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Abstract 

Background:  Ensuring fair comparisons of cancer survival statistics across population groups requires careful con‑
sideration of differential competing mortality due to other causes, and adjusting for imbalances over groups in other 
prognostic covariates (e.g. age). This has typically been achieved using comparisons of age-standardised net survival, 
with age standardisation addressing covariate imbalance, and the net estimates removing differences in competing 
mortality from other causes. However, these estimates lack ease of interpretability. In this paper, we motivate an alter‑
native non-parametric approach that uses a common rate of other cause mortality across groups to give reference-
adjusted estimates of the all-cause and cause-specific crude probability of death in contrast to solely reporting net 
survival estimates.

Methods:  We develop the methodology for a non-parametric equivalent of standardised and reference adjusted 
crude probabilities of death, building on the estimation of non-parametric crude probabilities of death. We illustrate 
the approach using regional comparisons of survival following a diagnosis of rectal cancer for men in England. We 
standardise to the covariate distribution and other cause mortality of England as a whole to offer comparability, but 
with close approximation to the observed all-cause region-specific mortality.

Results:  The approach gives comparable estimates to observed crude probabilities of death, but allows direct com‑
parison across population groups with different covariate profiles and competing mortality patterns. In our illustrative 
example, we show that regional variations in survival following a diagnosis of rectal cancer persist even after account‑
ing for the variation in deprivation, age at diagnosis and other cause mortality.

Conclusions:  The methodological approach of using standardised and reference adjusted metrics offers an appeal‑
ing approach for future cancer survival comparison studies and routinely published cancer statistics. Our non-para‑
metric estimation approach through the use of weighting offers the ability to estimate comparable survival estimates 
without the need for statistical modelling.
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Background
Net survival measures are typically used for population-
based cancer data as they enable fair comparisons across 
population groups which have differential competing 
risks due to deaths from causes other than cancer [1, 2]. 
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Past comparisons of individuals diagnosed with a specific 
cancer have been made between groups defined by geo-
graphical areas [3–6], calendar time [7] or by population 
subgroupings; such as age [8], socioeconomic status [9] 
or race [10]. In the context of cancer survival, net survival 
measures the survival in the hypothetical world where it 
is not possible to die from causes other than the cancer of 
interest. However, net survival measures have been criti-
cized as lacking a directly relevant interpretation, with 
some cautioning against relying on metrics that do not 
“stick to this world” [11]. A further consideration when 
comparing population subgroups is that care should be 
taken to ensure that the observed covariate distribu-
tion (age is the one primarily considered) in each group 
is similar, or are enforced through some form of weight-
ing or standardization. See, for example, Corazziari et al. 
[12] for accounting for age distribution differences. The 
same approach can be applied for other key covariates, 
dependent on the cancer site and question of interest.

Crude probability measures (also referred to as cause-
specific cumulative incidence functions in the compet-
ing risks literature) offer a more interpretable metric, 
and have the advantage of being a real-world measure. 
The cancer-specific crude probability of death measures 
the risk of dying of a cancer at a particular timepoint in 
the presence of the competing risks due to other causes 
of death. However, crude probabilities are a function of 
both the cancer-specific (or excess) mortality rate and the 
other cause mortality rate, and so comparison between 
population groups are not “fair” when trying to isolate 
differences solely due to the impact of cancer. This lack 
of “fairness” motivates the use of net survival in the first 
place, rather than relying on the all-cause survival across 
groups, which is also impacted by both competing mor-
tality rates. Crude probability metrics have received some 
recent attention in the relative survival framework, with 
various estimation approaches proposed [13–16] and 
their use in a number of applied contexts [17–22].

Lambert et al. [23] propose estimation of all-cause sur-
vival and crude probability measures where differences 
between population groups only depend on differences 
in excess (cancer) mortality rates; they use the terminol-
ogy of reference adjusted measures. In order to estimate 
the reference-adjusted crude probability and all-cause 
measures in a relative survival (excess mortality) frame-
work, Lambert et al. [23] propose using common other-
cause mortality rates from a reference population when 
converting back from the excess mortality scale (which 
may well be the other-cause mortality rates from one of 
the groups of interest). This leads to metrics that may not 
reflect the actual experience of a population group, but 
are comparable and offer improved interpretability. With 
careful selection of the appropriate reference adjustment 

and standardisation, these metrics can also closely reflect 
the real-world experience of the study population. It is 
important to note that the relevant other cause mortality 
rate for each group are first used in the estimation of the 
excess mortality rates, prior to using the common other 
cause mortality rates for all groups when converting to 
the all-cause scale.

In this paper, we build on the ideas of Lambert et  al. 
[23], through development of non-parametric methods 
to estimate the same underlying estimands. The approach 
of Lambert et  al. relies on a fully parametric setting; 
requiring the correct specification of the functional form 
for non-linear and time-dependent covariate effects in 
a modelling framework. Our proposed non-parametric 
alternative removes the requirement of the correct model 
specification. We apply the developed non-parametric 
estimators and explore regional differences in survival 
following a diagnosis of rectal cancer in England. This 
approach also builds upon previous research from Cronin 
and Feuer [24] for estimating crude probability metrics, 
but we instead apply reference population other-cause 
mortality rates to ensure that the crude probability met-
rics are fair in terms of differential other-cause mortality 
when comparing across population groups. In terms of 
implementation, we discuss the calculation of the metrics 
in both continuous time (that is, at unique event times), 
and with follow-up time grouped into intervals.

Methods
Statistical methods
We develop our estimation approaches within a relative 
survival (excess mortality) framework. This is the most 
common approach to survival estimation in population-
based cancer data, largely because of the unavailability or 
unreliability of dichotomising cause of death information 
into a death either due to cancer or due to other causes, 
which would be required in a cause-specific survival esti-
mation framework. We start by considering the all-cause 
mortality rate, hi(t), for an individual i at time from diag-
nosis, t, which is assumed can be partitioned into com-
ponent parts; that due to the background mortality rate, 
h
∗
i
(t), typically defined by information from population 

mortality files and the excess mortality rate, λi(t), for 
mortality associated with the diagnosis of cancer:

The subscript i denotes that this partitioning will vary 
by individual patient characteristics that could impact 
the background mortality, the cancer-specific mortality 
or both; such as age-at-diagnosis or sex. On the survival 
scale, this is formulated as:

hi(t) = h
∗
i (t)+ �i(t).
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with Si(t) the all-cause survival function, S
∗
i
(t) the 

expected survival function, and  Ri(t) the relative sur-
vival function. It is common to report marginal measures 
in population subgroups or the population as a whole. 
Much of the recent literature in this research area relates 
to calculating the appropriate weighting required to 
arrive at the correct marginal non-parametric estimates 
for the various quantities of interest.

Marginal measures
Pohar Perme et  al. [2] detail the appropriate weighting 
that gives an unbiased estimate of the marginal relative 
survival, and the so-called Pohar Perme estimator is now 
widely used in practice. Rather than reporting the mar-
ginal relative survival, others have recommended the use 
of crude probabilities; i.e. the partitioning of the all-cause 
probability of death (F(t) = 1 − S(t)) into the probability 
of death due to cancer (FC(t)) and due to other causes 
(FO(t)):

Following a similar notation to Sasieni and Brentnall 
[25], let Ni(t) be a counting process that starts at 0 and 
jumps to 1 at the time when individual i dies, and Yi(t) 
be an at risk process – an indicator of whether an indi-
vidual is still at risk at time t (1 if so, 0 otherwise), effec-
tively Yi(t) = I(Ti ≥ t) with I() an indicator function. We 
can define dNi(t) = Yi(t)I(Ti = t), which counts the events 
specifically at time, t. We can then sum over all individu-
als at time t; let dN (t) =

∑
n

i=1 dNi(t) be the sum over all 
individual events at time t, and Y (t) =

∑
n

i=1 Yi(t) be the 
total number of individuals at risk at time t. Taking a con-
tinuous time approach in the non-parametric context; for 
all individuals i (i = 1…N) at risk at time t, we can define 
the marginal all-cause cumulative hazard, Ĥ(t), as:

This can be used in the estimation of the observed all-
cause probability of death, F̂(t) , above; 
F̂(t) = 1− Ŝ(t) = 1− exp

(
−Ĥ(t)

)
 . We can also derive 

the cumulative expected hazard for each individual using 
the mortality rate information for the general population, 
using the mortality rates based on an individual’s, i, char-
acteristics at time, t (i.e matched on attained age, attained 
calendar year, and demographic characteristics; such as 
sex, deprivation group etc.). The cumulative excess haz-
ard for each individual, H∗

i
(t) , is estimated up to time, t, 

from the population mortality rate information, h∗
i
(t) :

Si(t) = S
∗
i (t)Ri(t),

F(t) = 1− S(t) = FC(t)+ FO(t)

(1)Ĥ(t) =

∫
t

0

dN (s)

Y (s)
=

∫
t

0

∑
n

i=1 dNi(s)∑
n

i=1 Yi(s)

with the expected (population) survival for each indi-
vidual given by S∗

i
(t) = exp

(
−H∗

i
(t)

)
. There are a num-

ber of options for averaging these estimates to arrive at 
a marginal expected survival for the population and the 
appropriate approach depends on the context [2, 15].

Reference adjusted all‑cause measures
Our aim is to obtain reference adjusted all-cause survival 
so that differences are solely due to differences in cancer 
(excess) mortality. To do this a second group of expected 
mortality rates needs to be defined, so we can estimate 
what the all-cause survival would be in a population with 
the reference expected mortality rates. Lambert et al. [23] 
recommend the use of a second common set of popula-
tion mortality rates for the purpose of adjusting to a ref-
erence population. With mortality rate information for 
an individual based on the rates in the second set of pop-
ulation mortality rates denoted with, h∗∗

i
(t), one can 

arrive at the population survival under the reference 
standard population for an individual, i, 
S
∗∗
i
(t) = exp

(
−
∫
t

0h
∗∗
i
(t)

)
= exp

(
−H∗∗

i (t)
)
.

Adopting a second set of population mortality rates 
will influence the calculation of the all-cause cumulative 
hazard. Through the introduction of h∗∗

i
(t) , the overall 

covariate distribution and hypothetical population at 
risk at time t may differ dependent on the relative differ-
ence between H∗∗

i
(t) and H∗

i
(t). To counteract this, 

weights can be introduced with the relative contribution 
depending on the ratio of the two expected survival esti-
mates at time t for any given covariate pattern that influ-
ences expected mortality – here denoted for each 
individual i. Therefore, defining the weights at each 
timepoint, t, as wi(t) =

S
∗∗
i
(t)

S
∗
i
(t)

 , we can arrive at a refer-
ence-adjusted estimate of the marginal all-cause hazard, 
HR(t), at time t:

The formula here adapts the marginal all-cause 
hazard on the population defined in Eq. (1) above 
in two ways. Firstly, the { −dH∗

i (s)+ dH∗∗
i (s) } term 

replaces the population hazard assumed to be acting 
in the population with that of the reference standard. 
Secondly, the weights, wi(s), are used to up or down-
weight individual events and risktime from those that 
are over or under-represented in the reference popu-
lation compared to the observed population at time, 
t, in exactly the same way as described by Sasieni 

H∗
i (t) =

∫
t

0

h∗i (s) ds,

(2)

ĤR(t) =

∫
t

0

∑
n

i=1 wi(s)Yi(s)
{
dNi(s)− dH

∗
i
(s)+ dH

∗∗
i
(s)

}
∑

n

i=1 wi(s)Yi(s)
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and Brentnall [25] for their relative survival index. 
It is worth noting a number of features of the rela-
tion given in Eq. (2) under specific conditions. When 
H∗∗

i (t) = H∗
i (t) for all t and i this formula collapses to 

the Nelson Aalen estimator expressed in Eq. (1); that 
is with the reference population mortality rates being 
equivalent to the population expected mortality does 
not alter the all-cause hazard (nor the consequent cal-
culations of crude probability estimates). Removing 
the dH∗∗

i (s) for all t, we arrive at the net cumulative 
hazard estimator proposed by Sasieni and Brentnall, 
and this is therefore the all-cause hazard extension 
of their estimator. Further adaptations of the formula 
above can also arrive at the Pohar Perme net cumu-
lative hazard (setting S∗∗

i
(t) = 1 ), or the Ederer II 

estimator (setting wi(t) = 1), as noted by Sasieni and 
Brentnall [25].

Reference adjusted crude probability measures
The reference-adjusted all-cause hazard can then be 
de-composed to give the reference-adjusted crude 
probabilities of death due to cancer and other causes 
using the same weighting, wi(t). Defining the marginal 
net cumulative hazard using the reference standard as 
�̂R(t):

which is the estimator proposed by Sasieni and Brentnall. 
And the marginal expected cumulative hazard for the 
population hazard with the reference standard, ˆH∗∗

R
(t) :

The relevant crude probability of death due to cancer, 
FC
R
(t), and other causes, FO

R
(t), under the reference adjust-

ment can be estimated by:

With SR(t) being the all-cause survival function at 
time, t, under the reference standard (estimated as 
ŜR(t) = exp

(
−ĤR(t)

)
 . We give details of variance 

estimates and the calculation of confidence intervals 
implemented in the corresponding software in 
Appendix A1.

�̂R(t) =

∫
t

0

∑
n

i=1 wi(s)Yi(s)
{
dNi(s)− dH∗

i (s)
}

∑
n

i=1 wi(s)Yi(s)

Ĥ
∗∗
R
(t) =

∫
t

0

∑
n

i=1 wi(s)Yi(s)
{
dH∗∗

i (s)
}

∑
n

i=1 wi(s)Yi(s)

F̂C
R
(t) =

∫
t

0

ŜR(u−)d�̂R(u)

F̂O
R
(t) =

∫
t

0

ŜR(u−)dĤ∗∗
R (u),

Standardisation of covariates
Furthermore, it may also be necessary to standardise to a 
specific covariate pattern (such as an age profile) to allow 
direct comparability between groups or across different 
studies. This can be achieved with a modification to the 
weights, wi(t), with a multiplication through by time-
fixed weights equivalent to those that have been used in 
age-standardisation traditionally [25–27], wB

i
 . Redefining 

the weights as:

For instance, these further pre-weights, wB
i
 , have been 

used for external age-standardisation using the Interna-
tional Cancer Standard Survival weights. In that case, the 
weights ,wB

i
 , correspond to an individual’s age (and the 

age-group to which they belong), and are a relative com-
parison of the proportions in each age-group between 
the current sample and the external standard. Again, the 
combination of these two sets of weights are also pro-
posed by Sasieni and Brentnall [25], but we convert their 
standardised relative survival estimates to an all-cause 
and crude probability setting. The weights can be applied 
to all of the reference-adjusted measure described above, 
so that any differences between groups are only due to 
differences in excess mortality rates.

Software implementation
In this paper, we use a continuous time implementation 
of the above approach, with the time-dependent weights, 
wi(t), re-calculated at each unique event time. The soft-
ware implementation is via a user-written package in 
Stata; stpp. Further details on the implementation are 
given in the Appendix (Appendix A2). Cronin and Feuer 
[24] offer a lifetable approximation (calculation in inter-
val periods, such as months) to continuous time calcu-
lation for the observed crude probability estimates. It 
would be also possible to make similar adjustments to the 
Cronin and Feuer lifetable approximation approach by 
applying the reference population mortality information, 
with the appropriate adjustments for the interval nature 
of the calculation as introduced by Cronin and Feuer.

Illustrative example
We select two regions in England to make regional com-
parisons of survival following rectal cancer for men diag-
nosed in the calendar period 2007–2012, with follow-up 
information available until the end of 2013. For the cal-
culation of relative survival, we use a population lifeta-
ble stratified by age, deprivation, region, and sex. Given 

wi(t) = w
B
i

(
S
∗∗
i
(t)

S
∗
i
(t)

)
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known discrepancies in deprivation-specific relative sur-
vival for rectal cancer [28], it is important to quantify if 
region-specific survival differences remain that are not 
due to differences in the proportion of men diagnosed in 
each deprivation group in a given region or due to differ-
ences in the age distribution of men diagnosed with rectal 
cancer across regions. There are also regional variations 
in other-cause mortality in England [29–31]. We there-
fore adopt an approach of reference-adjusted and stand-
ardised survival comparison. The reference expected 
mortality rates are for men in England as a whole in 
2012. For our standardisation approach we standardise 
to the age (in 5 broad age-groups; 15–44, 45–54, 55–64, 
65–74, 75+) and deprivation distribution of men diag-
nosed with rectal cancer for England as a whole for the 
study period of interest. In using a common reference 
for population mortality rates, and a common covariate 
distribution for age and deprivation, we provide all-cause 
and crude probability estimates that offer a fair compari-
son of the survival impact following a diagnosis of rectal 
cancer across the government office regions in England. 
We select two regions with different covariate profiles 
for illustration; the North East and South East regions. In 
adopting this approach, we remove the impact of regional 
variation in other-cause mortality on our estimates, and 
also any regional variation in the age and deprivation dis-
tribution of diagnoses – both of which would otherwise 
impact on the all-cause and cancer-specific cumulative 
probabilities of death.

Results
Table 1 describes the cohort of men diagnosed with rec-
tal cancer between the years 2007 and 2012, and further 
summarises the age and deprivation distribution sepa-
rately by the two government office regions. There are 
substantial differences in the distribution of depriva-
tion across the two regions of England (31% in the most 
deprived group in North East, compared to 5% in the 
South West). This likely largely reflects regional varia-
tions in the deprivation distributions in the population 
in each region, rather than differential rectal cancer inci-
dence by deprivation group across the regions. The age 
profile of the incidence of rectal cancer is relatively simi-
lar across the regions. In England as a whole, over 34% of 
cases of rectal cancer are in those over the age of 75, the 
oldest age-group we consider.

Table 2 shows the 5-year probability of all-cause death 
following a diagnosis of rectal cancer for men in two 
regions of England. The 5-year crude probability of death 
due to cancer is also shown. Three estimates are given for 
each of the above metrics; i) the observed value in each 
region (i.e. unstandardized and non-reference adjusted); 
(ii) the impact of the reference adjustment lifetable alone, 

and iii) the fully standardised and reference adjusted 
value. In a separate column of Table 2, the fully standard-
ised and reference adjusted net probability index value is 
given (the Sasieni and Brentnall approach). The observed 
(unstandardized and non-reference adjusted) values are 
quite similar across the two compared regions; the all-
cause 5-year probabilty of death is 51.1% in the North 
East region and 50.8% in the South East. However, these 
values are based on the covariate distributions and other-
cause mortality rates of each region separately. Apply-
ing the reference-adjustment (all-England rates in 2012), 
and the covariate standardisation to England as a whole 
makes a marked difference for these two regions. In the 
North East region the estimates decrease when reference 
adjusting and standardising; this is largely driven by the 
shift in the deprivation distribution (see Table 1, and the 
column showing reference adjustment alone in Table 2). 
In contrast, the estimates for the South East increase 
when using the reference adjustment and standardisa-
tion. This is again largely driven by the shift in depriva-
tion distribution, but also by altering to the all-England 
reference rates for other cause mortality. Comparing the 
regions when the covariate distribution and other cause 
mortality have been standardised shows that the North 
East region has a lower all-cause probability of death 
than the South East (48.4% vs 52.6% respectively). Table 2 
shows also shows the reference adjusted and standard-
ised net probability valeus for each region. These esti-
mates are slightly higher than the reference-adjusted and 
standardised crude probability of deaths due to cancer 

Table 1  Description of cohort for diagnoses of rectal cancer for 
men diagnosed between 2007 and 2012 in England, and the two 
comparison regions

Region Age-group
N
(row percentage)

Total
N

15-44 45-54 55-64 65-74 75+
North 
East

56 
(2.2%)

200 
(8.0%)

579 
(23.1%)

815 
(32.5%)

857 
(34.2%)

2,507

South 
East

165 
(2.6%)

499 
(7.7%)

1,420 
(22.0%)

2,059 
(31.9%)

2,321 
(35.9%)

6464

England
(TOTAL)

1,033 
(2.5%)

3,181 
(7.7%)

9,293 
(22.6%)

13,563 
(33.0%)

14,051 
(34.2%)

41,121

Deprivation Group
N
(row percentage)

Total
N

1- least 
deprived

2 3 4 5 – most 
deprived

North 
East

356 
(14.2%)

346 
(13.8%)

440 
(17.6%)

594 
(23.7%)

771 
(30.8%)

2,507

South 
East

2,124 
(32.9%)

1,612 
(24.9%)

1,432 
(22.2%)

965 
(14.9%)

331 
(5.1%)

6464

England
(TOTAL)

8,479 
(20.6%)

9,091 
(22.1%)

8,825 
(21.5%)

7,910
(19.2%)

6,816 
(16.6%)

41,121
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because they are net rather than crude estimates that 
attempt to remove the impact of other-cause mortality 
that is present in the reference population.

Figure  1 shows the corresponding values across the 
entire range of time since diagnosis, as opposed to the 
point estimates given at 5-years in Table  2. The differ-
ential impact of reference adjustment for both the all-
cause probability of death and the crude probability of 
death due to cancer can be clearly visualised. For the 
North East region, the reference adjustment results in a 
reduction in the probabilities of death; this is because a 
more favourable deprivation distribution is being applied 
through the standardisation. In contrast, for the South 
East, the reference and standardised estimates are higher 
across the entire range of follow-up than the correspond-
ing observed values.

Discussion
Cancer survival metrics are typically calculated in the rela-
tive survival setting, and often externally age-standardised 
marginal relative survival will be reported when com-
paring across regions or countries (or stratifications for 
population subgroups) in order to remove the effect of 
differential other-cause mortality. This measure is less rel-
evant for patients and policy makers as it does not reflect 
the real-world experience of cancer patients, however, it 
does allow for direct comparability across groups with dif-
ferential other cause mortality [32]. In this paper, we show 
that it is possible to maintain this comparability whilst also 
retaining the overall burden of mortality (from deaths due 
to cancer and other causes) when reporting metrics, offer-
ing an alternative approach to solely reporting net survival 
metrics, but to do so requires the definition of a reference 
standard for other cause mortality. The choice of the refer-
ence standard is important, but careful choice means that 
the estimates reported can closely reflect the observed sur-
vival experience of the cohort, whilst maintaining direct 
comparability. In some settings, it may be preferable to 
report standard net survival measures. One possible exam-
ple is for large international studies comparing trends 
in cancer survival across time and between countries. In 
such studies, the added complexity of choosing a refer-
ence standard for other cause mortality might be unneces-
sary. Net survival measures may also be preferable when 
the other-cause mortality across the comparison groups 
are very different. Crucially, the crude probability metrics 
developed here mean that a broader range of metrics are 
available that allow direct comparability across population 
groups and thereby also allowing comparisons tailored 
to different audiences. Further, these reference adjusted 
crude probability measures may be better suited in set-
tings when it is important to portray the level of compet-
ing mortality.

Net survival metrics are popular in that, under assump-
tions of conditional exchangeability, these completely 
remove the impact of other causes by effectively setting 
this to zero, and calculating the survival function in the 
scenario where cancer is the only possible cause of death. 
This is often achieved through estimation in the rela-
tive survival framework, where a further assumption of 
relying on the population mortality rates to be the cor-
rect rates due to competing causes for the cancer cohort. 
Our approach uses this same estimation framework, but 
rather than assuming that the rate due to competing 
causes is zero, we adopt a secondary reference popula-
tion mortality file, which is common across all compari-
son groups to allow fair real-world comparisons. This 
maintains comparability, whilst improving the interpret-
ability. Although, the exact interpretation of the meas-
ure, is still a complex formulation, it often remains very 
close to the observed all-cause and cancer-specific prob-
abilities of death for each group of interest. This will be 
particularly true if the comparison groups of interest are 
very similar to each other in terms of the rates of other 
cause mortality and further have similar rates to the 
chosen the reference standard. In our example, we were 
able to standardise to all of England (in terms of other-
cause mortality rates and the covariate distribution) for 
regional comparisons across England, which offers a 
logical choice of common other-cause mortality rate and 
covariate distribution.

Our approach builds upon the model-based met-
rics that have been developed by Lambert et  al. [23]. 
We have developed non-parametric equivalents for the 
same underlying estimands; reference-adjusted and 
standardised all-cause and cause-specific crude prob-
abilities of deaths. The model-based approach [23] relies 
on a fully parametric setting; requiring the correct spec-
ification of the functional form for non-linear and time-
dependent covariate effects in a modelling framework. 
Our proposed non-parametric estimation approach 
removes the requirement of the correct model specifica-
tion and offers an alternative estimation approach that 
requires fewer assumptions. The non-parametric esti-
mates could also be used in comparison to the model-
based estimates to check if the correct functional form 
and assumptions surrounding the effects of covariate 
are appropriate.

A further important consideration when comparing 
across population groups is to ensure that a like-with-
like comparison is undertaken for other key covariates 
that may differ in their distribution, but also impact on 
cancer survival. An obvious variable to consider is the 
age profile of the comparison groups, and it is com-
mon practice to age-standardise cancer survival esti-
mates to account for this. The equivalent approach to 
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standardisation is required for the reference adjusted 
metrics introduced in this paper. As with the reference 
standard for the other-cause mortality rates, a careful 
choice of covariate standard is needed to both allow 
direct comparability, whilst also providing survival esti-
mates that are close to those observed in the population 
groups. Many previous research papers have adopted 
a common international age standard for cancer sur-
vival comparisons. The International Cancer Survival 
Standard weights are typically a younger profile than 

the cancer age distribution seen in England. For net 
survival measures, the difference in age profile between 
the ICSS age distribution and that observed in England 
often do not cause a dramatic difference when compari-
son ICSS-standardised and non-standardised net meas-
ures. However, on the all-cause scale, with age variation 
in both cancer and other-cause mortality, standardising 
to an age profile that is younger (e.g. the ICSS standard) 
can have a more marked difference when comparing 
ICSS age-standardised to non-standardised all-cause 

Table 2  Regional values for the 5-year reference and standardised marginal probabilities of death (due to cancer and all-causes) 
following a rectal cancer diagnosis for men (all ages). The reference standard is the population mortality rates for men in England in 
2012, and the standardisation group is the joint deprivation and age distribution of men with rectal cancer in England as a whole. Also 
given for comparison, are values for the observed (unstandardized and non-reference adjusted) probabilities, and the net probability 
index (Sasieni and Brentnall)

Crude probability due to cancer Net probability 
of death due to 
cancer

All-cause death probability

Observed 
(unstandardized 
and non-reference 
adjusted)

Reference-
adjusted 
only

Reference-
adjusted and 
standardised

Reference-
adjusted and 
standardised 
(Sasieni & 
Brentnall)

Observed 
(unstandardized 
and non-reference 
adjusted)

Reference-
adjusted 
only

Reference-
adjusted and 
standardised

North East 39.3% 39.6% 37.3% 39.1% 51.1% 50.4% 48.4%

South East 40.1% 40.0% 41.6% 43.6% 50.8% 51.5% 52.6%

Fig. 1  Reference and standardised crude probability estimates (due to cancer and all-causes) for males diagnosed with rectal cancer in two 
English regions across time since diagnosis (all ages). The reference standard is the population mortality rates for men in England in 2012, and the 
standardisation group is the joint deprivation and age distribution of men with rectal cancer in England as a whole. Also given, are values for the 
observed (unstandardized and non-reference adjusted) probabilities
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metrics. We further perform standardisation for the 
deprivation distribution in the regional comparisons 
in Table  2; it is often necessary to consider other key 
covariates to standardise over depending on the con-
text of the comparison being made.

Although we standardise across the deprivation 
distribution to allow fair regional comparisons, this 
should not be seen as accepting the inequities in 
cancer survival seen across these population groups. 
This is done on the basis that to allow fair regional 
comparisons requires case-mix adjustment, which is 
only necessary due to the inequities in cancer (and 
other cause) survival across the deprivation groups. 
Another comparison of interest, that has been used 
in other studies, is to calculate the hypothetical gains 
in survival should the cancer-specific inequities in 
deprivation group survival be removed [33, 34]. Fur-
thermore, we have used regions in England that were 
formerly referred to as Government Office Regions. 
These are fairly large population coverage areas (rang-
ing from ~ 2.5million to ~ 9 million individuals in 
2019). For smaller geographical areas, there will be 
much greater variation and a modelling approach 
that smooths through the survival estimates, and also 
borrows strength across regions, would offer a better 
analysis strategy [35, 36].

The non-parametric estimates can be calculated 
treating time continuously, or using a lifetable approxi-
mation by splitting the timescale into pre-defined inter-
vals (e.g. months). Treating time fully continuously can 
become computationally expensive in large datasets 
and over long follow-up intervals with many unique 
event time values as the time-dependent weights need 
to be continually updated. Applying the grouped time 
approach reduces computational time in large datasets 
with little loss of accuracy if the time intervals are suf-
ficiently short. A further motivation for the lifetable 
approximation is when this becomes necessary because 
of data availability reasons (e.g. survival information 
recorded to the nearest month).

We have shown that non-parametric equivalents of 
standardised and reference adjusted survival estimates 
[23] can be obtained for cohorts of cancer patients. 
Using these metrics as a summary measure of the bur-
den of cancer and also for comparisons across groups 
is an approach that could be adopted rather than, or in 
addition to, reporting relative survival measures. The 
comparability ensured by using relative survival (and 
age standardisation) is maintained, whilst also closely 
reflecting the observed all cause survival patterns seen 
for the cohort of cancer patients; which can be broken 
down into the relevant contributions of deaths due to 
cancer and other causes.
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