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Abstract 

Introduction:  Extrapolation of time-to-event data from clinical trials is commonly used in decision models for health 
technology assessment (HTA). The objective of this study was to assess performance of standard parametric survival 
analysis techniques for extrapolation of time-to-event data for a single event from clinical trials with limited data due 
to small samples or short follow-up.

Methods:  Simulated populations with 50,000 individuals were generated with an exponential hazard rate for the 
event of interest. A scenario consisted of 5000 repetitions with six sample size groups (30–500 patients) artificially 
censored after every 10% of events observed. Goodness-of-fit statistics (AIC, BIC) were used to determine the best-
fitting among standard parametric distributions (exponential, Weibull, log-normal, log-logistic, generalized gamma, 
Gompertz). Median survival, one-year survival probability, time horizon (1% survival time, or 99th percentile of survival 
distribution) and restricted mean survival time (RMST) were compared to population values to assess coverage and 
error (e.g., mean absolute percentage error).

Results:  The true exponential distribution was correctly identified using goodness-of-fit according to BIC more 
frequently compared to AIC (average 92% vs 68%). Under-coverage and large errors were observed for all outcomes 
when distributions were specified by AIC and for time horizon and RMST with BIC. Error in point estimates were found 
to be strongly associated with sample size and completeness of follow-up. Small samples produced larger average 
error, even with complete follow-up, than large samples with short follow-up. Correctly specifying the event distribu-
tion reduced magnitude of error in larger samples but not in smaller samples.

Conclusions:  Limited clinical data from small samples, or short follow-up of large samples, produce large error in 
estimates relevant to HTA regardless of whether the correct distribution is specified. The associated uncertainty in 
estimated parameters may not capture the true population values. Decision models that base lifetime time horizon 
on the model’s extrapolated output are not likely to reliably estimate mean survival or its uncertainty. For data with an 
exponential event distribution, BIC more reliably identified the true distribution than AIC. These findings have impor-
tant implications for health decision modelling and HTA of novel therapies seeking approval with limited evidence.
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Introduction
Health decision models play an important role in 
health technology assessment (HTA) and reimburse-
ment decision-making for new drugs and technologies 
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[1–3]. Health decision models are a systematic approach 
to synthesizing information regarding relative costs 
and outcomes associated with alternative options [4]. 
Health decision models aim to estimate mean survival 
with various strategies and are informed by clinical data 
to determine health state occupancy time and associ-
ated transition risks [3–5]. Parametric survival analysis 
methods are used to model event hazards from clinical 
time-to-event data and extrapolate to lifetime horizons 
to estimate mean survival for decision modeling [6–9]. 
Given the large effect extrapolation choices may have 
on decision model results, emphasis has been placed on 
robust, systematic approaches for extrapolation choices 
as best practice [1, 8, 10, 11].

Oncology is an area of rapid clinical development 
[12]. Given the number of experimental trials underway 
and specific eligibility criteria applied, clinical trials in 
oncology often involve small samples [12]. Of all inves-
tigational trials registered and active on clini​caltr​ials.​
gov as of April 2021, 24% are investigating pharmaceuti-
cals for oncology, among which, 69% of phase II and 24% 
of phase III trials plan to enroll fewer than 100 patients 
per arm [13]. In reviews of recent FDA approvals, the 
majority of trials for oncology indications had less than 
200 participants [14], and oncology was more likely than 
other disease areas to obtain regulatory approvals based 
on surrogate endpoints, single-arm evidence, and a single 
pivotal trial [15–18]. There is also growing use of inno-
vative and adaptive trial designs to address personalized 
medicine. It is evident that regulatory and HTA agencies 
are becoming increasingly reliant on studies with limited 
data to inform clinical and economic assessments of new 
therapies [17–20].

Time-to-event data from clinical trials are affected by 
the number of patients enrolled, how long patients are 
followed, and rate of the event of interest [21]. While 
incidence and event rate are epidemiological characteris-
tics, the number of sites involved to enroll patients, total 
target sample size and duration of follow-up are con-
trolled by researchers designing the study. When samples 
are small or follow-up is short, there are limited data with 
which to fit parametric distributions for extrapolation. 
Currently, we do not have a comprehensive quantitative 
understanding of the impact sample size and follow-up 
characteristics of clinical studies may have on parametric 
extrapolation, and resulting impact on decision models 
[21].

The objective of this study was to assess performance 
of standard commonly-used parametric survival analy-
sis techniques for extrapolation of time-to-event data 
from clinical trials under conditions of limited data due 
to small samples or short follow-up. We assess perfor-
mance by quantifying coverage and error of estimates 

for survival outcomes from parametric extrapolations of 
simulated datasets.

Methods
Approach
A simulation was designed to assess coverage and error 
when extrapolating survival data derived from a known 
data-generating process under various conditions with 
limited data.

We evaluated different levels of sample size, nobs, by 
randomly selecting study samples from a simulated pop-
ulation of individuals with complete observations (i.e., all 
death times known). We then evaluated different dura-
tions of follow-up, by artificially censoring the complete 
data for each sample after specific proportions of patients 
had events (proportion of events, pe), thereby controlling 
the degree of censoring (1 – pe). We used this approach 
to evaluate different levels of follow-up in a consistent 
and controlled manner across all datasets.

We simulated patient populations for four scenarios to 
examine two levels of hazard (event rate, λ), and accrual 
period. Accrual was used to mimic clinical trial enroll-
ment with simulated individuals entering the trial at 
random start times during the accrual period, thereby 
staggering observation times.

In the primary scenario, accrual was conducted over 
9 months, and the event rate was selected in a way that 
would produce a median event time of approximately 
9 months. These were considered “short” accrual and 
“high” event rate. Three additional scenarios were con-
ducted and presented in Supplemental Files, to ensure 
that results were not driven by choice of values for these 
parameters. The scenarios used longer accrual, lower 
event rate, and both longer accrual and lower event rate 
combined.

Simulation setup
Data generation approach
Data were generated using a stochastic process [22, 23]. 
To simulate a trial with staggered enrollment, randomly 
generated study enrollment times t1k for each individual 
were sampled from a uniform distribution between one 
and maximum accrual time, T1 (9 months for Scenarios 
1, 3; 30 months for Scenarios 2, 4). This approach of gen-
erating random enrollment times is similar to previously 
proposed methods of simulation of clinical trial data 
with survival endpoints [21, 24]. Event times in days for 
each individual, t2k, from study enrollment were sampled 
from an exponential distribution with constant rate, λ12 
= 0.0025, to estimate median survival of approximately 
9 months (− log (0.5)/0.0025 = 277 days) (Scenarios 1, 
2). The study was repeated with a lower event rate, λ12 = 
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0.00075, (− log (0.5)/0.00075 = 924 days, approximately 
30 months) (Scenarios 3, 4).

Simulated populations and datasets
We simulated k =  50,000 individuals for each scenario 
from the data generating process to form populations. 
We chose six levels of sample size, nobs = {30, 60, 90, 120, 
250, 500}, and randomly selected study samples from the 
simulated population for each of i = {1, …, nsim = 5,000} 
repetitions. We then artificially censored each sample 
dataset to analyze the data at various levels of follow-up. 
The complete data from each sample was used to identify 
the follow-up times needed (from the start of the study) 
to observe different proportions of events. These times 
were then used to create multiple artificially censored 
versions of each sample in order to imitate different levels 
of follow-up for that sample. For example, when 10% of 
patients had experienced the event (3 patients out of 30 
in the smallest sample size group), the sample’s remain-
ing follow-up was artificially truncated and all remain-
ing accrued patients were censored in order to form the 
dataset to analyze the shortest level of follow-up. To form 
a dataset for the next level of follow-up, this process was 
repeated by artificially censoring the complete patient 
data for the sample at the time from the start of the 
study when 20% of patients experience the event. Since 
patients accrued to the study over time from the study 
initiation date, patients have different lengths of follow-
up from time of enrollment to when a study is stopped 
and administratively censored on a specific calendar day. 
This allowed us to evaluate the impact of changing the 
length of follow-up in that sample, in a manner similar 
to administratively censoring a clinical trial at a given 
time after targeted number of events are observed. The 
approach also allowed evaluation in a consistent man-
ner across samples for different proportions, including 
complete follow-up (all events observed). Within each 
repetition and sample size, artificially censored datasets 
were created based on deciles of proportions of events, 
pe = {10%, 20%, …, 100%}, creating ten levels of follow-up. 
Thus, we included nsim = 5,000 repetitions, where within 
each repetition there were six levels of nobs, which in turn 
were analyzed after every 10% increase in number of 
events observed, for 10 levels of pe, producing a total of 
300,000 “datasets”. We refer to each combination of sam-
ple size and level of events observed as a “grouping”.

After datasets were set up from start of the study to 
reflect staggered observation times, clock was reset at 
enrollment for survival analysis of the endpoint of inter-
est. R statistical software (v 4.0.3) was used to simulate 
and analyze data, using the gems and flexsurv packages 
(with default parameterizations), respectively [25]. 
See Supplemental File  1 for more details of simulation 

methods and data setup and Supplemental File  2 for 
more details of simulated populations and datasets.

Simulation plan
The study was designed according to the aims, data gen-
erating mechanism, estimands, methods, and perfor-
mance measures (ADEMP) guidelines for simulation 
studies (Table 1) [26].

Estimands and population targets
An estimand is the true population quantity that the 
simulation will target [26]. Using a known distribution 
for generating simulated data allowed us to evaluate out-
comes from samples against the true population param-
eters. In addition to an exponential distribution of event 
times, quantities of interest from the population fitted 
model included: median survival time; one-year survival 
probability; an estimated “population lifetime” time hori-
zon, THpop, which we defined as the time at which the 
extrapolated curve from the fitted survival distribution 
reached 1%, (i.e., 99th percentile of the survival distri-
bution); and restricted mean survival time (RMST) for 
the population estimated at the population lifetime time 
horizon THpop. Population estimands are presented in 
Supplemental File 2 (Table S2–1).

Analytic methods
We fitted standard parametric distributions (exponential, 
Weibull, log-normal, log-logistic, generalized gamma and 
Gompertz) to the time-to-event datasets for each replica-
tion and grouping to project the survival curves beyond 
the length of follow-up of the “observed”, artificially cen-
sored datasets. We removed any fitted model that failed 
to converge or met prespecified conditions that would 
render a fitted survival model as implausible. Conditions 
that were considered implausible included: failed to pro-
duce survival probabilities descending after time 0, pro-
duced wide 95% confidence intervals (CI) that spanned 
> 80% probability of survival at the first event time, infi-
nite values for estimators and associated CIs, or median 
survival times beyond the maximum event time in the 
simulated population.

Despite our knowledge of the true distribution, the 
more practical application is dependent on the perfor-
mance of the extrapolation when the true distribution 
is not known. There are multiple mechanisms by which 
the best-fitting distribution is chosen for extrapolation 
in practice. We present the outcomes from the known 
or best-fitting distribution according to two most com-
monly used statistical criteria. Goodness-of-fit informa-
tion criteria (IC) statistics (Akaike information criterion 
[AIC] and Bayesian information criterion [BIC]) were 
calculated from all remaining models to identify the 
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best-fitting distribution for each dataset. IC corrected 
for sample size (AICc and BICc) were also explored, 
although current guidance and most statistical packages 
present only uncorrected AIC and BIC [8].

The following estimated model parameters (estimators) 
were extracted for each target estimand from the extrap-
olations of the fitted exponential model and best-fitting 
distribution according to each IC: median survival time; 
one-year survival probability; sample “model-estimated” 
lifetime time horizon, THi, which was the time at which 
the extrapolated curve from the fitted survival distribu-
tion reached 1% (or 99th percentile of the survival dis-
tribution); and RMST estimated at two different times: 
population time horizon THpop, and sample’s model-esti-
mated time horizon THi. RMST is equivalent to an eco-
nomic decision model’s estimate of survival (life-years) 
assessed over a given time horizon. The population life-
time time horizon, THpop, was used to estimate RMST at 
a common time across all groupings and repetitions. The 
sample “model-estimated” lifetime time horizon, THi, 
was also used to estimate RMST in order to replicate a 
modelling approach of determining the time horizon and 
life-years from the modelling output (i.e., run the model 
for a time horizon until nearly all patients have died), 
which might be used when the population’s true time 
horizon is unknown.

Performance measures
Several measures were used to evaluate performance in 
targeting the population quantities of interest.

The proportion of repetitions identifying the true dis-
tribution as best fitting assessed groupings where IC 
from an exponential survival model was lowest among 
the fitted distributions.

Coverage and error were assessed with the distri-
bution correctly specified as exponential and from 
best-fitting distributions selected by each type of IC. 
Coverage assessed the proportion of repetitions with 
CIs containing the true population quantity. To exam-
ine error, we assessed mean absolute percentage error 
(MAPE), as well as mean absolute error (MAE), and 
root mean squared error (RMSE), calculating aver-
age error between the estimate from each repetition 
and the true population fitted quantity. As these three 
measures provided similar information and qualitative 
interpretation regarding average magnitude of error, we 
focused on MAPE for ease of interpretation in the main 
results and presented MAE and RMSE for the primary 
scenario in Supplemental File  3 (S3). We also defined 
another measure, probability of 20% error, to assess 
the proportion of repetitions that produced estimates 
with an absolute value > 20% of true population fitted 
quantity in each grouping, as an estimate of the chance 

Table 1  Simulation plan according to ADEMP guidelines

Category Description

Aims The aim of this study was to assess the performance of standard parametric survival analysis techniques for analysis 
of time-to-event data from clinical trials under conditions of limited data due to small samples or short follow-up.

Data generating mechanism Data were generated for the event of interest from an exponential survival distribution, characterized by a constant 
hazard rate, λ.

Estimands and population targets - Exponential distribution of event times
- Median survival time, t where S(t) = 0.5
- One-year landmark survival probability, S(t) where t = 365 days
- Population time horizon, THpop, defined at 1% survival time, t where S(t) = 0.01
- Restricted mean survival time (RMST) estimated at time horizon THpop

Methods Simulated populations were created and nsim  = 5000 repetitions drawn. Each repetition included six levels of sam-
ple size, nobs = {30, 60, 90, 120, 250, 500}. Within each repetition and sample size, artificially censored datasets were 
created based on deciles of proportions of events, pe = {10%, 20%, …, 100%}, creating ten levels of follow-up.
Standard parametric distributions (exponential, Weibull, log-normal, log-logistic, generalized gamma and 
Gompertz) were fitted to each grouping for each repetition, nonconverging or implausible fits removed, and esti-
mated model parameters (estimators) collected from extrapolated survival curves:
- Information criteria (IC) to determine the best-fitting distribution
- Median survival time, t where S(t) = 0.5
- One-year landmark survival probability, S(t) where t = 365 days
- Sample time horizon THi, (1% survival time), t where S(t) = 0.01
- Population time horizon RMST (RMST estimated at THpop)
- Sample time horizon RMST (RMST estimated at THi)

Performance measures - Proportion identifying the true distribution as best fitting
- Coverage
- Error
  ◦ Mean absolute error (MAE)
  ◦ Mean absolute percentage error (MAPE)
  ◦ Root mean squared error (RMSE)
  ◦ Probability of 20% error
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a trial produced a potentially meaningful magnitude of 
difference [27, 28].

Coverage and error for each estimand were calculated 
for each grouping with respective Monte Carlo stand-
ard errors. Formulas for each performance measure are 
included in Supplemental File 1.

The approach was repeated for all four scenarios to 
assess varying accrual and event hazard rates; results pre-
sented in Supplemental File 4 (S4). The results for all four 
scenarios are also available in an interactive tool for ease 
of interpretation (https://​survs​im.​shiny​apps.​io/​survs​im).

Results
Nonconverging or implausible fits
Fitting to datasets with very small samples or short fol-
low-up were more likely to result in survival models that 
did not converge or produced implausible results (Fig. 
S2-3). Among the 1.8 M distributions fitted (300,000 
datasets × 6 distribution types), fewer than 10% were 
defined as nonconvergent or with implausible fit. How-
ever, among simulations with shortest follow-up, nearly 
50% of fitted models for the smallest sample size and 
approximately 20% for the largest sample size were asso-
ciated with one or more of the conditions. The highest 
incidence of nonconvergence or implausible fits occurred 
in fitting the generalized gamma model, followed by the 
Gompertz model. All repetitions had at least one survival 

distribution converge and/or be considered plausible 
according to the prespecified conditions for each group-
ing; thus, no repetition’s grouping had to be removed 
from the simulation.

Proportion of repetitions identifying the true distribution 
as best‑fitting
Generally, the true distribution was more likely to be cor-
rectly identified using statistical goodness-of-fit IC with 
larger samples and more observed events (Fig. 1, findings 
held across scenarios, Fig. S2-4). Better identification of 
the true exponential distribution was observed using BIC 
compared to AIC. With AIC, approximately 70–80% of 
the repetitions identified the true exponential distribu-
tion as best-fitting, even with complete follow-up. With 
BIC, the true exponential distribution was more com-
monly identified with larger sample size, and among 
larger samples, the true exponential distribution more 
commonly identified with longer follow-up. With the 
largest sample size, BIC identified the true exponential 
distribution as best-fitting in nearly 98% of repetitions. 
With small samples, there was no improvement with 
longer follow-up using either IC.

IC corrected for small samples (AICc and BICc) 
improved identification of the true exponential distri-
bution among the three sample size groups below 100, 
though the improvement was marginal (5% or less across 

Fig. 1  Proportion of repetitions identifying exponential distribution as best-fitting according to AIC or BIC, scenario 1 AIC = Akaike information 
criteria, BIC = Bayesian information criteria, c = corrected

https://survsim.shinyapps.io/survsim
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groupings); as expected, larger sample size groups were 
unaffected.

Coverage
When the distribution was correctly specified, median 
survival time, one-year survival probability and RMST 
estimated at the fixed population time horizon (THpop), 
approximated nominal coverage, i.e., 95% of repeti-
tion CIs contained the true estimand (Fig. 2, left panel). 
Using a time horizon based on the individual sample’s 
1% survival probability, T2,i, sample RMST CIs con-
tained the true RMST slightly less than 95% of the time 
(under-coverage).

When the true distribution was unknown and best-
fitting curves selected by IC, less than 95% of repetition 
CIs contained the true estimand across all sample sizes 
(Fig.  2, middle and right panels). Estimates from best-
fitting curves identified by BIC produced better coverage 
relative to AIC and approached nominal coverage with 
longer follow-up. For AIC, patterns differed by sample 
size; with short follow-up, larger samples produced larger 
deviations from nominal 95% coverage than small sam-
ples (due to much wider CIs associated with small sam-
ples), but with longer follow-up better approximated 
nominal coverage than small samples. In estimating 
median survival, after approximately 50% of events cov-
erage declined with longer follow-up for all sample sizes, 
suggesting increased precision of narrower CI around a 
biased value. Selection of distributions with corrected 
ICs did not affect the results relative to uncorrected ICs 
(Fig. S3-1). Similar results were observed across scenarios 
(Fig. S4-1:3).

Error
There was clear and consistent reduction in error with 
increasing proportion of events observed and with 
increased sample size for all outcomes assessed. Given 
consistency, MAPE was presented for ease of interpreta-
tion; MAE and RMSE followed similar patterns (Fig.  3, 
Fig. S3-2:3). Error was more markedly reduced by larger 
samples than longer follow-up; complete follow-up of a 
small sample produced larger error than limited events 
in a larger sample. When the true distribution was cor-
rectly specified, all outcomes demonstrated similar 
MAPE. Samples of 30 patients demonstrated an average 
50% difference from true values with short follow-up and 
15% difference with full follow-up, while samples of 500 
patients produced much smaller error of approximately 
10% after short follow-up and reduced further with addi-
tional events.

Error was similarly large at small sample sizes and 
short follow-up regardless of whether the distribution 
was correctly specified, with the shortest follow-up for 

30 patients exhibiting MAPE of approximately 50% in 
all cases. On the other hand, error from larger samples 
after short follow-up was much larger when the distri-
bution was selected by IC than when correctly specified, 
particularly with AIC. Moreover, reduction in error with 
longer follow-up was much more gradual for sample time 
horizon and RMST estimates, when distributions were 
chosen by IC, particularly AIC. For example, more than 
40–60% of events had to be observed in larger samples 
to achieve comparable MAPE at 10% of events when 
the true distribution was correctly specified. In another 
framing, if one was willing to accept a risk of 10–20% in 
estimates, sample sizes of 250 or more would be likely to 
suffice regardless of follow-up time as long as BIC were 
used for model selection. However, to achieve similar 
precision in smaller samples, at least 50% of events would 
need to have been observed, and possibly higher for reli-
able estimation of time horizon and RMST. As with other 
results, correction for small samples did not improve per-
formance relative to uncorrected IC (Fig. S3-4).

To further explore error, the probability that a single 
trial produced a large magnitude of error (> 20%) was 
also examined in a heat map as a guide for interpreting 
findings of trials with limited data (Fig. 4). Most repeti-
tions produced large differences compared to true values 
when samples were small. Over 70% of repetitions pro-
duced results with greater than 20% difference from true 
population values for all outcomes when few events were 
observed, and more than 25% produced such differences 
with complete follow-up, regardless of whether the distri-
bution was correctly specified. Nearly all estimates from 
samples of 500 patients fell within 20% of true values with 
less than 40% of events observed when the distribution 
was correctly specified or selected using BIC. Specifying 
the distribution with AIC produced larger probability of 
> 20% error across all outcomes in all but the best group-
ings (full follow-up of largest samples), particularly for 
sample time horizon and RMST.

The magnitude of average error and probability of 
> 20% error in an individual repetition were remark-
ably similar for nearly all outcomes across scenarios (Fig. 
S4-4:9).

Discussion
This study provides findings concerning the validity of 
extrapolations of limited data to populate health deci-
sion models, as studies with small samples may risk large 
error in estimates relevant to HTA. Key findings are sum-
marized in Table 2. Error in point estimates from a sam-
ple were found to be strongly associated with sample size 
and completeness of follow-up. This error existed even 
when the event distribution was correctly specified for 
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Fig. 2  Coverage when distribution is correctly specified as exponential and when chosen by AIC/BIC AIC = Akaike information criteria, 
BIC = Bayesian information criteria
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small samples, while correctly specifying the event distri-
bution reduced magnitude of error in larger samples.

When the true distribution was correctly specified 
to extrapolate limited data, population values were 
likely to be captured reasonably well within a sample’s 
CI, regardless of sample size or follow-up. However, 
good coverage from limited data is obtained from wide 
CIs, which means a large degree of uncertainty. In the 
more practical context in which the distribution is not 

known, an estimate’s CI could not reliably be expected 
to include the true estimate. Longer follow-up alone 
did not necessarily improve precision of estimates of 
median survival or one-year survival probability, as 
longer follow-up may only produce more confidence 
in a biased estimate. Using a time horizon driven by 
the sample’s extrapolated curve was associated with 
under-coverage regardless of the distribution selection 
method. These findings suggest establishing a model’s 

Fig. 3  Mean absolute percentage error (MAPE) when distribution correctly specified and when chosen by AIC/BIC AIC = Akaike information criteria, 
BIC = Bayesian information criteria
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time horizon based on the extrapolated output will not 
reliably estimate mean lifetime survival and its CI, and 
probabilistic analysis is not sufficient to overcome the 
limitations of small samples or of short follow-up in 
large samples.

When evaluating data with an exponential event distri-
bution, AIC performed very poorly in estimating param-
eters and their uncertainty. BIC correctly identified the 
true distribution more frequently than AIC, particularly 
with larger samples and longer follow-up, though longer 
follow-up provided limited improvement among small 
samples. Moreover, selection with BIC produced better 
coverage and reduced error relative to AIC. It is evident 
the mechanism by which the best-fitting distribution is 

chosen affects coverage and error of the estimates, with 
the key driver of the difference between these being accu-
rate characterization of the hazard. With a true exponen-
tial distribution, we also found IC corrections for small 
samples slightly improved the identification of the true 
distribution but did not appreciably improve coverage 
or reduce error. IC corrections are more theoretically 
appropriate with small samples and converge to their 
uncorrected counterparts with larger samples [29], but 
given their limited use, it is reassuring to note that differ-
ences could be minor in practice.

Pronounced differences were not observed across sce-
narios comparing relationships between accrual time 
and event time, suggesting the findings are not primarily 

Fig. 4  Probability > 20% difference from population value when distribution correctly specified and when chosen by AIC/BIC AIC = Akaike 
information criteria, BIC = Bayesian information criteria
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driven by these factors, but rather the relationship with 
follow-up as a proportion of events regardless of the 
speed at which these events occur.

There is very limited guidance to inform the appropri-
ateness of using a given sample size or completeness of 
follow-up for evaluating time-to-event measures for eco-
nomic evaluation decision models. In planning a clinical 
trial, sample size and analysis timing are determined by 
the primary outcome. Randomized phase III oncology 
studies base sample size on anticipated average effect size 
of the intervention relative to controls on time to pro-
gression or death, accounting for accrual and potential 
attrition [30]. Phase II oncology trials may only assess an 
intermediate endpoint such as tumour response, com-
paring the single treatment arm outcomes with histori-
cal controls [31]. Response is typically assessed early in 
treatment, resulting in limited sample sizes and follow-
up for exploratory time-to-event endpoints and no for-
mal statistical criteria informing the time-to-event 
evaluation [15]. While a phase II trial is not intended 
to determine treatment efficacy, there is growing prec-
edent for such trials to inform regulatory and HTA deci-
sions, with exploratory time-to-event outcomes forming 
the basis of clinical and economic assessments [15]. A 
recent review of Canadian oncology drug review dem-
onstrated that about one quarter of submissions in the 
last decade were made on the basis of an early-phase 
clinical trial with surrogate endpoints only [20]. Innova-
tive trial designs are also becoming more commonplace 
in oncology, including master protocol designs or basket 
trials for very rare conditions based on molecular altera-
tion rather than histology (tissue type/site). These stud-
ies are designed to inform regulatory decision-making as 
opposed to HTA [12, 15, 32, 33]. In the era of precision 
medicine, such designs may be more efficient and flexible 
for drug development, but pose challenges for appraisal 
given they are often early-phase, nonrandomized, and 
involve extremely small samples with potentially hetero-
geneous clinical subtypes and treatment effects [32, 34]. 
Yet, regulatory approvals have been granted for thera-
pies studied with such trials, creating challenges for eco-
nomic evaluation decision modelling and HTA [34, 35]. 
Our study findings raise questions regarding the use of 

survival data derived from small, earlier-phase trials and 
those reporting interim analyses and secondary time-to-
event outcomes. It raises considerable concerns for using 
limited clinical data in decision models, given the risk 
of under-coverage and large error for the estimation of 
time horizon and RMST. In circumstances of single arm, 
non-comparative data, it would be difficult to make any 
inference based on naïve or unanchored comparisons of 
absolute survival outcomes given the high risk of error 
associated with a single trial, especially with small, highly 
censored samples, despite common use of this approach 
evaluating phase II trial data against historical controls 
[17, 19, 20, 36, 37].

No study has examined in depth the relationship between 
sample size, completeness of follow-up, and performance 
of extrapolation methods for estimation of clinical and 
economic decision-modelling parameters. Aspects of this 
study have been evaluated previously, including impact of 
accrual and follow-up on estimation of relative and non-
constant treatment effects [21], case studies on the impact 
of survival distribution choice on estimates of extrapolated 
hazard and mean survival [11], and performance of IC and 
bias in RMST estimates in simulated results from clinical 
trial case study scenarios [38]. Our simulation study design 
analyzes several main factors affecting time-to-event out-
comes across a full range of sample size and follow-up, 
across different accrual and event rates, and examines mul-
tiple outcomes relevant to HTA.

Our study had several limitations. Firstly, the exponential 
distribution assumes a constant hazard rate over time and 
may not be generalizable to other contexts. A simulated 
dataset generated with exponential distribution was cho-
sen to control the data-generating mechanism and limit 
additional “noise” from a time-varying hazard. However, 
disease processes commonly produce non-constant haz-
ards, which could alter the study dynamics. Identification 
of the exponential distribution as best fitting in a larger 
proportion of simulations with BIC than AIC is not unex-
pected given that a larger penalty is incorporated into the 
BIC formula for number of model parameters, thus favour-
ing more parsimonious parametric distributions. However, 
another recent study that simulated data from several 
clinical trials also found better performance with BIC, 

Table 2  Summary of key findings

    • There is a large risk of error when extrapolating clinical time-to-event data with small sample sizes, which is observed regardless of whether the 
underlying event distribution has been correctly specified when undertaking extrapolation. Error is more markedly reduced by larger samples than by 
observing more events with longer follow-up alone.
    • Uncertainty may not be sufficiently captured within estimated confidence intervals when extrapolating limited clinical data for use in decision 
models, suggesting that probabilistic analysis is not sufficient to overcome the limitations of small samples or of short follow-up in large samples.
    • Identifying lifetime time horizon based on the model’s extrapolated output will not reliably estimate mean lifetime survival and its uncertainty.
    • For data with an exponential event distribution, AIC less frequently correctly identified the true distribution and performed very poorly in estimat-
ing outcomes and appropriately capturing their uncertainty compared to selections based on BIC.
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despite non-constant hazards in the case studies used [38]. 
Thus, we expect the results will hold in settings with non-
constant hazards. However, it is not known whether these 
findings are due to the simulation study designs; future 
studies are needed to assess generalizability. Moreover, the 
added benefits of characterizing survival with RMST in 
the setting of non-constant (and non-proportional, when 
comparing two treatment) hazards as opposed to tradi-
tional estimates (e.g., median) are not appreciated in this 
study context. However, RMST is equivalent to estimat-
ing life-years in economic decision modelling and thus, 
the potential for added uncertainty in the magnitude of 
error and coverage for RMST relative to medians even in 
the context of constant hazards is an important finding. 
Additionally, outside of non-converging or illogical model 
estimation, best-fitting curves were selected based on IC 
alone, which simplifies selection in practice that typically 
includes visual inspection and validation against external 
data or opinion, where possible. However, overreliance on 
fit statistics has been observed in reviews of extrapolation 
approaches in HTA [9, 10]. Though removal of failed or 
implausible results appeared to improve selection of the 
true distribution slightly (via process of elimination), this 
seemed limited to short follow-up as a minimal meas-
ure only. Further planned studies will aim to evaluate the 
robustness of the findings across a larger range of sce-
narios that include non-constant hazards, multiple events, 
and hazards not derived from a standard parametric distri-
bution. Lastly, we based follow-up time according to pro-
portion of events observed, with the lowest proportions 
being observed prior to full accrual in some instances. 
Though analyses can be conducted prior to full accrual in 
event-driven designs [39], in many trials, analysis would 
not proceed until a more substantial number of events 
had occurred or after full target accrual. However, the 
approach allowed a full assessment of the range of events 
across all repetitions. Moreover, findings may be relevant 
to longer-term secondary outcomes such as overall sur-
vival, when analysis following low proportions of events 
may be especially likely.

Conclusion
In conclusion, this study found that when the true data 
generating mechanism is based on an exponential distri-
bution, BIC more commonly correctly identified the true 
distribution than AIC. Limited clinical data in the form 
of small samples or short follow-up of large samples are 
at risk of producing large error in estimates relevant to 
clinical and economic assessment used in HTA regard-
less of whether the correct distribution is specified, and 
the associated uncertainty in the estimated parameters 
may not capture the true population values.
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