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Abstract

Background: Individual-patient data meta-analysis (IPD-MA) is an increasingly popular approach because of its
analytical benefits. IPD-MA of observational studies must overcome the problem of confounding, otherwise biased
estimates of treatment effect may be obtained. One approach to reducing confounding bias could be the use of
propensity score matching (PSM). IPD-MA can be considered as two-stage clustered data (patients within studies) and
propensity score matching can be implemented within studies, across studies, and combining both.

Methods: This article focuses on implementation of four PSM-based approaches for the analysis of data structure
that exploit IPD-MA in two ways: (i) estimation of propensity score model using single-level or random-effects logistic
regression; and (ii) matching of propensity scores (PS) across studies, within studies or preferential-within studies. We
investigated the performance of these approaches through a simulation study, which considers an IPD-MA that
examined the success of different treatments for multidrug-resistant tuberculosis (MDR-TB). The simulation
parameters were varied according to three treatment prevalences (according to studies, 50% and 30%), three levels of
heterogeneity between studies (low, moderate and high) and three levels of pooled odds ratio (1, 1.5, 3).

Results: All approaches showed greater biases at the higher levels of heterogeneity regardless of the choices of
treatment prevalences. However, matching of propensity scores using within-study and preferential-within study
reported better performance compared to matching across studies when treatment prevalence varied across-studies.
For fixed prevalences, a random-effect propensity score model to estimate propensity scores followed by matching of
propensity scores across-studies achieved lower biases compared to other PSM-based approaches.

Conclusions: Propensity score matching has wide application in health research while only limited literature is
available on the implementation of PSM methods in IPD-MA, and until now methodological performance of PSM
methods have not been examined. We believe, this work offers an intuition to the applied researcher for the choice of
the PSM-based approaches.
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Background
When randomized control trials are not feasible, obser-
vational studies may be conducted to evaluate the asso-
ciation between a treatment of interest and relevant
outcomes. Individual patient data from multiple observa-
tional studies can be combined and analyzed to obtain a
pooled estimate of the treatment-outcome association [1].
Individual-patient data meta-analysis (IPD-MA) of obser-
vational studies allows enlarged sample sizes compared
to individual studies, and may provide a more precise
estimate of the treatment effect [2].
In IPD-MA of observational studies, treatment assign-

ment is not random, which may cause an imbalance
between the treatment and control groups in terms of
important confounders or risk factors [3]. Traditional ana-
lytic strategies for the analysis of IPD-MA incorporate
covariates into regression models to account for such
imbalance between subjects, while also accounting for the
correlation between subjects from the same study [4].
An alternative way to ensure a balance between treated

and untreated groups is to use propensity scores. The
propensity score is a probability of being treated condi-
tional on the given observed covariates [5]. The Propen-
sity score is a balancing score, which summarizes con-
founders in an efficient way.
Propensity scores can be used in a variety of ways

including regression adjustment, weighting, stratification,
and matching [6–8]. Matching on propensity scores has
been shown to perform better in reducing bias com-
pared to other propensity score techniques in individual
studies [9].
Propensity score matching (PSM) has been used for the

analysis of clustered data via several approaches: search-
ing for a match from the entire pool of possible controls
while ignoring the cluster level (“across clusters”), search-
ing for a match only within the same cluster as the treated
subject (“within clusters”), and finally, preferential within
cluster matching, where first a suitable control is sought
from within the same cluster, and if one is not found,
then a control is sought from other clusters (“preferential
within cluster”)[10, 11].
IPD-MAmay be considered as clustered data, where the

cluster is the study. However, there are important differ-
ences between IPD-MA and clustered data where these
approaches have been previously evaluated. First, treat-
ment prevalence may not vary greatly in clustered data
[12]. However, IPD-MA may include studies from very
different contexts and correspondingly, treatment preva-
lence may vary greatly, even for example from 0 to 100%
- because some treatments are not available in some
study centres. Second, heterogeneity may be greater in
the IPD-MA context, since characteristics of the patient
population, exposure and outcome definitions, and other
study-level characteristics vary across studies [13].

In most meta-analyses, studies in which no subjects
received the treatment of interest would be excluded, or
alternatively network meta analysis may be considered.
If study-level covariates are important, control subjects
from the same study may be more similar to treatment
subjects. Bias may arises because of the exclusion of
treated subjects. Treated subjectsmight get excluded from
the analysis if matched controls are not found. In that
case, finding a control with a similar propensity score
from a different study may be a reasonable choice. More-
over, given that some treatments may not have been
available in some studies, a better match may be avail-
able by considering subjects in different studies. On the
other hand, matching across studies may not ensure an
appropriate match. This is because when study-specific
confounders are strong, the estimated propensity scores
may vary greatly across studies. More importantly - the
same subject could have different PS in different set-
tings/studies, so subjects from different studies with the
same PS are not inherently comparable. A compromise
is to use preferential within-study matching, which first
searches for a suitable control from the same study and if
none is found searches for a suitable control from a dif-
ferent study. In this work, we explore the consequences of
various matching strategies.
Thus, the objective of this work was to systematically

evaluate the performance of propensity score matching-
based approaches to estimate the odds ratio that charac-
terizes the treatment-outcome association in the context
of IPD-MA via simulation study. Our work was based
on an IPD-MA that investigated the treatment success
of various drugs for multiple drug resistant tuberculosis
(MDR-TB) [12].
This paper is structured as follows. Section 2 briefly

describes the individual-patient dataset. In section 3, we
describe a simulation study, which was used to investi-
gate the performance of the PSM-based techniques. This
section discusses the data generation procedure, simula-
tion schemes, PSM-based approaches, and data analysis.
In section 4, we present the results of the simulation study.
Finally, in section 5, we summarize our findings.

Methods
Description of individual patient dataset
Our data generation relied on a real-life IPD-MA dataset
that evaluated the associations between MDR-TB treat-
ments and treatment success. Only patients with con-
firmed MDR-TB were included. Patients with extensively
drug-resistant tuberculosis (XDR-TB) were excluded. We
refer to this dataset as the MDR-TB-IPD. Ahuja et al.
described in detail the study identification, selection and
participation in IPD-MA [12].
The MDR-TB-IPD contained both individual-level and

study-level information including patients’ age, sex, HIV
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status and acid fast bacilli (AFB) as well as smear status at
the start of theMDR-TB treatment regimen, history of TB,
cavitation status of the patient, information on 15 phar-
macological agents, resistance status for each treatment,
and the treatment outcome.
Specifically, the MDR-TB-IPD dataset is comprised of

31 studies with a total of 9290 patients. The number

of patients per study varied from 25 to 2211, while the
median number of patients across studies was 104 (see
Table 1). The study-specific mean age of patients varied
from 7 to 48 years, with a median mean age of 41 years
across studies. Overall, most patients were males with the
proportion of male ranging from 47% to 96% across stud-
ies. AFB smear status varied from 70% to 100%, while the

Table 1 Characteristics of study participants by study and overall

Study N Agemean (SD) Male N.(%) Smear N.(%) HIV N. (%) Ethionamide N. (%)

Ahujan 823 41.4 (12.0) 561 (68.2) 509 (70.8) 488 (74.4) 394 (47.9)

Avenda 72 36.3 (15.3) 43 (59.7) 67 (93.1) 1 (1.4) 13 (18.1)

Burgos 48 47.2 (14.8) 32 (66.7) 36 (75.0) 11 (22.9) 17 (35.4)

Chan 203 42.0 (14.4) 116 (57.1) 203 (100.0) 0 (0.0) 124 (61.1)

Chiang 125 46.1 (15.2) 90 (72.0) 109 (93.2) 0 (0.0) 57 (45.6)

Cox 77 36.9 (11.2) 47 (61.0) 76 (98.7) 0 (0.0) 72 (93.5)

Garcia 47 47.6 (16.4) 26 (55.3) 42 (89.4) 0 (0.0) 22 (46.8)

Granic 104 40.3 (19.5) 61 (58.7) 75 (74.3) 1 (100.0) 47 (45.2)

Koh 155 40.9 (14.4) 82 (52.9) 131 (84.5) 0 (0.0) 74 (47.7)

Lung 99 46.1 (16.2) 74 (74.7) 78 (80.4) 0 (0.0) 47 (47.5)

Migliori 101 39.4 (14.7) 61 (60.4) 80 (79.2) 6 (6.2) 46 (45.5)

Mitnic 732 31.1 (12.0) 436 (59.6) 508 (71.1) 8 (1.2) 495 (67.6)

Narita 81 40.2 (11.8) 55 (67.9) 0 (0.0) 41 (54.7) 26 (32.1)

Palmer 114 35.3 (13.7) 54 (47.4) 108 (94.7) 0 (0.0) 8 (7)

Pasvol 45 36.0 (16.7) 21 (50.0) 29 (74.4) 0 (0.0) 25 (55.6)

Pena 25 41.2 (13.3) 24 (96.0) 25 (100.0) 0 (0.0) 0 (0)

Perez 34 42.1 (12.4) 21 (61.8) 34 (100.0) 0 (0.0) 0 (0)

Quy 157 39.5 (11.4) 121 (77.1) 157 (100.0) 4 (2.5) 0 (0)

Riekstina 1027 42.3 (12.7) 780 (75.9) 269 (68.1) 32 (3.9) 0 (0)

Robert 45 41.7 (15.6) 24 (53.3) 33 (73.3) 9 (25.7) 18 (40.0)

Schaaf 39 7.0 (5.4) 20 (51.3) 9(33.3) 6 (20.7) 30 (76.9)

Seung 1427 43.9 (15.4) 117 (82.4) 142 (100.0) 0 (0.0) 0 (0)

Shim 1364 42.8 (14.9) 1014 (74.3) 927 (68.0) 1 (0.1) 0 (0)

Shin 608 35.8 (11.3) 506 (83.2) 497 (85.8) 5 (0.8) 450 (74.0)

Shirai 61 46.4 (11.9) 46 (75.4) 0 (0.0) 0 (0.0) 40 (65.6)

Tabars 43 44.4 (19.1) 27 (62.8) 42 (97.7) 0 (0.0) 0 (0)

Tupasi 170 39.2 (12.4) 106 (62.4) 107 (67.7) 0 (0.0) 40 (23.5)

Vander 43 32.9 (18.3) 32 (74.4) 0(0.0) 0 (0.0) 1 (2.3)

Vander 2211 36.6 (10.8) 1383 (62.6) 1390 (69.7) 571 (38.4) 2211 (100)

Viiklepp 284 43.0 (13.6) 201 (70.8) 153 (53.9) 9 (3.4) 0 (0)

Yimkim 211 39.3 (15.8) 124 (58.8) 0 (0.0) 0 (0.0) 0 (0)

Median 104 41 63 75 0 41

P25 48 37 59 68 0 0

P75 207 43 74 94 5 51

N.(%): The number and percentage of patients in each study.
Median, P25 and P75 indicates the median, 25th and 75th Percentiles which have been calculated for the number of patients, mean age of patients, proportion of male
patients, proportion of smear status, HIV status across studies, and proportion of treatment Ethionamide
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median proportion of AFB smear positive across stud-
ies was 75%. Most patients were HIV-negative; indeed, 22
studies had no HIV-positive patients. Treatment preva-
lence for the drug “ethionamide” varied from 0 to 100% -
because some treatments were not available in some study
centres.
We conducted a simulation study to evaluate the perfor-

mance of propensity score matching-based approaches to
estimate treatment effects in the context of MDR-TB-IPD.

Simulation study
Figure 1 gives an overview of the steps of the simula-
tion study, which we describe generally here, and in detail
below.We generated our two-level data structure whereN

individual-level units, indexed by i (i = 1, 2, · · · , nj), are
nested in J second-level units (studies), indexed by j (j =
1, 2, 3, · · · , J). Our confounder variables, Xij = (age, sex,
HIV status, and smear status) were generated by sampling
with replacement from the MDR-TB-IPD dataset. Next,
we generated our binary treatment variable, Zij, which
depended on the confounder values. Finally, we generated
a binary outcome variable, Yij, depending on the covari-
ates and treatment, and a study-specific random intercept
and slope.
For each generated data set, we implemented several

propensity score matching strategies that differed in how
the propensity score was estimated and in how the match-
ing was accomplished (details below). At the end of this

Fig. 1 Step-by-step simulation study
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step, we had a data set that was ready for analysis. We esti-
mated the pooled odds ratio for the association between
our binary treatment and treatment success (our binary
outcome) via a random effects logistic regression with
random intercept and slope by study.
We repeated these steps 1000 times for each scenario

(where we varied the data generation parameters), and
then considered the following metrics of performance:
the bias and variance of the pooled log odds ratio as
well as coverage of the 95% confidence interval around
this parameter, and the power to detect a statistically
significant effect.

Data generation details
Step 1.1: confounder generation
We designed our simulation study to mimic the observed
data in different scenarios. That is, instead of generat-
ing covariates as realizations from random variables, we
used the same distribution of covariates as observed in
the MDR-TB-IPD dataset. From this data set, we selected
4 potential confounders and 1 treatment. We considered
4 individual-level covariates that regression analyses indi-
cated had a significant association with both the treatment
and outcome variables [14]: age, sex, smear and HIV sta-
tus. We chose ethionamide as a representative treatment
because treatment prevalence of this drug varied from 0
to 100%, depending on the study. Moreover, we kept the
same two-level structure (patients nested in studies) as
observed in the MDR-TB-IPD. Thus, to generate the data
sets, we first selected a sample of 5000 subjects, sampled
with replacement from the original MDR-TB-IPD data
(n = 9290), ignoring the study level. Then, studies with
fewer than 25 subjects were excluded from the analysis.
This is because each study MDR-TB-IPD has at least 25
subjects.

Steps 1.2 and 1.3: treatment and outcome generation
Next, we generated the treatment and outcome variables,
using those selected covariates, and including random-
effects (details below). To inform our treatment variable
generation, we fitted a generalized linear mixed model
(GLMM) with ethionamide as the outcome, the four
covariates (age, sex, smear and HIV status) as indepen-
dent variables and a random intercept for study, using the
MDR-TB-IPD (See Table 2). Similarly, we fitted a GLMM
with treatment success as the outcome, the four covariates
and treatment with ethionamide as independent variables,
and a random intercept and random slope for treatment,
to inform our outcome generation (See Table 2).

Step 1.2 treatment generation
We generated a single binary treatment variable cho-
sen to mimic ethionamide (see Table 1), that depended
on the individual-level covariates. We considered three
treatment generation mechanisms:

Table 2 Parameter estimates and standard deviation of the
random intercepts and slopes obtained by fitting generalized
linear mixed models to the MDR-TB-IPD

Treatment Model OutcomeModel

Covariate log α̂(SE) log γ̂ (SE)

Age -0.01 (0.00) -0.03 (0.01)

Sex 0.03 (0.07) 0.04 (0.16)

AFB smear status -0.42 (0.08) -0.47 (0.17)

HIV status -0.80 (0.01) -0.83 (0.22)

Ethionamide – 0.30 (0.33)

SD of random intercept 0.7 0.9

SD of random slope for
treatment

– 0.04

(ethionamide)

Treatment prevalence according to studies
We generated the treatment variable by considering the
actual treatment prevalence of ethionamide in each study
in the MDR-TB IPD dataset, which varied from 0 to 100%
(See Table 1). To generate the treatment variable, we esti-
mated 31 study-specific intercepts separately according to
the treatment prevalence of ethionamide in each study.
Thus, the binary treatment variable, was generated from

a single-level logit model:

logit(sij) = α0j + Xijα, (1)

where sij = P(Zij = 1|Xij) is the probability of receiving
treatment conditional on the individual-level covariates
(Xij), α is the vector of fixed effects corresponding to these
covariates, and α0j is the study-level fixed effect.

50% treatment prevalence
In the MDR-TB-IPD dataset, overall nearly 50% of
patients took the treatment ethionamide. Thus, we con-
sidered fixing the average treatment prevalence at 50%,
and estimating single intercept, α0, by considering the
overall treatment proportion, P(Zij = 1|Xij,Uj) = 0.50
while generating the treatment variable. Therefore, a
binary treatment variable was generated from a two-level
random effects logit model:

logit(sij) = α0 + Xijα + u0j, (2)

where sij = P(Zij = 1|Xij,Uj) is the probability of
receiving treatment conditional on the individual-level
covariates and study-level random-effect, u0j ∼ N(0, σ 2

0j).

30% treatment prevalence
We were interested in how a lower treatment preva-
lence that might increase the number of potential controls
would impact our results. Thus, in this scenario, we esti-
mated a single intercept, α0, by considering the overall
treatment proportion, P(Zij = 1|Xij,Uj) = 0.30, all other
details as in the 50% case.
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For each treatment generation scenario, the study level
fixed effects were the parameter estimates obtained from
the generalized linear mixed treatment model estimated
using the MDR-TB-IPD data, described in subsection
Steps 1.2 and 1.3, as was the variance of the random
intercept for the second and third scenario. Therefore,
we set the standard deviation of the random effect σ0j =
0.7 and the coefficients: log(α1) = −0.01, log(α2) =
0.03, log(α3) = −0.42, and log(α4) = −0.80 for each
of treatment generation mechanism, and estimated the
probability of receiving ethionamide. Treatment status
was generated by using a Bernoulli distribution with the
estimated treatment probability.

Step 1.3 outcome generation
We generated the outcome variable from a GLMM such
that the probability of treatment success was conditional
on the individual-level characteristics (Xij), treatment Zij,
and study-level random effects:

logit[P(Yij = 1|Xij,Uj)]= γ0 + u0j + (β + u1j)Zij + Xijγ , (3)

where P(Yij = 1|Xij,Uj) is the probability of treatment
success; u0j ∼ N(0, σ 2

0j) are study-specific random inter-
cepts; β is the logarithm of the true pooled odds ratio
for the treatment effect; u1j ∼ N(0, σ 2

1j) are the study-
specific random slope for treatment; Zij is the binary
treatment variable (generation described earlier);Xij is the
matrix of individual-level covariates; and, γ is the vector
of fixed-effect coefficients.
We used the parameter estimates and standard devia-

tions of the random intercept and slope, from a gener-
alized linear mixed outcome model fitted to the MDR-
TB-IPD data (see subsection Step 1.2 and 1.3) to gener-
ate the outcome variable. Thus, we set the coefficients:
log(γ1) = −0.03, log(γ2) = 0.04, log(γ3) = −0.47,
and log(γ4) = −0.83, and the standard deviations of the
random-intercept σ0j = 0.7, and the random-slope, σ1j =
0.04. Tomimic theMDR-TB-IPD dataset where treatment
success was [Yij = 1]= 90%, we generated the probability
of treatment success considering, P(Yij = 1|Xij,Uj) = 0.9,
in the logit model. Finally, we converted the estimated
probability to a binary outcome variable using a Bernoulli
distribution.

Varying simulation
In further scenarios, we generated data that incorpo-
rated mild, moderate and high degrees of heterogeneity
across studies, and with a null, moderate and strong
effect of treatment. Therefore, in our simulation, for each
treatment generation mechanism and outcome genera-
tion considered we considered three SDs of the ran-
dom intercepts, σ0j={0.7, 1.4, 2.1} and random slopes,
σ1j={0.04, 0.08, 0.12}, and three pooled odds ratio, β

={1, 1.5, 3} [15], for a total of 3 × 3 × 3 = 27 distinct
scenarios were investigated (see Table 3).

Data analysis
Step 2.1: pSM-based approaches in the context of iPD-MA
To estimate the treatment effect, we considered several
propensity score matching approaches, previously applied
in clustered data contexts.
In the first step, a logistic regression model was spec-

ified to estimate the propensity score. As IPD-MA data
exhibits a two level-data structure, we considered both a
single-level and two-level logit model. In the second step,
suitable control subjects with similar propensity scores
were sought for each treatment subject. We considered
three matching criteria to find an appropriate control sub-
ject for each treated subject within a two-level data struc-
ture: (i) across study matching; (ii) within study matching;
and (iii) preferential within studymatching. Thus, we con-
sidered four PSM-based approaches for the analysis of
IPD-MA:

• Single-level logit model to estimate PS followed by
matching of PS across studies (across-study)

• Single-level logit model to estimate PS followed by
matching of PS within studies (within-study)

• Single-level logit model to estimate PS followed by
preferential within study matching of PS
(preferential-study)

• Two-level random-effect logit model to estimate PS
followed by matching of PS across studies
(random-effect)

For each PSM based approach, we evaluated one-to-one
(1:1) caliper matching with a caliper=0.2 [16].We describe
each approach in detail next.

Table 3 Varying features in our simulation study

Features

Treatment prevalence According to study

50%

30%

SD of the Random intercept 0.7

for outcome generation 1.4

2.1

SD of the random slope 0.04

for outcome generation 0.08

0.12

Pooled odds ratio for the 1

treatment effect, when 1.5

generating the outcome 3
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Single-level logit model to estimate pS followed bymatching
of pS across studies (across-study)
This approach considers a single-level logistic model to
estimate the propensity score, which ignores the cluster-
ing of subjects within studies [17]:

logit(si) = α0 + Xijα, (4)

where si = P(Zij = 1|Xij) is the conditional probability
of receiving treatment,Xij is the matrix of individual-level
covariates and α is the vector of parameters correspond-
ing to the covariates.
After the propensity scores were estimated, match-

ing across studies with replacement was considered [18].
We used 1:1 caliper matching that identified pairs (or
triplets) of treatment and control subjects whose differ-
ence between propensity scores was not more than 0.2
times the standard deviation of the logit of the propensity
scores.

Single-level logit model to estimate pS followed bymatching
of pS within studies (within-study)
In this approach, the single-level logit model 4 was used
to estimate the propensity score, which ignored the multi-
level structure of the dataset[19, 20]. For each treatment
subject, control subjects from the same study were sought.
When a suitable control subject was not found for a
treatment subject, the unmatched treatment subject was
dropped from the analysis.

Single-level logit model to estimate pS followed by
preferential within studymatching of pS (preferential-study)
For this strategy, the propensity scores were estimated
from a single-level logit model 4 [21]. First, we searched
for a control subject within the same study, but if an
appropriate control subject was not found from the same
study, then a control was sought in other studies.

Two-level random-effect logit model to estimate pS followed
bymatching of pS across studies (random-effect)
In this approach, we used a generalized linear mixed
effects model for estimating the propensity scores [22]:

logit(sij) = α0 + Xijα + u0j, (5)

where sij = P(Zij = 1|Xij,Uj) is the conditional
probability of receiving treatment; Xij is the matrix of
individual-level covariates. It is the vector of parame-
ters corresponding to individual-level covariates; u0j ∼
N(0, σ 2

0j) are the study-level random-effects in the logit
model. After the estimation of propensity scores, 1:1
caliper matching algorithm was implemented across the
studies.

Step 2.2: estimating the treatment effect via random-effects
logistic regressionmodel
Once the matched dataset was formed, a random-effects
logit model was estimated:

logit[P(Yij = 1|Xij,Uj)]= β0 +u0j + (θ +u1j)Zij +ω + ŝij,
(6)

whereZij denotes the treatment status of ith subject within
jth study, exp(θ) is the pooled odds ratio to be estimated,
u0j ∼ N(0, σ 2

0j) is the study-specific random intercept,
u1j ∼ N(0, σ 2

1j) is the study-specific random slope, ŝij is
the estimated propensity score from PSM model and ω is
the corresponding parameter of the estimated propensity
score.

Performance measures
For each simulated data set (n = 1000), we obtained the
treatment effect estimate and its standard error, 95%Wald
confidence interval, and p-value. From this output, we
computed the mean bias, the variance of treatment effect
estimates, coverage of 95% Wald confidence interval, and
statistical power. In the next section, we present the data
summary by descriptive statistics ofMDR-TB-IPD dataset
and results of the simulation study.

Results
Table 4 presents a comparison of the performance of four
PSM-based strategies in terms of mean bias (bias) of the
log pooled odds ratios (OR: 3 and 1.5) under three treat-
ment generation mechanisms, and for varying treatment
effects, and study-level heterogeneity (SD of the random
intercept: 0.7, 1.4, and 2.1 and SD of the random slope:
0.04 and 0.08). Please note that: simulation results for
odds ratio = 1 and SD of random slope = 0.12 are reported
in the separate file “Supplemental Tables.pdf”.
No matter how treatment prevalence was generated,

the across-study approach estimated the most biased
treatment effect, while the random-effect and within-
study approaches estimated the least biased treatment
effects (see Fig. 2). The preferential-study approach per-
formed similarly to the within-study and random-effect
approaches when treatment prevalence was generated
according to studies, and when it was set at 30% (see
Fig. 2). When treatment prevalence was set at 50%, the
preferential-study approach estimated treatment effects
that weremore biased than those estimated via the within-
study and random-effect approaches, but not as biased
as those estimated via the across-study technique (see
Fig. 2). For each approach, bias increased as the variance
of the random intercept increased. Results did not vary
appreciably withmagnitude of the pooled OR, or standard
deviation of the random slope.
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Fig. 2 Percent Mean Bias of the estimated log(OR) by PSM-based approach and heterogeneity in treatment prevalence (left: prevalence varied from
0 to 100%, according to that observed in each study; middle: 50% prevalence; right: 30% prevalence) when the true pooled OR =3

PSM-based techniques were also compared in terms
of variance of log(OR) estimates (Table 5). For the con-
sideration of treatment prevalence according to study,
the variances of the estimates produced by the across-
study approach were lower than those produced by other
approaches, no matter the magnitude of the true pooled
OR, or the variances of the random intercepts or random
slopes. Variances increased as the variance of the random
intercepts increased for all approaches, but the variance
produced by the random-effect approach increased more
drastically (see Fig. 3).
When treatment prevalence’s were assumed to be fixed

to 50% and 30%, the approaches produced estimates with
comparable variability for low variance of the random
intercepts (Fig. 3). As the variance of the random inter-
cepts increased, the variance produced by each PSM-
based approach increased slightly and maintained similar
extent of variability.
Coverage of the 95% Wald confidence intervals esti-

mated when each PSM approach was used to estimate
the pooled OR. When treatment prevalence was accord-
ing to study, coverage ranged from 82% to 96% (see
Table 6). The across-study approach had coverage clos-
est to nominal levels while the within-study approach had
the lowest coverage. There was a slight drop in coverage
for the across-study approach, while the other approaches
showed a slight increase in coverage when heterogene-
ity increased. When treatment prevalence was set at 50%
and 30% and variances of the random intercepts was low,
coverage was relatively similar across PSM approaches.
However, coverage decreased markedly for the across-
study approach as the variance of the random inter-
cepts increased. Preferential-study, random-effect and
within-study all showed near nominal but increasing to

over coverage as the variance of the random intercepts
increased.
Table 7 shows the statistical power and type 1 error

of estimated log(OR) for varying treatment prevalence
according to studies. Power to detect a statistically sig-
nificant effect was highest for the across-study approach,
and lowest for the random-effects approach. For the con-
sideration of 50% and 30% treatment prevalence’s, type
1 error was very inflated for the across-study approach
and increased as the variance of the random intercepts
increased. For the other approaches, type 1 error was
between 1-11%. Power to detect a statistically signif-
icant effect decreased as the variance of the random
intercepts increased. Within-study and preferential-study
approaches had better power than the random-effect
approach.
PSM-based approaches were also compared on the basis

of mean squared errors (MSEs) in the context of low, mod-
erate and high heterogeneous situation. For the treatment
prevalence according to studies for the pooled odds ratio
3, we can see that the across-study approach produced
the lowest MSE when the data exhibited low heterogene-
ity (see Fig. 4). Across-study, within-study and preferen-
tial study had lower MSEs compared to random-effect
approach for moderate heterogeneous situation. For high
heterogeneity, both the across-study and preferential-
study obtained lowest MSEs.
For 50% treatment prevalence, within-study and

random-effect approaches produced lower MSEs in the
low,moderate and high heterogeneity contexts (see Fig. 5).
For 30% treatment prevalence, within-study, random-

effect and within-study approaches produced lower MSEs
in the low, moderate and high heterogeneity contexts (see
Fig. 6).
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Fig. 3 Variance of estimated log(OR) by PSM-based approach and heterogeneity in treatment prevalence (left: prevalence varied from 0 to 100%,
according to that observed in each study; middle: 50% prevalence; right: 30% prevalence) when the true pooled OR =3

Discussion
Individual-patient data meta-analysis is considered as the
’gold standard’ of meta-analyses because of the potential
to reduce heterogeneity by standardizing many aspects of
the data analysis and offering numerous analytical ben-
efits. IPD meta-analysis of observational studies must
carefully attempt to resolve the problem of confound-
ing. Using propensity scores to reduce the potential bias
caused by an imbalance in important covariates may be a
promising approach in this context.We considered several
propensity score matching based approaches for the anal-
ysis of IPD-MA of observational studies. We investigated
the performance of these approaches through a simulation
study, based upon the real-life MDR-TB-IPD dataset [12].
When treatment prevalence varied according to stud-

ies (from 0 to 100%), and data exhibited low heterogeneity
among studies, the single-level logit model to estimate the
PS with across study matching (across-study approach)
produced an estimated pooled log odds ratio with lower
bias and variance. This approach also reported reasonable
coverage and statistical power. Despite of having higher
type I error, across-study approach may still be recom-
mended as it produced lower bias, variance, MSE, and
attained reasonable statistical coverage when data exhibit
low heterogeneity.
However, when the IPD-MA exhibited moderate het-

erogeneity between studies, both the single-level logit
model to estimate the PS with across study matching
(across-study technique) and single-level logit model to
estimate the PS with preferential-within study matching
(preferential-matching approach) reported lowest MSEs,
reasonable coverage and power compared to single-level
logit model to estimate the PS with within-study match-
ing (within-study approach) and two-level random-effects

logit model to estimate the PS with across study matching
(random-effect approach). In particular, across-study
matching produced lower variance whereas preferential-
study reported much lower bias. In contrast, in the pres-
ence of higher heterogeneity among studies, the single-
level logit model to estimate the PS with preferential-
within study matching (preferential-study approach) pro-
duced lowest MSE with lower bias and variance.
When there was little variation of treatment prevalence

across studies and overall prevalence was 50%, single-level
logit model to estimate the PS with preferential-within
study matching (preferential-study approach) showed
poor performance compared to other three approaches,
when heterogeneity was low. In contrast, the single-level
logit model to estimate the PS with across study match-
ing (across-study approach) reported weak performance
( showed higher MSEs) compared to other three PSM-
based techniques when heterogeneity was moderate or
high. Likewise, the single-level logit model to estimate the
PS with across study matching (across-study approach)
showed very poor performance compared to other three
PSM-based approaches for any extent of heterogeneity
when a lower treatment prevalence (for example, 30%) was
considered.
Our results aligned in some situations with the results

presented for clustered data structures [21]. In our simu-
lations, when treatment prevalence varied from 0 to 100%,
preferential-study matching performed better than other
PSM-based techniques when between study heterogene-
ity was high. Similar performance of the preferential-study
technique has been observed for two-stage clustered data
in the presence of very small and large clusters [21]. In
two-stage clustered data, bias increased significantly due
to lots of unmatched subjects mainly when clusters were
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Fig. 4MSE of estimated log(OR) by PSM-based approach and heterogeneity (left: low; middle: moderate; right: high) when prevalence varied from 0
to 100%, according to that observed in each study and the true pooled OR =3

Fig. 5MSE of estimated log(OR) by PSM-based approach and heterogeneity (left: low; middle: moderate; right: high) when 50% treatment
prevalence and the true pooled OR =3

Fig. 6MSE of estimated log(OR) by PSM-based approach and heterogeneity (left: low; middle: moderate; right: high) when 30% treatment
prevalence and the true pooled OR =3



Johara* et al. BMCMedical ResearchMethodology          (2021) 21:257 Page 15 of 16

relatively small and within cluster matching was used
[23]. Likewise, in our study, the within-study approach
reported higher bias when treatment prevalence was var-
ied according to studies. This is because some studies
had a treatment prevalence of 0, or a very low preva-
lence. With such a data structure, implementation of
within-study matching may result in many unmatched
treatment subjects, which produce greater biases. When
important cluster-level variables are ignored, a single level
logit model to estimate the PS with across-cluster match-
ing makes it challenging to obtain unbiased estimates of
the treatment effect. Likewise, in our study performance
of the across-study approach reported greater biases at
high heterogeneous situation (see Figs. 4, 5, 6). Arpino
and Cannas [21] reported less bias when a random-
effects logistic model was used to estimate the propensity
scores, which is similar to the pattern we observed when
treatment prevalence was fixed at 50% and 30%. Fox
et al. [24] used propensity score matching techniques on
the MDR-TB-IPD data that we used in our simulation.
They compared several analytic strategies empirically and
found that propensity score matching based techniques
achieved adequate covariate balance between treated and
untreated individuals. They also reported that matching
within studies and matching across studies achieved the
closest covariate balance compared to covariate based
multivariate techniques.
While we investigated a wide range of scenarios, these

were not exhaustive, and the results seen here may not
apply to scenarios not investigated. Moreover, we did not
compare the PSM based approaches to traditional ana-
lytic approaches as this is beyond the scope of paper.
Additionally, we made several simplifying decisions, for
example, we considered only a subset of confounders.
Other clinically important covariates may influence treat-
ment allocation or outcome in the MDR-TB-IPD dataset
[25]. We also assumed that propensity score models were
correctly specified. Incorrect specification of the propen-
sity score model may produce a biased estimate of the
treatment effect of interest [26].
The within study approach may not be suitable if

most of the treatment subjects get excluded because of
poor control match in some studies. In such situations,
across-study matching or preferential within study or
random effect approach may be adopted. Across study
approach considers IPD-MA as a single dataset and pro-
vides greater opportunity to find a suitable control subject
for each treatment subjects. There are other propensity
score matching approach in literature, for example near-
est neighbor matching, that selects a control subject for
each treatment subject even if the propensity scores dif-
fer a lot between treatment and control subjects [27]. This
approach may end up with treatment and control subjects
that are very different, which could induce biases [27].

We considered only a single treatment, whereas there
may be interest in evaluating the effects of several
treatments. Propensity scores for many treatments are
possible, though how they would perform in this context
is unknown. However, Brown et al. (2020) proposed an
approach for applying propensity score matching when
multi treatments are under consideration [28]. In this
study, only binary outcomes were considered. However,
further investigations are needed to extend these results to
continuous and time-to-event outcomes. Finally, We have
arbitrarily set heterogeneity to levels we describe as “low”,
“moderate”, and “high”.
It may not be reasonable to expect that all observational

studies included in an IPD-MA measure the same list of
potential confounders, in the same way (e.g. on the same
scale). In such situations, two analytical strategies may
be considered: (i) study-specific propensity score models
could be considered; or (ii) only the common set con-
founders across studies could be considered, which may
lead to unmeasured confounding [29]. Further study is
required to investigate the performance of both strategies.

Conclusions
This work allows us make some recommendations regard-
ing what kind of PSM-based technique is expected to
perform the best depending on treatment prevalence and
interstudy heterogeneity for analyzing IPD-MA of obser-
vational studies. If treatment prevalence for the drug of
interest varies greatly, and the IPD-MA exhibits lower
heterogeneity between studies, then using a single-level
logit model to estimate the PS with across study match-
ing can be used to form matched treatment-control pairs.
However, for higher heterogeneity between studies, using
a single-level logit model to estimate the PS with pref-
erential within study matching should be used to form
the matched dataset. On the other hand, if the treat-
ment prevalence for the drug of interest has less vari-
ation and a preferential-study or within-study matching
or using a random-effects approach can be considered to
perform analysis of IPD-MA no matter the extent of het-
erogeneity between studies. The extent of heterogeneity
can be defined through standard meta-analysis. Higgins
(2002) suggested one useful statistic: I-squared for quan-
tifying inconsistency [13]. This describes the percentage
of the variability in effect estimates that is due to hetero-
geneity rather than sampling error (chance). PSM-based
approaches could be decided based on their bias, variance
and MSE.
Despite the comprehensive application of propensity

score matching in health research, only limited literature
is available on the implementation of PSM methods in
IPD-MA, and until now methodological performance of
PSM methods have not been examined. We believe, this
work offers an intuition to the applied researcher for the
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choice of the PSM-based approaches based on a variety of
treatment prevalence scenario and different heterogeneity
of IPD meta-analysis of observational studies.
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