraindication for 
moderate alcohol consumption arises”. We considered 

a standard drink to contain 14 g of ethanol [15]. Eligi-
ble women would be randomly assigned to one of the 
strategies and would be aware of the strategy they were 
assigned to. The outcome of interest would be incident 
endometrial cancer. Each woman would be followed 
from assignment (baseline) until the development of 
endometrial cancer, incomplete-follow-up, or 28 years 
after baseline, whichever occurs first. We defined incom-
plete follow-up as nonresponse to alcohol intake-related 
questions.

The causal contrasts of interest would be the inten-
tion-to-treat effect—that is, the effect of being assigned 

Fig. 2  Distributions of psi estimates across 1000 iterations using different g-estimation approaches under different data-generating mechanisms 
with λ = 5%. The lower and upper hinges correspond to the 25th and 75th percentile. The lower and upper whiskers extend from the hinge to 
the smallest and largest values no further than 1.5*IQR from the hinge, where IQR is the interquartile range. The median is represented by the line 
between the hinges, and the mean is represented by the diamond point symbol
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a strategy, regardless of whether women adhere to it—
and the per-protocol effect—that is, the effect that would 
have been observed had all women adhered to their 
assigned strategy over the 28-year follow-up.

To estimate the intention-to-treat effect, we would 
conduct an intention-to-treat analysis that compares the 
28-year risk (cumulative incidence) between the group 
assigned to each strategy. In the presence of incomplete 
follow-up, inverse probability weights (a function of 
baseline and time-varying prognostic factors) would be 
used to adjust for potential selection bias [11].

To estimate the per-protocol effect, one option is 
to conduct a per-protocol analysis that appropriately 
adjusts for baseline and time-varying prognostic fac-
tors that also predict adherence. In the absence of suf-
ficient information on these factors, we could conduct a 
per-protocol analysis based on IV estimation, with the 
dichotomous randomization indicator as the proposed 
instrument. IV conditions (1) and (3) would be expected 
to hold by design, but we would need to assume that 

condition (2) holds. That is, we would need to assume 
that being aware of their treatment assignment did not 
affect participants’ behavior in ways that may affect 
the outcome. We would also need to assume a struc-
tural model on how different degrees of adherence—
over time and in magnitude of alcohol intake—relate to 
the outcome. For example, we could use the SNCFTM 
described above to estimate the 28-risk risk of endome-
trial cancer in the study population under full adherence 
to each strategy.

Note that the per-protocol effect involves the dynamic 
strategy “always ½ drink per day, unless an absolute con-
traindication for moderate alcohol consumption arises” 
whereas our SNCFTM can only be used to compare 
static strategies such as “always ½ drink per day, regard-
less of contraindications for moderate alcohol consump-
tion”. Therefore, our per-protocol analysis implicitly 
assumes that the incidence of contraindications is not 
high enough to substantially alter the per-protocol effect 
estimate.

Table 1  Mean, standard deviation (SD), bias and mean squared error (MSE) of psi estimates using different g-estimation approaches 
under different data-generating mechanisms

DAG Under the null Measure Confounding-
adjusted 
analysis

IV analysis IV analysis of nested 
case-control sample

Unadjusted analysis

Time-fixed exposure and outcome Yes Mean 0.0013 0.0044 0.0102 0.2468

SD 0.0655 0.2001 0.2665 0.0563

Bias +0.0013 +0.0044 + 0.0102 + 0.2468

MSE 0.0043 0.0400 0.0711 0.0641

No Mean 0.4591 0.4655 0.5010 0.7016

SD 0.0579 0.1885 0.2563 0.0478

Bias 0.0000 +0.0064 +0.0419 +0.2424

MSE 0.0034 0.0355 0.0674 0.0611

Time-fixed exposure and time-varying 
outcome

Yes Mean −0.0024 −0.0018 0.0021 0.2410

SD 0.0473 0.1446 0.1950 0.0401

Bias −0.0024 − 0.0018 +0.0021 +0.2410

MSE 0.0022 0.0209 0.0380 0.0597

No Mean 0.4523 0.4489 0.5015 0.6923

SD 0.0417 0.1365 0.1833 0.0348

Bias 0.0000 −0.0033 +0.0492 +0.2400

MSE 0.0017 0.0186 0.0360 0.0588

Time-varying exposure and outcome Yes Mean −0.0018 0.0061 0.0122 0.1717

SD 0.0539 0.1428 0.1861 0.0470

Bias −0.0018 +0.0061 +0.0122 +0.1717

MSE 0.0029 0.0204 0.0348 0.0317

No Mean 0.4600 0.4588 0.4974 0.6316

SD 0.0448 0.1293 0.1706 0.0378

Bias 0.0000 −0.0012 +0.0374 +0.1716

MSE 0.0020 0.0167 0.0305 0.0309
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Target trial emulation
We emulated the above target trial using observa-
tional case-control data sampled from the NHS [14]. In 
brief, women aged 30–55 years from 11 U.S. states were 
enrolled in the NHS in 1976 upon completion of an ini-
tial questionnaire, and continuously followed up via bien-
nial questionnaires on lifestyle and behavioral factors, as 
well as health outcomes. Our treatment, alcohol intake, 
was first assessed in 1980 using a validated semiquantita-
tive food frequency questionnaire, and has been updated 
every 2 to 4 years. Alcohol intake values were truncated 
at the 99.5th percentile to eliminate implausible outliers. 
The outcome, incident endometrial cancer, was identified 
via biennial questionnaires or death records, and subse-
quently confirmed using medical records and pathology 
reports.

We applied the eligibility criteria of the target trial 
to women in the observational data. We additionally 
required women to have a measurement of alcohol intake 
at baseline (between the ages of 45 and 48) (Supplemen-
tary Fig. 4) and having contributed genotyping data used 
in any of 14 case-control studies of various disease out-
comes, including endometrial cancer, that were nested 
in the NHS [16]. Follow-up started at the time of return 
of the first questionnaire after all eligibility criteria were 
met and ended as described above.

We constructed a weighted allele score of 23 single 
nucleotide polymorphisms (SNPs) that had a genome-
wide significant association with alcohol intake and that 
did not have a genome-wide significant association for 
age of initiation of regular smoking, ever smoking, ciga-
rettes per day, or smoking cessation (Supplementary 
Table  2) [17]. We then assumed that the value of this 
weighted score had been randomly assigned to eligible 
women.

To estimate an observational analogue of the intention-
to-treat or per-protocol effects, we would proceed as for 
the target trial except that the randomization indica-
tor would be replaced by a dichotomized version of the 
genetic score: women with low and high values of the 
genetic score would be assumed to have been assigned 
to strategy (1) and (2), respectively. An analogue of 
the intention-to-treat effect would be of little interest 
because of the low adherence to the assigned strategies 
in each level of the genetic score (26.8 and 2.9% among 
those assigned to strategy (1) and (2), respectively). This 
is the reason why most MR studies estimate an observa-
tional analogue of the per-protocol effect rather than an 
observational analogue of the intention-to-treat effect. To 
estimate the former, we used IV estimation as described 
for the target trial but with the continuous genetic score, 
rather than the dichotomous randomization indicator, as 
the proposed instrument. In our observational data, IV 

condition (1) holds (though weakly, see above), but we 
need to additionally assume conditions (2) and (3). Con-
dition (2) requires that the genetic variants do not affect 
outcomes except via alcohol intake, which is trivially true 
for non-causal (surrogate) genetic variants. Condition 
(3) holds in the absence of shared causes, possibly aris-
ing from population stratification, of the genetic variants 
and endometrial cancer, and the genetic score be inde-
pendent of the eligibility criteria (to prevent selection 
bias because the genotype is determined at conception 
but the eligibility criteria are defined decades later at the 
start of follow-up) [2, 18] and also to the matching fac-
tors in the case-control studies (which permits us to esti-
mate E[Z| Y0 = 0] for the estimating equation). Among 
eligible women with genetic data, we used g-estimation 
of a structural nested cumulative failure time model with 
the blip function exp

[

γk
(

Am;ψ
)]

= 1+
exp (ψAm)−1

k−m  . The 
time-scale was in discrete 4-year age groups. Using the 
g-estimate ψ̂ , we estimated the marginal risk of endo-
metrial cancer from age 45 to age 72 under the “never 
drink” strategy and the “always ½ drink per day” strategy 
among all eligible women in the NHS cohort. This study 
was approved by the Human Research Committees at 
Brigham and Women’s Hospital, Boston, MA, USA.

Results
Our analysis included 33,426 eligible women and genetic 
data was available for 6462 of them (Supplementary 
Table 1; Supplementary Fig. 4). Correlations between the 
weighted allele score and alcohol intake was about 0.06 
across age groups (Supplementary Table  3A-B). Odds 
ratios for incident endometrial cancer per standard devi-
ation increase in the weighted allele score ranged from 
0.82 to 1.24 over follow-up (Supplementary Table 4). Our 
model converged in only 831 of 1000 bootstrap samples 
(no solution to the estimating equation could be found in 
the remaining bootstrap samples). The g-estimate ψ̂ (95% 
confidence interval) was 0.039 (95% CI: − 0.450, 5.902), 
as shown by the point at which the quadratic form of the 
estimating equation reached a minimum (Fig.  3A). We 
used the g-estimate ψ̂ to estimate the marginal risk of 
endometrial cancer from age 45 to age 72 in all eligible 
women, under the “never drink” strategy, and the “always 
½ drink per day” strategy. We observed a risk difference 
of 0.3 percentage points (95% CI: − 2.7, 97.8) and a risk 
ratio of 1.06 (95% CI: 0.31, 44.5) (Fig. 3B).

Discussion
Many observational studies which implement IV meth-
ods, including MR studies, involve an inherently time-
varying treatment or exposure. Therefore, the goal of 
these studies is to estimate the effect of sustained treat-
ment strategies. We described g-estimation of SNCFTMs 
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for IV estimation of absolute risks under different treat-
ment strategies, evaluated it in simulations, and imple-
mented it as part of the observational emulation of a 
(hypothetical) target trial of alcohol intake interventions 
and endometrial cancer.

Our proposed method has several advantages: han-
dling of continuous or dichotomous instruments and 
treatments, no restraints on the number of time points 
that can be included in the model, adjustment for selec-
tion bias due to loss to follow-up via inverse probability 

weighting, and application to case-control data without 
knowledge of sampling fractions. We discuss g-estima-
tion of SNCFTMs using a time-fixed instrument, which 
is often the case in MR studies, but the method can be 
readily generalized to time-varying instruments (see Sec-
tion S1 of the Supplementary material).

We demonstrated the validity of the method via simu-
lations in simplified scenarios in which the effect was 
constant over time, did not vary across covariate levels, 
and in which only the most recent blip of treatment at 

Fig. 3  Plots of (A) the quadratic form of the estimating equation against possible ψ values and (B) the observed marginal cumulative risks and the 
marginal cumulative risks under the “never drink” and the “always ½ drink per day” strategies
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time k had an effect on the outcome at time k + 1. Despite 
these simplifications, our simulations suffice to show a 
limitation of g-estimation of SNCFTMs: the SNCFTMs 
should only be used with rare outcomes because the 
expected conditional counterfactual risks must lie within 
the interval [0, 1], but the blip function leaves 

E

[

Y

(

Am−1,0

)

k
|Am,Z,Ym = 0

]

 unspecified and thus cannot 

impose bounds on it [10]. If the rare failure assumption 
does not hold, estimates may be invalid (see Remark 1 in 
reference [10]). Estimates for the marginal risks (4.2% in 
our observational data analysis) can be used to support 
the rare failure assumption. Under this assumption, it is 
irrelevant whether controls in the case-control studies 
are sampled using cumulative incidence sampling or inci-
dence density sampling.

Our estimates of the effect of alcohol intake on the risk 
of endometrial cancer from age 45 to 75 had very wide 
95% confidence intervals and our model did not con-
verge in some of the bootstrap samples. This precludes 
us from making any substantive conclusions. The large 
variability of our estimate shows that informative MR 
analyses will ultimately require sample sizes much larger 
than ours—6492 women with genetic data, of whom only 
219 developed endometrial cancer over follow-up—and/
or stronger instruments. Previous analyses of the NHS 
data using Cox proportional hazards models reported 
an adjusted rate ratio of 0.88 (95% CI: 0.71, 1.09) when 
comparing moderate alcohol drinkers (5.0 to 14.9 g/day) 
to non-drinkers [19].

Especially given the width of the confidence intervals, 
we made three simplifications in our analysis that other-
wise would have resulted in even more imprecise esti-
mates. First, we assumed that IV condition [2] held in 
the presence of selection over the duration of follow-up 
and selection into the analytical sample. Second, we 
only considered one-dimensional parameter models. 
Multi-dimensional parameter models may include 
product terms between baseline covariates L0 and treat-
ment (to allow for weaker versions of the homogeneity 
assumption) or product terms between time-varying 
covariates Lm and treatment (to compare dynamic strat-
egies). The latter would require the development of blip-
ping up procedures to obtain the risk under each 
dynamic strategy (previous descriptions of SNCFTMs 
have only described blipping up procedures for blip 
functions with time-fixed covariates) [10]. These proce-
dures would require correct model specification for the 

nuisance functions E

[

Y

(

Am−1,0

)

k
|Am, Lm,Z,Ym = 0

]

 and 

the density of Lm[10]. Third, we assumed marginal 
exchangeability for the instrument Z rather than 

conditional exchangeability, Z
∐

Y
g
k | L0 , where L0 is a 

vector of measured baseline covariates such that g-esti-
mation is based on the conditional mean of the instru-
ment, E[Z| L0, Y0 = 0].

Conclusion
In summary, we have described how to conduct MR and 
other IV analyses with time-varying treatments and fail-
ure time outcomes using SNCFTMs. Our simulations 
confirm the validity of the proposed method and our 
data analysis indicate that these MR analyses require 
very large sample sizes. Larger databases are becoming 
increasingly available as genetic biobanks, such as the 
Million Veterans Program [20] and the UK Biobank [21], 
continue to collect detailed longitudinal data on non-
genetic exposures and health outcomes. This work pro-
vides a basis for IV analyses of time-varying treatment 
and failure time outcomes in those databases.
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mechanisms with baseline hazards of 5%, 10% and 25%. The lower and 
upper hinges correspond to the 25th and 75th percentile. The lower and 
upper whiskers extend from the hinge to the smallest and largest values 
no further than 1.5*IQR from the hinge, where IQR is the interquartile 
range. The median is represented by the line between the hinges, and 
the mean is represented by the diamond point symbol. Supplementary 
Figure 4. Flowchart of inclusion and exclusion of Nurses’ Health Study 
participants. Supplementary Table 1. Characteristics of Nurses’ Health 
Study I participants at start of follow-up. Supplementary Table 2. SNPs 
identified as proposed instruments for alcohol intake. Supplementary 
Table 3. A. Associations of proposed instrument (weighted allele score) 
with alcohol intake across baseline five-year age groups. B. Distributions 
of alcohol intake and proportion of heavy drinkers across quartiles of the 
proposed instrument (weighted allele score) across baseline five-year age 
groups. Supplementary Table 4. Associations of the proposed instru-
ment (weighted allele score) with hazard of endometrial cancer across 
baseline five-year age groups.

Acknowledgements
The authors would like to thank the participants and staff of the Nurses’ Health 
Study for their valuable contributions, and the following state cancer registries 
for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, 
MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY.

Authors’ contributions
JS, SAS and MAH participated in the conception and design of the work. JS 
conducted the analyses and drafted the initial manuscript. SAS, PK, BR, IDV 
and MAH assisted with the interpretation of the data and preparation of the 
final manuscript. All authors approved the final version of the manuscript to 
be published.

Funding
The Nurses’ Health Study is supported by grants from the National Cancer 
Institute [UM1 CA186107; P01 CA87969; R01 CA49449]. J.S. is supported by a 
UCB Fellowship. S.A.S. is supported by a NWO/ZonMW Veni grant [91617066]. 
I.D.V. is supported by the Brigham Research Institute through the Fund to 
Sustain Research Excellence. M.A.H. is supported by the National Institutes of 
Health (NIH) [R37 AI102634]. These funders had no role in study design, data 
collection, analysis, decision to publish, or manuscript preparation.

Availability of data and materials
Data that support the findings of this study are not publicly available to pro-
tect participants’ privacy and confidentiality. Further information including 
the procedures to obtain and access data from the Nurses’ Health Studies 
is described at https://​www.​nurse​sheal​thstu​dy.​org/​resea​rchers(contact 
email: nhsac​cess@​chann​ing.​harva​rd.​edu). R code to implement structural 
nested cumulative failure time models for confounding adjustment or for 
instrumental variable analyses are available at https://​github.​com/​joy-​shi1/​
sncft​ms.

Declarations

Ethics approval and consent to participate
The study was approved by the Brigham and Women’s Hospital Institutional 
Review Board and the Subject Committee at Harvard T.H. Chan School of 
Public Health. All participants provided written informed consent. All methods 
were carried out in accordance with relevant guidelines and regulations.

Consent for publication
N/A

Competing interests
The authors declare they have no competing interests.

Author details
1 Department of Epidemiology, Harvard T.H. Chan School of Public Health, 
Boston, MA, USA. 2 The CAUSALab, Harvard T.H. Chan School of Public Health, 
Boston, MA, USA. 3 Department of Epidemiology, Erasmus Medical Center, 
Rotterdam, The Netherlands. 4 Department of Biostatistics, Harvard T.H. Chan 
School of Public Health, Boston, MA, USA. 5 Channing Division of Network 
Medicine, Department of Medicine, Brigham and Women’s Hospital and Har-
vard Medical School, Boston, MA, USA. 

Received: 20 July 2021   Accepted: 21 October 2021

References
	1.	 Hernán MA, Robins JM. Instruments for causal inference: An epidemiolo-

gist’s dream? Epidemiology. 2006;17(4):360–372. Available from: https://​
pubmed.​ncbi.​nlm.​nih.​gov/​16755​261/ [cited 30 Sep 2020]

	2.	 Swanson SA, Tiemeier H, Ikram MA, Hernán MA. Nature as a Trialist?: 
deconstructing the analogy between Mendelian randomization and 
randomized trials. Epidemiology. 2017;28(5):653–9.

	3.	 Smith GD, Hemani G. Mendelian randomization: genetic anchors 
for causal inference in epidemiological studies. Hum Mol Genet. 
2014;23(R1):R89–R98.

	4.	 Burgess S, Small DS, Thompson SG. A review of instrumental vari-
able estimators for Mendelian randomization. Stat Methods Med Res. 
2017;26(5):2333–2355. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​
pubmed/​26282​889 [cited 15 Nov 2019].

	5.	 Shi J, Swanson SA, Kraft P, Rosner B, De Vivo I, Hernán MA. Mendelian 
randomization with repeated measures of a time-varying exposure: an 
application of structural mean models. Epidemiology. In Press.

	6.	 Robins JM. Analytic methods for estimating HIV treatment and cofactor 
effects. In: Ostrow DG, Kessler R. eds. Methodological Issues of AIDS 
Mental Health Research. Plenum Publishing; 1993. p 213–290.

	7.	 Tchetgen EJT, Walter S, Vansteelandt S, Martinussen T, Glymour M. 
Instrumental variable estimation in a survival context. Epidemiology. 
2015;26(3):402.

	8.	 Martinussen T, Vansteelandt S, Tchetgen Tchetgen EJ, Zucker DM. 
Instrumental variables estimation of exposure effects on a time-to-
event endpoint using structural cumulative survival models. Biometrics. 
2017;73(4):1140–1149. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​
28493​302/ [cited 29 Jun 2020]

	9.	 Ying A, Tchetgen EJT. A New Causal Approach to Account for Treatment 
Switching in Randomized Experiments under a Structural Cumulative 
Survival Model. arXiv Prepr arXiv210312206. 2021.

	10.	 Picciotto S, Hernán MA, Page JH, Young JG, Robins JM. Structural nested 
cumulative failure time models to estimate the effects of interventions. J 
Am Stat Assoc. 2012;107(499):886–900.

	11.	 Hernán MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & 
Hall/CRC; 2020.

	12.	 Dumitrescu RG, Shields PG. The etiology of alcohol-induced breast can-
cer. Alcohol. 2005;35(3):213–25.

	13.	 Davies MJ, Baer DJ, Judd JT, Brown ED, Campbell WS, Taylor PR. Effects 
of moderate alcohol intake on fasting insulin and glucose concentra-
tions and insulin sensitivity in postmenopausal women: a randomized 
controlled trial. JAMA. 2002;287(19):2559–62.

	14.	 Bao Y, Bertoia ML, Lenart EB, Stampfer MJ, Willett WC, Speizer FE, et al. 
Origin, methods, and evolution of the three nurses’ health studies. Am J 
Public Health. 2016;106(9):1573–81.

	15.	 National Institute on Alcohol Abuse and Alcoholism. Drinking Levels 
Defined. Available from: http://​www.​niaaa.​nih.​gov/​alcoh​ol-​health/​overv​
iew-​alcoh​ol-​consu​mption/​what-​stand​ard-​drink. [cited 11 Sep 2020]

	16.	 Lindstrom S, Loomis S, Turman C, Huang H, Huang J, Aschard H, et al. A 
comprehensive survey of genetic variation in 20,691 subjects from four 
large cohorts. PLoS One. 2017;12:e0173997. Public Library of Science.

	17.	 Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association stud-
ies of up to 1.2 million individuals yield new insights into the genetic 
etiology of tobacco and alcohol use. Nat Genet. 2019;15:237–44 Nature 
Publishing Group.

https://www.nurseshealthstudy.org/researchers
nhsaccess@channing.harvard.edu
https://github.com/joy-shi1/sncftms
https://github.com/joy-shi1/sncftms
https://pubmed.ncbi.nlm.nih.gov/16755261/
https://pubmed.ncbi.nlm.nih.gov/16755261/
http://www.ncbi.nlm.nih.gov/pubmed/26282889
http://www.ncbi.nlm.nih.gov/pubmed/26282889
https://pubmed.ncbi.nlm.nih.gov/28493302/
https://pubmed.ncbi.nlm.nih.gov/28493302/
http://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/what-standard-drink
http://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/what-standard-drink


Page 12 of 12Shi et al. BMC Medical Research Methodology          (2021) 21:258 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	18.	 Swanson SA. A Practical Guide to Selection Bias in Instrumental Variable 
Analyses. Epidemiology. 2019;30(3):345–349. Available from: http://​www.​
ncbi.​nlm.​nih.​gov/​pubmed/​30896​458 [cited 9 Dec 2019].

	19.	 Je Y, De Vivo I, Giovannucci E. Long-term alcohol intake and risk of 
endometrial cancer in the Nurses’ Health Study, 1980-2010. Br J Cancer. 
2014;111(1):186–194. Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​
24853​180/ [cited 31 Mar 2021]

	20.	 Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, Breeling J, et al. 
Million Veteran Program: A mega-biobank to study genetic influences 
on health and disease. J Clin Epidemiol. 2016;70:214–223. Available from: 
https://​linki​nghub.​elsev​ier.​com/​retri​eve/​pii/​S0895​43561​50044​48 [cited 
15 Apr 2019]

	21.	 Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK 
Biobank resource with deep phenotyping and genomic data. Nature. 
2018;562(7726):203–209. Available from: https://​pubmed.​ncbi.​nlm.​nih.​
gov/​30305​743/ [cited 15 Sep 2020]

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://www.ncbi.nlm.nih.gov/pubmed/30896458
http://www.ncbi.nlm.nih.gov/pubmed/30896458
https://pubmed.ncbi.nlm.nih.gov/24853180/
https://pubmed.ncbi.nlm.nih.gov/24853180/
https://linkinghub.elsevier.com/retrieve/pii/S0895435615004448
https://pubmed.ncbi.nlm.nih.gov/30305743/
https://pubmed.ncbi.nlm.nih.gov/30305743/

	Instrumental variable estimation for a time-varying treatment and a time-to-event outcome via structural nested cumulative failure time models
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Notation and identifying assumptions
	G-estimation of structural nested cumulative failure time models with an instrumental variable
	Computing marginal risks under two treatment strategies
	Analysis of case-control data using SNCFTMs

	Simulation study
	Application: the effect of alcohol intake on endometrial cancer
	Target trial specification
	Target trial emulation

	Results
	Discussion
	Conclusion
	Acknowledgements
	References


