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Abstract
Background: With the emergence of molecularly targeted agents and immunotherapies, the landscape of phase I
trials in oncology has been changed. Though these new therapeutic agents are very likely induce multiple low- or
moderate-grade toxicities instead of DLT, most of the existing phase I trial designs account for the binary toxicity
outcomes. Motivated by a pediatric phase I trial of solid tumor with a continuous outcome, we propose an adaptive
generalized Bayesian optimal interval design with shrinkage boundaries, gBOINS, which can account for continuous,
toxicity grades endpoints and regard the conventional binary endpoint as a special case.
Result: The proposed gBOINS design enjoys convergence properties, e.g., the induced interval shrinks to the toxicity
target and the recommended dose converges to the true maximum tolerated dose with increased sample size.
Conclusion: The proposed gBOINS design is transparent and simple to implement. We show that the gBOINS design
has the desirable finite property of coherence and large-sample property of consistency. Numerical studies show that
the proposed gBOINS design yields good performance and is comparable with or superior to the competing design.

Keywords: Bayesian adaptive design, Phase I dose-finding trial, Shrinkage boundaries, Maximum tolerated dose

Introduction
In oncology phase I trial studies, one main objective is
to determine the maximum tolerated dose (MTD) or
the recommended phase II dose (RP2D). Targeting on
pahse I trial studies, numerous methods have been pro-
posed and can be generally classified into three classes:
algorithm-based design like the 3+3 design [1], the accel-
erated titration design [2], and the biased coin design
[3]; model-based design like the continual reassessment
method (CRM) [4, 5] and its various extensions [6–8]; and
recently developedmodel-assisted design like the Bayesian
optimal interval (BOIN) design [9], and the Keyboard
design [10]. Note that, all these methods accounting for
the binary toxicity outcomes, experienced dose-limiting
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toxicity (DLT) or not, and thus may not suitable for the
trials with multiple low- or moderate-grade toxicities,
such as the molecularly targeted or immunotherapy trials
[11–14]. To incorporate the toxicity grades (please refer
National Cancer Institute Common Terminology Crite-
ria) into dose-finding trials, one way is assigning severity
weights to each grade and type of toxicity and combine
the weights as a composite score, eg., total toxicity bur-
den (TTB) [15], toxicity burden score (TBS) [16], and
total toxicity profile (TTP) [17]. After appropriate trans-
formations, these scores can be taken as the normally
distributed variable [14]. The other way is translating
toxicity grades to numeric scores which represent their
relative severity in the unit of DLT, the ‘equivalent toxi-
city score’ (ETS) [18] and treating them as quasi-binary
end points which take the values ranging from 0 to 1 and
can be modelled by the quasi-Bernoulli likelihood [19].
To the best of our knowledge, very few methods in

phase I were developed to account for different toxicity
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scores, e.g., binary, continuous, count, in a unified frame-
work except a design by [20] and a gBOIN design by [14].
The design by [20] is an algorithm-based design and the
gBOIN is a model-assisted design, which is a generalized
version of the BOIN design by [9] to account for vari-
ous toxicity grades. This paper will take further steps to
extend the gBOIN. The gBOIN design assumes two fixed
boundaries φ1 and φ2, by which the dose transition was
conducted. Though gBOIN with fixed boundaries enjoys
the desirable performance in finite sample size in the pre-
vious study by [14], it leaves the potential for us to improve
the performance of gBOIN by exploring its behaviors
with non-fixed boundaries. The rationale of studying the
non-fixed boundaries is straightforward, since different
boundaries are associated with different risks of mak-
ing wrong dose allocations. In this article, we propose a
gBOINS design method, which generalized the gBOIN
method with two shrinkage boundaries φ∗

1 and φ∗
2 . These

two boundaries are obtained based on the theory of the
uniformly most powerful Bayesian test [21]. The trial will
be guided by replacing the two fixed boundaries φ1 and
φ2 in the gBOIN with φ∗

1 and φ∗
2 , respectively. We show

that, in contrast to the gBOIN design which will oscil-
late among the doses within the equivalent interval, the
new proposed gBOINS design has the ideal large-sample
behavior that converges to one of the dose levels within
the equivalent interval, because its decision boundaries
shrink to a point mass toward the target. This distinctive
feature of gBOINS provides a theoretical foundation and
guarantees the MTD convergence. Numerical studies also
show that: for small sample size, the gBOINS yields good
performance that is comparable or superior to its raw ver-
sion gBOIN; for large sample size, compared to the gBOIN
design, the performance of gBOINS has a substantial
improvement.
Remainder of the paper is organized as follows. In

“Method” section, after a brief introduction of gBOIN
design we introduce the gBOINS design, its theoreti-
cal foundation and derive its properties. In “Simulation”
section, we compare the gBOINS design to the gBOIN
design with various types of toxicity grades. In “Conclu-
sion” section, we conclude the paper with a discussion.

Method
Introduction of gBOIN design
Assume there are J specified doses d1 < · · · < dJ
under investigation. Let y denote the toxicity outcome
which is either binary or quasi-binary (e.g., DLT or ETS)
or continuous (e.g., TTB, TBS or TTP). For the motivat-
ing trial, after an appropriate transformation, we take the
AUC as a continuous end point and model it by a normal
distribution. [14] adopted the binomial and the normal
distributions for binary (or quasi-binary) and continuous
endpoints, respectively. Defineμ = E(y) andμj = E(y|dj).

Given the dose dj, the distribution of y belongs to the
exponential family,

f (y|dj) = h(y) exp
{
η(θj)T(y) − A(θj)

}
, (1)

where,

• θj = μj, η(θj) = log
{
μj/(1 − μj)

}
,

A(θj) = − log(1 − μj) , T(y) = y, and h(y) = 1, if y
follows a binomial distribution;

• θj = (μj, σ 2), η(θj) = μj/σ 2, A(θj) = μ2
j /(2σ 2),

T(y) = y, and h(y) = 1√
πσ

exp
{−y2/(2σ 2)

}
, if y

follows a normal distribution.

Let φ0 denote the target value of μ for dose finding.
Specifically, for binary or quasi-binary toxicity endpoints,
φ0 is the target DLT probability; for continuous end-
points, φ0 is the targeted value of the TTB, TBS or TTP.
Assume there are nj patients treated at dose level dj and
let Dj = (y1, · · · , ynj) denote the observed toxicity data.
Based on Dj, the sample mean can be obtained as μ̂j =
∑nj

i=1 yi/nj. For the interval-based design, dose transition
decisions are made by comparing μ̂j with the decision
boundaries, λe(dj, nj,φ0) and λd(dj, nj,φ0). Specifically, if
μ̂j < λe(dj, nj,φ0), escalate to the higher dose level j +
1, and if μ̂j > λd(dj, nj,φ0), de-escalate to the lower
dose level j − 1, otherwise retain the same dose level
j. The selection of the decision boundaries λe(dj, nj,φ0)
and λd(dj, nj,φ0) is critical because these two parameters
essentially determine operating characteristics of a design.
Let the decisions retainment, escalation and de-escalation
(each based on the current dose level), denoted as R, E
and D, respectively and let R denote the decisions that
are complementary to R (i.e., R includes E and D ), and
E and D denote the decisions that are complementary
to E and D, respectively. Following the same rule of [9],
to obtain optimal decision boundaries under some cri-
teria, the gBOIN [14] considers three point hypotheses
H0 : μj = φ0, H1 : μj = φ1, H2 : μj = φ2 and
minimize an incorrect decision probability α,

α = P(H0)P(R|H0)+P (H1)P
(
E |H1

)
+P (H2)P

(
D|H2

)
,

(2)

where φ1 is a value deemed subtherapeutic such that
dose escalation is warranted, and φ2 is a value deemed
overly toxic such that dose de-escalation is required. Note
that, H0 indicates that the current dose is the MTD and
we should retain the current dose for the next cohort
of patient; H1 indicates that the current dose is below
the MTD and we should escalate the dose; and H2 indi-
cates that the current dose is overly toxic and we should
deescalate the dose. Thus, the correct decisions under
hypotheses H0, H1 and H2 are retainment, escalation and
de-escalation. Correspondingly, the incorrect decisions



Mu et al. BMCMedical ResearchMethodology          (2021) 21:278 Page 3 of 12

under H0, H1 and H2 are R, E and D, respectively. For
example, underH0 (i.e., the current dose is the target), the
correct decision is to retain the current dose (i.e.,R), and
incorrect decisions are dose escalation and de-escalation
(i.e., E andD). Taking a noninformative prior, i.e., P(H0) =
P(H1) = P(H2) = 1/3, andminimizing the incorrect deci-
sion probability α in Eq. (2), the decision boundaries can
be obtained as ( details can be found in [14]),

λ∗
e = A(ϑ1) − A(ϑ0)

η(ϑ1) − η(ϑ0)
, λ∗

d = A(ϑ2) − A(ϑ0)

η(ϑ2) − η(ϑ0)
. (3)

Specifically, when y follows a Bernoulli or quasi-Bernoulli
distribution, we have ϑk = φk , A(ϑk) = − log(1 − φk),
η(ϑk) = log {φk/(1 − φk)}. Then,

λ∗
e = log 1−φ1

1−φ0

log φ0(1−φ1)
(1−φ0)φ1

, λ∗
d = log 1−φ0

1−φ2

log φ2(1−φ0)
(1−φ2)φ0

, (4)

which are exactly the same as boundaries provided by the
original BOIN design [9]. When y follows a normal dis-
tribution, we have ϑk =

(
φk , σ 2

j

)
, A (ϑk) = φ2

k/
(
2σ 2

j

)
,

η (ϑk) = φk/σ
2
j . Then,

λ∗
e = φ0 + φ1

2
, λ∗

d = φ0 + φ2
2

. (5)

Based on the above decision boundaries, the gBOIN
design is summarized as follows:

(a) Patients in the first cohort are treated at the lowest
dose level or at a prespecified dose level.

(b) At the current dose level j, assign a dose to the next
cohort of patients,

• if μ̂j ≤ λ∗
e , escalate the dose level to j + 1,

• if μ̂j ≥ λ∗
d , de-escalate the dose level to j − 1,

and
• otherwise, i.e., λ∗

e < μ̂j < λ∗
d , retain the same

dose level, j.

(c) This process is continued until the maximum sample
size is reached or the trial is terminated because of
excessive toxicities.

It is remarkable that the optimal decision boundaries(
λ∗
e , λ∗

d
)
are free of dj and nj, which means that the same

pair of boundaries are used throughout the trial no mat-
ter which dose is the current dose, nor how many patients
have been treated at the current dose.

Adaptive gBOIN design
Extensive simulation studies have shown that the gBOIN
is transparent and simple to implement, and it yields good
performance that is comparable or superior to more com-
plicated model-based designs. As we described in the
“Introduction” section, the un-fixed boundaries may allow
a flexibility to penalize mis-allocation rate of patients

at over-toxic doses. To account for un-fixed boundaries,
firstly, we reformulate the above three hypotheses as fol-
lows,

H0 : μj = φ0 versus H1 : μj = φ1,

and

H0 : μj = φ0 versus H2 : μj = φ2.

In the Bayesian paradigm, the Bayes factor in favor of the
alternative hypothesis H1 against a fixed null hypothesis
H0 is defined as,

BF10(Dj) = P(H1|Dj)/P(H0|Dj)

P(H1)/P(H0)
, (6)

and the null hypothesis H0 is rejected if BF10(Dj) exceeds
a prespecified threshold γ1. Similarly, the Bayes factor in
favor of the alternative hypothesis H2 against a fixed null
hypothesis H0 is defined as,

BF20(Dj) = P(H2|Dj)/P(H0|Dj)

P(H2)/P(H0)
, (7)

and the null hypothesis H0 is rejected if BF20(Dj) exceeds
a prespecified threshold γ2. Note that, if we want to put
more penalties on over-toxic allocation, values of γ1 and
γ2 would be different and presumably γ1 should be greater
than γ2 since smaller γ2 means decisions of de-escalation
are easier made if over-toxicities occur. Given the prior
odds P(Hk)/P(H0) = 1 and the threshold γk , (k = 1, 2),
we can determine an alternative hypothesis that maximize
the probability that the Bayes factor forms a test exceed
the specified threshold γk . In other words, here we can
choose the value of φ∗

k , (k = 1, 2) (this notation has been
introduced in the “Introduction” section) to maximize
P

(
BFk0

(
Dj

)
> γk

)
.

By the Lemma 1 of [21], φ∗
1 and φ∗

2 can be obtained by,

φ∗
1 = argmax

μj<φ0

gγ1(μj,φ0) and φ∗
2 = argmin

μj>φ0

gγ2(μj,φ0)

(8)

respectively, where gγk (μj,φ0) = log(γk)+nj{A(θj)−A(θ0)}
η(θj)−η(θ0)

, k =
1, 2.
Specifically, for binomial distribution, φ∗

1 and φ∗
2 can be

given as,

φ∗
1 = argmax

μj<φ0

log(γ1) − nj
{
log(1 − μj) − log(1 − φ0)

}

log
{
μj/(1 − μj)

} − log {φ0/(1 − φ0)} ,

φ∗
2 = argmin

μj>φ0

log(γ2) − nj
{
log(1 − μj) − log(1 − φ0)

}

log
{
μj/(1 − μj)

} − log {φ0/(1 − φ0)} .

(9)

Obviously, the values of φ∗
1 and φ∗

2 depend on the tar-
get φ0, the sample size nj and the threshold γk , k =
1, 2. Although their close forms cannot be obtained, they
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can be solved via numerical optimization methods. For
normal distribution, φ∗

1 and φ∗
2 can be given as,

φ∗
1 = φ0 − σ

√
2 log γ1

nj
,

φ∗
2 = φ0 + σ

√
2 log γ2

nj
. (10)

Note that, for the normal distribution, values of
φ∗
1 and φ∗

2 depend on the value of σ . So, if σ is
unknown, we can replace it with its sample estima-

tion σ̂ =
√{∑nj

i=1
(
yi − μ̂j

)2}
/nj, or alternatively, we

can take an Inverse Gamma distribution with shape
parameter α0 and rate parameter β0 as its prior,
then σ can be replaced by using its posterior mean(
2β0 + ∑nj

i=1
(
yi − μj

)2)
/
(
nj + α0

)
with μ replaced by

μ̂j.
Replacing φk in λ∗

e and λ∗
d with φ∗

k , k = 1, 2, we can
get the adaptive shrinkage decision boundaries λ∗

e (nj) and
λ∗
d(nj). Note that, for a standard binary toxicity endpoint,

if we take the same values for γk , k = 1, 2, the boundaries
are the same as the UMPBI design [22]. Based on Lemma
2 in [21], we have the following double-shrinkage prop-
erty theorem about the shrinkage boundaries λ∗

e (nj) and
λ∗
d(nj).

Theorem 1 As nj → ∞, the decision boundaries λ∗
e (nj)

and λ∗
d(nj) will converge to the target φ0 at the rate of

O
(√

log(γ1)/nj
)
and O

(√
log(γ2)/nj

)
respectively.

Theorem 1 introduces a double-shrinkage property for
the proposed adaptive gBOIN design: The optimal values
φ∗
k shrink toward the target toxicity probability φ0, and the

optimal boundaries λ∗
e (nj) and λ∗

d(nj) based on each com-
bination of φ∗

1 and φ∗
2 shrinkage toward the target value

φ0.
Now we give the procedure of the proposed gBOINS

design as follows.

(a) Patients in the first cohort are treated at the lowest
dose level or at a prespecified dose level.

(b) At the current dose level j, to assign a dose to the next
cohort of patients,

• if μ̂j ≤ λ∗
e (nj), escalate the dose level to j + 1,

• if μ̂j ≥ λ∗
d(nj), de-escalate the dose level to

j − 1, and
• otherwise, i.e., λ∗

e (nj) < μ̂j < λ∗
d(nj), retain

the same dose level, j.

(c) This process is continued until the maximum sample
size is reached or the trial is terminated because of
excessive toxicities.

After the trial has been completed, we use the pooled
adjacent violators algorithm [23] to select a dose level as
the MTD. Denote the isotonically transformed values of
the observed value {μ̂j} by {μ̃j}, to be specific, for finding
theMTD, we select dose j∗, for which the isotonic estimate
of the toxicity rate μ̃j∗ is closest to φ0; if there are ties for
μ̃j∗ , we select from the ties the highest dose level when
μ̃j∗ < φ0 or the lowest dose level when μ̃j∗ > φ0.
For patient safety, we impose the following overdose

control rule when using the gBOIN design.

If P
(
μj > φ0

∣∣Dj
)

> 0.95 and nj ≥ 3, dose levels j and
higher are eliminated from the trial, and the trial is
terminated if the first dose level is eliminated.

Posterior probability P
(
μj > φ0

∣∣Dj
)

> 0.95 can be
evaluated on the basis of a beta-binomial model for the
binary or quasi-binary endpoint, assuming μj follows a
vague beta prior, e.g., μj ∼ beta (1, 1). For normal end-
point ywith meanμj and variance σ 2

j , assuming noninfor-
mative prior (μ, σ 2

j ) ∝ σ−2, the posterior distribution of
μj follows a t distribution with nj − 1 degrees of freedom,
mean μ̂j and scale n−1

j
∑nj

i=1
(
yi − μ̂j

)2.

Design properties
From a practical viewpoint, a natural requirement for
dose-finding trials is that dose escalation should be not
allowed if the observed toxicity rate or mean toxicity score
at the current dose is higher than the target, and dose de-
escalation should not be allowed if the observed toxicity
rate or mean toxicity score at the current dose is lower
than the target. [9] referred to this finite sample property
as “long-term memory coherent”, which is an extension of
a similar concept originally proposed by [24]. That origi-
nal definition of design coherence requires the prohibition
of dose escalation (or de-escalation) when the observed
toxicity rate in themost recently treated cohort is more (or
less) than the target toxicity rate. Because that definition is
based on the response from only the most recently treated
cohort without considering responses from patients who
were previously enrolled and treated, [9] refers this defi-
nition as “short-term memory coherence”. Clearly, short-
term memory coherence is a stronger counterpart than
long-term memory coherence.
As shown in the Appendix, the gBOINS design has the

following desirable finite-sample property.

Theorem 2 The gBOINS design is long-term memory
coherent in the sense that the design will never escalate the
dose when μ̂j > φ0; and will never de-escalate the dose
when μ̂j < φ0.

To further enhance safety of the design, we let the upper
boundary φ∗

2 have a little bit faster shrinking rate than that
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Table 1 Dose escalation and de-escalation boundaries for Bernoulli and continuous toxicity endpoint, with φ0 = 0.2, φ0 = 0.3,
εk = 0.5, k = 1, 2 and N0 = 6

End point nj 3 6 9 12 15 18 21 24 27 30

Bernoulli φ0 = 0.2 λ∗
e (nj) 0.16 0.16 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.17

or λ∗
d(nj) 0.24 0.24 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22

quasi- φ0 = 0.3 λ∗
e (nj) 0.24 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.26 0.26

Bernoulli λ∗
d(nj) 0.36 0.36 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32

Continuous φ0 = 0.2 λ∗
e (nj) 0.16 0.16 0.17 0.17 0.18 0.18 0.18 0.18 0.18 0.18

λ∗
d(nj) 0.24 0.24 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21

φ0 = 0.3 λ∗
e (nj) 0.24 0.24 0.26 0.26 0.27 0.27 0.27 0.27 0.27 0.27

λ∗
d(nj) 0.36 0.36 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

For the binary endpoint, c1 = log(1.05) and c2 = log(1.05)/3 for φ0 = 0.2, and c1 = log(1.1) and c2 = log(1.1)/3 for φ0 = 0.3. For the continuous end point, c1 = log(1.1)
and c2 = log(1.1)/3 for both φ0 = 0.2 and φ0 = 0.3

of the lower boundary φ∗
1 , since more strict or smaller φ∗

2
has less risk of exposing participated patients to over-toxic
doses. We propose to take γk as γk = exp(ckn

εk
j ), k = 1, 2,

1 > ε1 ≥ ε2 > 0 and 0 < c1 < n1−ε1
j log(1/(1 − φ0)) and

c1 < c2 < n1−ε2
j log(1/φ0). It can be shown that the pro-

posed adaptive gBOIN design has the following desirable
large-sample property.

Theorem 3 As the number of patients goes to infinity,
the dose assignment and the selection of the MTD under
the gBOINS design converge almost surely to dose level j∗,
if μj∗ = φ0.

According to Theorem 1, the condition γk = exp(ckn
εk
j ),

ck > 0, k = 1, 2, imposed here to leverage the
converge rate of λ∗

e (nj) and λ∗
d(nj), yielding P{μ̂j ∈

(λ∗
e (nj), λ∗

d(nj))} = 1, because μ̂j converges in probabil-
ity to μj at the

√
n rate. Following the proof of Theorem 1

of [25], the result can be directly obtained and is omitted
here.

Practical implementation
To implement the proposed gBOINS design in practice,
we need to specify the values of εk and ck , k = 1, 2.We rec-
ommend the εk = 0.5, k = 1, 2. The values of ck , k = 1, 2
need to be calibrated by extensive simulation studies, and
even there are no uniform values for different type of end-
points with the same target. For the normal endpoints,
the shrinkage boundaries depend on the estimate of σ ,
this will influence the pre-tabulation and the simplicity of
gBOINS. For practical applications, we suggest to replace
it with 1.1φ0. Note that a big (small) value of λ∗

e (nj) (or
λ∗
d(nj)) will make dose escalation (de-escalation) rapidly,

this may lead serious safety problems and reduce the effi-
ciency of the design when the sample size is small, since
the smaller value of the sample size the bigger variance

of μ̂j. To avoid this adverse event problem and improve
the design’s efficiency, in practice, we introduce a lead-in
process in a trial to follow the original gBOIN design for
a pre-specified number of patients (denoted as N0). After
nj > N0, the trial is then switched to the gBOINS design.
For our simulations, N0 = 6 is recommended. Table 1
shows examples of the values of (λ∗

e (nj), λ∗
d(nj)) for target

φ0 = 0.2 and φ0 = 0.3.

Simulation
Toxicity as a binary endpoint
We test the performance of the gBOINS design by com-
paring it to the gBOIN design under four different met-
rics: the percentage of correct selection (PCS) of theMTD,
the average number of patients allocated to the MTD, the
risk of overdosing, which is defined as the percentage of
simulated trials in which a large percentage (e.g., more
than 60% or 80%) of patients are treated at doses above the
MTD and the risk of underdosing which is defined as the
percentage of simulated trials in which more than 80% of
patients are treated at doses below the MTD. We inves-
tigated two target toxicity rates φ0 = 0.2 and φ0 = 0.3,
and for each of the target toxicity rate, we examined 16
representative toxicity scenarios with various parameters
of φ0 = 0.2, c1 = log(1.05)/3 and c2 = log(1.05)/3, and c1
= log(1.1)/3 and c2 = log(1.1)/3 when φ0 = 0.3. Table 2
which were reproduced from [27]. All examined scenarios
are varied in the location of theMTD and the gaps around
the MTD. For each scenario, 30 patients and 10 cohorts
were assumed.
Figures 1 and 2 present the results based on 4000 simu-

lated trials. As shown in Fig. 1, when the target is 0.2, for
all 16 scenarios the performance of gBOINS and gBOIN
are comparable in the sense of percentage of correct selec-
tion of the target dose and the average number of patients
allocated to the MTD. While the gBOIN has a higher risk
of overdosing, for most scenarios, acromm scenarios 1 to
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Table 2 Sixteen true toxicity scenarios reproduced from [26], with the target DLT rates of 0.2 and 0.3 in boldface

Dose Level Dose Level

Scenario 1 2 3 4 5 Scenario 1 2 3 4 5

1 0.20 0.25 0.35 0.45 0.50 1 0.30 0.40 0.50 0.60 0.70

2 0.20 0.30 0.40 0.50 0.60 2 0.30 0.45 0.60 0.70 0.80

3 0.15 0.20 0.25 0.35 0.45 3 0.20 0.30 0.40 0.50 0.60

4 0.15 0.20 0.30 0.45 0.55 4 0.20 0.30 0.45 0.60 0.70

5 0.10 0.20 0.25 0.35 0.45 5 0.15 0.30 0.40 0.50 0.60

6 0.10 0.20 0.30 0.40 0.55 6 0.15 0.30 0.45 0.60 0.70

7 0.08 0.15 0.20 0.25 0.35 7 0.12 0.20 0.30 0.40 0.50

8 0.08 0.15 0.20 0.30 0.45 8 0.12 0.20 0.30 0.45 0.60

9 0.05 0.10 0.20 0.25 0.35 9 0.05 0.15 0.30 0.40 0.50

10 0.05 0.10 0.20 0.30 0.45 10 0.05 0.15 0.30 0.45 0.60

11 0.05 0.10 0.15 0.20 0.25 11 0.05 0.12 0.20 0.30 0.40

12 0.05 0.10 0.15 0.20 0.30 12 0.05 0.12 0.20 0.30 0.45

13 0.02 0.06 0.10 0.20 0.25 13 0.02 0.08 0.15 0.30 0.40

14 0.02 0.06 0.10 0.20 0.30 14 0.02 0.08 0.15 0.30 0.45

15 0.02 0.05 0.07 0.10 0.20 15 0.02 0.10 0.15 0.20 0.30

16 0.01 0.06 0.10 0.15 0.20 16 0.01 0.04 0.08 0.15 0.30

10. In addition, compared to the gBOIN design, the pro-
posed gBOINS allocated fewer patients to sub-therapeutic
doses for most scenarios, which may be explained by a
higher risk of underdosing 80% for the gBOIN. Figure 2
shows that, when the target is 0.3, the performance of
gBOINS and gBOIN are comparable, and the proposed
gBOINS has a lower risk of overdosing.

At the end of the “Toxicity as a binary endpoint” section,
we also conducted simulation studies to investigate the
performance of the gBOINS with respect to different sam-
ple sizes. We consider four scenarios in Table 3 and the
simulation results based on 4000 replications are pre-
sented in Fig. 3. As shown in the first two pictures on
the left panel of Fig. 3, for scenarios 1 and 3, there was

Fig. 1 The operating characteristics of gBOIN and gBOINS when the target toxicity rate is 20%
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Fig. 2 The operating characteristics of gBOIN and gBOINS when the target toxicity rate is 30%

only one dose lying inside the interval (0.16, 0.24) and
(0.24, 0.36) respectively, the performance of gBOINS is
comparable to the gBOIN design. For scenarios 2 and 4,
the simulation results are depicted on the right panel of
Fig. 3, there were two doses lying inside the intervals and
the gBOINS outperformed the gBOIN when the sample
size was greater than 90.

Toxicity as a quasi-binary endpoint
We evaluated the performance of the gBOINS design
when the toxicity endpoint was a quasi-binary endpoint

(e.g., ETS) by comparing it to the gBOIN design method
based on the ten scenarios considered by [14](see Table 4).
Following [18], we adopted the following ETS definition:
grades 0 and 1 were of no concern (no DLT); a grade-
2 toxicity was equivalent to 0.5 DLT; a grade-3 toxicity
counted as one DLT; and a grade-4 toxicity was equiva-
lent to 1.5 DLT. The target ETS was 0.47, derived from
the target profile of 49% grade 0 and grade 1, 18% grade
2, 23% grade 3, and 10% grade 4. That is, the target ETS =
0.49 × 0 + 0.18 × 0.5 + 0.23 × 1.0 + 0.10 × 1.5 = 0.47. A
total sample of 30 patients in 10 cohorts was used in the

Table 3 Four true toxicity scenarios with the target DLT rates of 0.2 and 0.3 in boldface

Target DLT rate= 20% Target DLT rate= 30%

Scenario 1 2 3 4 5 Scenario 1 2 3 4 5

1 0.01 0.10 0.20 0.30 0.35 3 0.01 0.20 0.30 0.40 0.50

2 0.01 0.18 0.20 0.30 0.35 4 0.01 0.25 0.30 0.40 0.50
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Fig. 3 The relationships of operating characteristics and sample sizes of gBOIN and gBOINS when the target toxicity rates are 20% and 30%. The two
pictures on the left panel, only one dose lying inside (0.16, 0.24) and (0.24, 0.36) respectively for the top and bottom panel; on the right panel, there
are two doses lying inside their corresponding intervals

simulation, with d1 as the starting dose. And the ck ,
k = 1, 2, are set to be c1 = log(1.2)/3 and c2 = log(1.2)
throughout this subsection.
Table 5 shows the results based on 4,000 simulated

trials. In general, for Scenarios 1, 2, 3, 4, 5 and 8, the
performance of gBOINS are comparable with the gBOIN
design in terms of PCS, number of patients allocating to
the MTD, while the gBOIN assigns more patients to the
overly toxic doses above the MTD. For example, in sce-
nario 3, in which dose level 2 was the MTD, the gBOINS
design yielded a PCS of 48% and allocated 14.5 patients to
the MTD; the gBOIN yielded a PCS of 47% and allocated
12.1 patients to the MTD. While the gBOINS assigned
2.7 fewer patients than the gBOIN design to the overly
toxic doses. In scenario 6, in which the MTD was dose

level 1, the PCS of the gBOINS was 77% and has a 8%
higher than that of the gBOIN design. In scenario 7, the
MTDwas located at the lose level 2 and the gBOIN design
yielded a of 55%, which was 4% higher than that of the
gBOINS. While the gBOINS allocated more patients to
the MTD and assigned fewer patients to the overly toxic
doses. In scenario 9, in which dose level 2 was the MTD,
the gBOINS design yielded a PCS of 96% and was 5%
higher than that of the gBOIN design. The number of
patients allocated to MTD was similar, while the gBOINS
assigned 3.4 fewer patients than the gBOIN design to the
overly toxic doses. In scenario 10, in which dose level 4
was the MTD, the gBOINS design yielded a PCS of 76%
and was 5% higher than that of the gBOIN design. The
gBOIN design assigned 13.3 patients to MTD and was
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Table 4 True probability of each toxicity grade (0/1, 2, 3, 4) at each dose level (1-6) for ten simulation scenarios (1-10) [18]

Grade d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6

Scenario 1 Scenario 2

0,1 0.83 0.75 0.62 0.51 0.34 0.19 0.92 0.85 0.70 0.55 0.24 0.00

2 0.12 0.15 0.18 0.19 0.16 0.11 0.03 0.05 0.10 0.15 0.26 0.36

3 0.04 0.07 0.11 0.14 0.15 0.11 0.03 0.07 0.14 0.21 0.35 0.49

4 0.01 0.03 0.09 0.16 0.35 0.59 0.02 0.03 0.06 0.09 0.15 0.21

Scenario 3 Scenario 4

0,1 0.78 0.56 0.50 0.40 0.30 0.16 0.88 0.64 0.52 0.35 0.17 0.00

2 0.14 0.19 0.18 0.17 0.15 0.09 0.04 0.12 0.16 0.22 0.28 0.39

3 0.06 0.12 0.14 0.15 0.14 0.10 0.06 0.17 0.22 0.30 0.38 0.52

4 0.02 0.12 0.18 0.28 0.41 0.65 0.02 0.07 0.10 0.13 0.17 0.23

Scenario 5 Scenario 6

0,1 1.00 0.91 0.88 0.86 0.80 0.65 0.50 0.38 0.29 0.19 0.13 0.08

2 0.00 0.06 0.07 0.08 0.10 0.13 0.25 0.24 0.21 0.16 0.11 0.07

3 0.00 0.03 0.04 0.05 0.08 0.14 0.11 0.12 0.12 0.10 0.08 0.05

4 0.00 0.00 0.01 0.01 0.02 0.08 0.14 0.26 0.38 0.55 0.68 0.80

Scenario 7 Scenario 8

0,1 0.78 0.58 0.50 0.40 0.30 0.16 0.92 0.76 0.68 0.57 0.45 0.25

2 0.14 0.18 0.18 0.17 0.15 0.09 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.24 0.32 0.43 0.55 0.75

4 0.08 0.24 0.32 0.43 0.55 0.75 0.00 0.00 0.00 0.00 0.00 0.00

Scenario 9 Scenario 10

0,1 0.66 0.10 0.00 0.00 0.00 0.00 0.84 0.52 0.36 0.14 0.45 0.25

2 0.34 0.90 0.86 0.54 0.20 0.33 0.16 0.48 0.64 0.86 0.00 0.00

3 0.00 0.00 0.14 0.46 0.80 0.00 0.00 0.00 0.00 0.00 0.55 0.75

4 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00

higher than that of the gBOINS, while gBOINS assigned
fewer patients to the overly toxic doses. In addition, the
gBOINS design yielded a 6% chose the overly toxic doses
as MTD and had a substantially improvement compared
with the gBOIN design which has a 26% chose the overly
toxic doses as the MTD.

Continuous outcomes
In this section, we consider ten scenarios with continu-
ous outcomes in Table 6, all responses follow the normal
distribution adopted by [20]. For the first six scenarios,
the response y at the dose level x ∈ {1, 2, 3, 4, 5, 6} fol-
lows a normal distribution N(0.05 + 0.05x, 0.052x2) and
when the target at x = 1, a sample size of 15 was used
and when the target at other dose levels, a sample size of
60 was used. Cohort size of 1 was used for all scenarios.
For the rest scenarios, scenarios 7 to 10, the response y at
the dose x ∈ {1, 2, 3, 4, 5, 6} also followed the normal dis-
tribution N(0.05 + 0.05x, 0.052x2), and a moderate large
sample size of 100 was used. And the ck , k = 1, 2, are set to

be c1 = log(1.1)/3 and c2 = log(1.1) throughout this sub-
section.
Table 6 shows that when the sample size is 15 for sce-

nario 1 and 60 for scenarios 2 to 6, performance of the
gBOINS design is comparable with the gBOIN design,
in correct selection percentage and number of patients
treated at the target dose. While for the last four scenar-
ios, when the sample size is moderate large, the gBOINS
outperformed the gBOIN design in correct selection per-
centage and was comparable with gBOIN design in num-
ber of patients allocated to the target dose. Specifically,
in scenario 7, in which dose level 3 was the target dose,
gBOINS yielded a PCS of 89% and allocated 61.7 patients
to theMTD, whereas the gBOIN yielded a PCS of 84% and
allocated 64 patients to the MTD. In scenario 8, the MTD
was located at the dose level 4, the PCS of gBOINS was
75% and 5% higher than that of the gBOIN. In scenarios
9-10, we also see that the PCS of gBOINS was superior to
the gBOIN in PCS and was comparable with the gBOIN
in the number of patients allocated to the MTD.
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Table 5 Simulation results comparing the gBOINS design with the gBOIN when the equivalent toxicity score (ETS) is used as the
quasi-binary toxicity endpoint. The target dose (i.e., MTD) is in boldface

Selection percentage Average number of patients treated

d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6

Scenario 1

ETS 0.12 0.19 0.34 0.48 0.76 1.05

gBOIN 0.00 0.02 0.29 0.56 0.12 0.01 3.5 5.1 8.4 8.9 3.7 0.4

gBOINS 0.00 0.03 0.32 0.53 0.12 0.00 4.7 6.8 10.2 7.1 1.3 0.0

Scenario 2

ETS 0.08 0.14 0.28 0.42 0.70 0.98

gBOIN 0.00 0.00 0.16 0.66 0.18 0.00 3.5 4.4 7.5 9.9 4.3 0.4

gBOINS 0.00 0.01 0.14 0.63 0.22 0.00 3.8 5.0 8.7 9.5 3.0 0.1

Scenario 3

ETS 0.16 0.40 0.50 0.66 0.83 0.12

gBOIN 0.02 0.47 0.36 0.13 0.00 0.00 6.3 12.1 7.7 3.2 0.5 0.0

gBOINS 0.06 0.48 0.36 0.09 0.01 0.00 6.8 14.5 7.0 1.6 0.1 0.0

Scenario 4

ETS 0.11 0.34 0.45 0.60 0.78 1.06

gBOIN 0.01 0.28 0.47 0.23 0.01 0.00 4.8 9.0 10.8 4.4 0.9 0.1

gBOINS 0.01 0.27 0.50 0.21 0.01 0.00 5.0 11.8 10.0 3.0 0.2 0.0

Scenario 5

ETS 0.00 0.06 0.09 0.10 0.16 0.32

gBOIN 0.00 0.00 0.00 0.00 0.04 0.96 3.0 3.1 3.3 3.4 4.6 12.6

gBOINS 0.00 0.00 0.00 0.00 0.06 0.94 3.0 3.8 4.2 4.3 5.2 9.4

Scenario 6

ETS 0.44 0.63 0.80 1.01 1.16 1.29

gBOIN 0.69 0.29 0.01 0.00 0.00 0.00 19.4 8.0 1.7 0.2 0.0 0.0

gBOINS 0.77 0.21 0.02 0.00 0.00 0.00 22.9 6.5 0.7 0.0 0.0 0.0

Scenario 7

ETS 0.19 0.45 0.57 0.73 0.9 1.17

gBOIN 0.11 0.55 0.28 0.06 0.00 0.00 8.9 13.0 6.2 1.7 0.2 0.0

gBOINS 0.15 0.51 0.30 0.04 0.00 0.00 8.8 14.6 5.6 0.9 0.0 0.0

Scenario 8

ETS 0.08 0.24 0.32 0.43 0.55 0.75

gBOIN 0.00 0.06 0.22 0.41 0.28 0.04 2.7 5.6 7.2 8.5 4.4 1.6

gBOINS 0.00 0.05 0.28 0.42 0.23 0.03 3.9 7.8 9.3 6.7 2.1 0.2

Scenario 9

ETS 0.19 0.45 0.57 0.73 0.9 1.17

gBOIN 0.00 0.91 0.09 0.00 0.00 0.00 3.2 22.7 4.1 0.0 0.0 0.0

gBOINS 0.00 0.96 0.04 0.00 0.00 0.00 5.6 23.7 0.7 0.0 0.0 0.0

Scenario 10

ETS 0.08 0.24 0.32 0.43 0.55 0.75

gBOIN 0.00 0.00 0.03 0.71 0.23 0.03 3.0 3.5 5.0 13.3 3.8 1.3

gBOINS 0.00 0.00 0.19 0.76 0.05 0.01 4.3 7.0 10.4 8.1 0.2 0.0
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Table 6 Simulation results comparing gBOINS with gBOIN, when continuous toxicity end point is used. The target, correct selection
percentage and correct allocation number for each scenario are in boldface

Selection percentage Allocation

d1 d2 d3 d4 d5 d6 d1 d2 d3 d4 d5 d6

Scenario 1 0.10 0.15 0.20 0.25 0.30 0.35

gBOIN 0.93 0.06 0.01 0.00 0.00 0.00 11.9 2.4 0.5 0.1 0.0 0.0

gBOINS 0.93 0.06 0.00 0.00 0.00 0.00 12.0 2.4 0.5 0.1 0.0 0.0

Scenario 2 0.10 0.15 0.20 0.25 0.30 0.35

gBOIN 0.03 0.91 0.06 0.00 0.00 0.00 7.4 42.6 8.2 1.4 0.3 0.1

gBOINS 0.02 0.92 0.06 0.00 0.00 0.00 11.6 37.5 8.8 1.6 0.4 0.1

Scenario 3 0.10 0.15 0.20 0.25 0.30 0.35

gBOIN 0.00 0.12 0.76 0.12 0.01 0.00 1.6 13.5 32.3 9.9 2.2 0.5

gBOINS 0.00 0.09 0.78 0.12 0.01 0.00 1.6 15.4 30.2 9.7 2.4 0.6

Scenario 4 0.10 0.15 0.20 0.25 0.30 0.35

gBOIN 0.00 0.00 0.23 0.60 0.16 0.02 1.1 3.0 17.5 25.6 9.8 3.0

gBOINS 0.00 0.00 0.20 0.62 0.16 0.02 1.1 3.3 18.6 24.3 9.6 3.1

Scenario 5 0.10 0.15 0.20 0.25 0.30 0.35

gBOIN 0.00 0.00 0.00 0.30 0.50 0.19 1.0 1.6 5.0 19.5 21.1 11.9

gBOINS 0.00 0.00 0.00 0.28 0.53 0.19 1.0 1.6 5.6 19.4 21.0 11.4

Scenario 6 0.10 0.15 0.20 0.25 0.30 0.35

gBOIN 0.00 0.00 0.00 0.03 0.35 0.61 1.0 1.2 2.4 7.7 19.6 28.0

g BOINS 0.00 0.00 0.00 0.02 0.34 0.64 1.0 1.2 2.4 7.7 20.1 27.6

Scenario 7 0.10 0.15 0.20 0.25 0.30 0.35

gBOIN 0.00 0.06 0.84 0.10 0.00 0.00 1.6 16.6 64.0 14.7 2.6 0.6

gBOINS 0.00 0.04 0.89 0.07 0.00 0.00 1.6 20.3 61.7 14.5 1.6 0.3

Scenario 8 0.10 0.15 0.20 0.25 0.30 0.35

gBOIN 0.00 0.00 0.17 0.69 0.13 0.01 1.1 2.9 25.2 50.9 16.1 3.8

gBOINS 0.00 0.00 0.12 0.75 0.13 0.01 1.1 3.2 26.7 51.2 15.6 3.1

Scenario 9 0.10 0.15 0.20 0.25 0.30 0.35

gBOIN 0.00 0.00 0.00 0.26 0.57 0.18 1.0 1.6 5.0 30.1 42.6 19.7

gBOINS 0.00 0.00 0.00 0.20 0.66 0.14 1.0 1.6 5.4 30.4 43.4 18.1

Scenario 10 0.10 0.15 0.20 0.25 0.30 0.35

gBOIN 0.00 0.00 0.00 0.01 0.33 0.66 1.0 1.2 2.5 8.6 32.7 54.1

gBOINS 0.00 0.00 0.00 0.00 0.27 0.73 1.0 1.2 2.5 8.7 34.1 52.5

Conclusion
We proposed a new phase I trial design that incorporates
toxicity grades into the dose finding trials. The proposed
gBOINS design unifies the continuous and quasi-binary
toxicity endpoints as well as the standard binary endpoint.
Different from the gBOIN design, the decision bound-
aries of gBOINS design, λ∗

e (nj) and λ∗
d(nj) were adaptive,

which provides the statistician a flexible tool to control
the over-toxicities. The design can also converge to the
target toxicity probability as the sample size goes to infin-
ity. This unique convergence property of gBOINS was
demonstrated both theoretically and numerically. Com-
pared to the gBOIN design, when there were more than

one doses lying inside the decision boundaries
(
λ∗
e , λ∗

d
)

determined by the gBOIN design, the gBOINS had a sub-
stantial improvement in terms of the PCS when the sam-
ple size was moderate large. Also, we showed that when
the sample size was small, the performance of gBOINS
design was comparable with the gBOIN design in terms
of the PCS and can allocate more patients to safe doses by
simulations.
Although the prosed gBOINS design focus on phase I

trial designs, similarly to the BOIN-ET proposed by [28],
it can be directly extended to the phase I/II designs. One
limitation of the gBOINS design is that it assumes toxic-
ity outcome can be observed quickly enough to make the
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dose assignment decisions for each enrolled cohort. One
approach to extend the gBOINS design to accommodate
late-onset or delayed outcomes, for example, would be to
use the Bayesian data augmentation approach [29, 30] or
the approximated likelihood approach [31]. This is a topic
of our future research.
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