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Abstract 

Background:  In many areas of the Greater Mekong Subregion (GMS), malaria endemic regions have shrunk to 
patches of predominantly low-transmission. With a regional goal of elimination by 2030, it is important to use appro-
priate methods to analyze and predict trends in incidence in these remaining transmission foci to inform planning 
efforts. Climatic variables have been associated with malaria incidence to varying degrees across the globe but the 
relationship is less clear in the GMS and standard methodologies may not be appropriate to account for the lag 
between climate and incidence and for locations with low numbers of cases.

Methods:  In this study, a methodology was developed to estimate the spatio-temporal lag effect of climatic factors 
on malaria incidence in Thailand within a Bayesian framework. A simulation was conducted based on ground truth 
of lagged effect curves representing the delayed relation with sparse malaria cases as seen in our study population. 
A case study to estimate the delayed effect of environmental variables was used with malaria incidence at a fine geo-
graphic scale of sub-districts in a western province of Thailand.

Results:  From the simulation study, the model assumptions which accommodated both delayed effects and exces-
sive zeros appeared to have the best overall performance across evaluation metrics and scenarios. The case study 
demonstrated lagged climatic effect estimation of the proposed modeling with real data. The models appeared to be 
useful to estimate the shape of association with malaria incidence.

Conclusions:  A new method to estimate the spatiotemporal effect of climate on malaria trends in low transmission 
settings is presented. The developed methodology has potential to improve understanding and estimation of past 
and future trends in malaria incidence. With further development, this could assist policy makers with decisions on 
how to more effectively distribute resources and plan strategies for malaria elimination.
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Background
Among the parasitic diseases worldwide, malaria is one of 
the most prevalent [1]. It is caused by protozoan parasites 
of the genus Plasmodium. In the Greater Mekong Subre-
gion (GMS), the predominant species are P. falciparum 

and P. vivax. As the species most likely to cause severe 
complications and death, and lacking a dormant liver 
stage, P. falciparum has been the main focus of elimina-
tion plans among countries in the region. Migration and 
agricultural activities along the country’s borders have 
been studied and found to be associated with malaria 
risk. Either side of the Thailand-Myanmar border has 
consistently been an area with relatively high transmis-
sion for many years [2]. With intense efforts to eliminate 
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malaria by 2030, the number of P. falciparum incidence 
has markedly decreased in recent years across the GMS 
[3]. This includes on the Thai side [4] and in Kayin State 
in Myanmar [5]. In many areas of the Greater Mekong 
Sub-region, malaria is now narrowed down to small foci 
of transmission and there has been an intensification of 
efforts by National Malaria Control Programs and part-
ners to better understand and stop residual transmission 
in order to achieve elimination.

The malaria parasite is transmitted from human to 
human via the bite of infected female mosquitoes of 
the genus Anopheles. The malaria case distribution and 
dynamics have been found to be closely related to envi-
ronmental factors, particularly in high transmission areas 
in Subsaharan Africa [6]. Studies have shown that both 
mosquito species and malaria parasites are very sensi-
tive to weather conditions [6–11]. For example, moderate 
rainfall can create mosquito breeding sites while tem-
perature affects the rate of development of the mosquito 
larvae and influences mosquito survival rates [12, 13]. 
In addition, higher temperatures also accelerate multi-
plication of the Plasmodium parasites inside the vectors 
[14]. Suitable climatic conditions can create circum-
stances appropriate for malaria transmission in endemic 
areas. Therefore, how malaria incidences change as a 
result of climatic variability is an important understand-
ing for effective malaria control planning and activities 
[15]. The relationship between climate and malaria inci-
dence is complex with inconsistent findings perhaps due 
to regional variations and limited availability of suitable 
methods [16].

To investigate the relationship between meteorological 
variables and malaria incidence, it is sensible to account 
for biology of the transmission process. It has been 
shown that the relationship between climate and malaria 
is stronger for P. falciparum than for P. vivax [17]. This 
is likely to be due to a proportion of P. vivax cases being 
recurrences of dormant liver stage parasites (not found 
in falciparum infections) rather than being transmitted 
by mosquitoes. Epidemiologically there is a lag between 
changes in environmental factors and malaria transmis-
sion due to both the life cycle of mosquitoes (only mature 
adult females transmit malaria) and incubation of para-
sites in the mosquitoes (which are transmitted once they 
develop into sporozoites). This forms a lagged time-var-
ying distribution of the association. Therefore, the lag 
effect should then be addressed in analyses. To account 
for the lagged correlation, distributed lag nonlinear mod-
eling (DLNM) has been shown to be a valuable and effec-
tive tool [18–20].

Distributed lag models (DLMs) have been widely 
applied in epidemiological studies to estimate asso-
ciations between environmental variables and health 

outcome of interest at different lagged periods (for 
example please see [20–23]). Although the use of DLMs 
to quantify the lag effect of climatic factors and malaria 
incidences has been used (e.g., [10, 11, 16, 24]), currently 
few studies have investigated the possibility of spatio-
temporal variation in health outcomes within the lagged 
regression modeling. Contributors to such spatial varia-
tion can include exposure characteristics which could be 
spatially varying environmental composition and spatial 
differences in exposure measurements [25]. To account 
for spatial variation, geostatistical point process methods 
have been used to introduce spatial correlation between 
lagged regression parameters corresponding to differ-
ent discrete spatial regions while defining correlation 
as a function of distance between region centroids [26]. 
However, this distance may be inappropriate when the 
spatial regions are oddly shaped and/or their sizes vary 
greatly [27]. Recently a spatially varying distributed lag 
model at individual level has been developed with appli-
cation to an air pollution and term low birth weight study 
[25]. However, since the number of P. falciparum malaria 
cases of countries in GMS has decreased and distribution 
of cases is increasingly sparse as areas progress towards 
elimination, the excess of zero cases is another analyti-
cal challenge that has not been considered in previous 
modeling.

Excessive zeros commonly occur and are often encoun-
tered in biostatistical and epidemiological research 
especially for nearly eliminated and neglected tropical 
diseases. Based on different data generation mechanisms, 
the large number of zeros can lead to overdispersion 
caused by a disagreement between the data and the 
assumed distribution. This can result in having more 
zeroes in our data than the proposed distribution could 
reasonably explain. The zero valued data should not 
be ignored and dropped from the analysis as they often 
provide important information regarding the process. In 
addition, having a large proportion of zeros could indi-
cate important characteristics of the data or condition 
under study. Thus, probabilistic models that are capa-
ble of handling excessive zeros should be considered. 
Excessive-zero modeling has been frequently adopted in 
the disease mapping literature (see for example [28–31]). 
To account for the temporal lagged effect, an autoregres-
sive integrated moving average (ARIMA) model has been 
used to model correlated residual in relative malaria risk 
[32]. However, that method does not directly address the 
collinearity in climate covariates which is a known issue 
[33, 34] and could be accounted for using DLMs.

Therefore, in this study we aimed to develop a frame-
work to estimate the temporal lag effect of climatic fac-
tors on P. falciparum malaria incidence in Thailand. 
Whereas the relationship of multiple malaria species has 
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been investigated [35–37], in this work we focused on 
the association of the single species with climatic vari-
ables which is a current concern of disease control and 
elimination in the area. The sub-district data were from 
passive surveillance at level which there have not been 
analyses well performed at this fine spatial scale. We 
described research motivation in the context of malaria 
elimination and provided the basic model used in spatio-
temporal analysis. The concept of DLMs as a foundation 
of our methodology to describe a lagged effect of climate 
on malaria incidence was introduced. Then the addi-
tional complexity of the zero-inflation issue in our data 
set and spatio-temporal distributed lagged modeling for 
zero inflated data was described. The robustness of the 
proposed framework was examined through a simula-
tion study and a case study to estimate the delayed effect 
of environmental variables on malaria incidence in Tak 
Thailand along the Thailand-Myanmar border, one of 
the areas with the highest malaria burden in Thailand. 
Finally, analytic challenges and developments are further 
discussed.

Methods
Study design
In this study we first developed a methodology to inves-
tigate the lagged distribution of climatic effects on P. 
falciparum malaria cases in western Thailand. Then a 
simulation study was conducted to examine the perfor-
mance of the models under various parameter condi-
tions and assessed using a number of evaluation metrics. 
A case study with retrospective analysis design was also 
provided as a real data example of lagged effects on 
malaria cases in an elimination setting along the Thai-
land-Myanmar border. Weekly malaria incidence data of 
Tak in 2016 obtained from the Bureau of Vector Borne 
Disease at the Ministry of Public Health were used to 
demonstrate the application of the proposed model. To 
quantify the association with climatic factors, data on 
average temperature, relative humidity and total rain-
fall were considered in this study and collected from the 
Meteorological Department from five weather stations 
across the region during the study period.

Modeling for spatially sparse health data
The analysis of malaria incidence over space and time has 
received considerable attention due to growing demand 
for reliable estimation in order to plan effective control 
activities. Modeling incidence from surveillance health 
data indexed at a fine spatial resolution poses specific 
statistical problems due to the sparse nature of the data, 
especially in elimination settings. Figure  1 presents the 
number of P. falciparum malaria cases at sub-district 
level (as indicated in each interval under different colors) 

in Tak province in 2016 during weeks 16–30 which was 
the rainy season, the period of high malaria transmission 
in the region due to weather suitability. Figure  2 shows 
histograms of malaria incidence in the same study pop-
ulation. Both figures present the sparseness in our data 
set. In general, estimates of small areas can be sensitive 
to sampling variation due to relative population size to 
rare disease incidence among areas [38, 39]. Model-based 
methods have been developed to address the variability 
issue when mapping health outcomes at small geographi-
cal resolutions. These methods help to decrease the vari-
ability in small area estimates in sparse health data using 
spatial smoothing, which allows study units to integrate 
strength from surrounding regions to yield a more stable 
estimate in each area (see examples [39–41]).

The small area modeling has been widely applied on 
disease mapping with an assumption of Poisson likeli-
hood [39, 42]. However, ordinary count distributions, 
such as regular Poisson distribution cannot adequately 
capture the variation due to the sparse nature of the 
malaria cases in our study population which also pro-
duce excessive zero cases in the data set as depicted in 
Figs.  1 and 2. This situation occurs primarily in disease 
elimination areas in which there is an abundance of zeros 
coupled with a heterogeneous distribution of positive 
counts, as these features impose competing influences 
on the model and potentially become problematic. In the 
Poisson case, for example, the high proportion of zeros 
tends to lower the mean parameter. While alternative 
count distributions, such as the negative binomial, can 
add flexibility by incorporating a separate heterogene-
ity parameter, these distributions do not always ensure 
adequate fit [43] and neglect of excess zeroes will bias the 
estimation of parameters [44].

Spatio‑temporal modeling for excessive zero malaria cases
The excessive amount of zero incidence is an analyti-
cal challenge of eliminating disease modeling. One pos-
sible explanation for those zero cases is that they occur 
in spatial unit where malaria transmission is not suit-
able to occur during the study period. This can happen 
for various epidemiological reasons such as vector habi-
tat or environmental unsuitability or effective interven-
tions. To address excessive zeros in our data, there is a 
broad class of spatio-temporal models to accommodate 
both zero inflation and nonzero counts. The two widely 
used approaches are hurdle and zero-inflation models. 
One limitation of standard models for count data is that 
the two types of data, zeros and the positive integers are 
considered to be from the same data-generating process. 
However, for hurdle models, these two mechanisms are 
not assumed to be the same. The basic idea is that a prob-
ability distribution governs the binary index of whether a 
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count outcome has a zero or positive integer. If the reali-
zation is positive, the hurdle model is crossed, and the 
conditional distribution of the positive counts is formed 
by a truncated-at-zero count data model. On the other 
hand, with zero-inflated models, the response variable is 
modelled as a mixture of a Bernoulli distribution (other-
wise called a point mass at zero) and a base count dis-
tribution. However, for our malaria incidence data, it is 
perhaps more sensible to assume that our observed zero 
counts were from both mechanisms which could also 
account for asymptomatic cases. Hence, we would con-
sider zero-inflation rather than hurdle modeling in this 
study.

Zero-inflation models can be seen as mixture mod-
eling with a point mass at zero with a base distribution 
for the positive outcomes [30, 45]. Letting Yit denote a 
random variable representing the malaria case count in 

sub-district i in week t, the generic structure of the zero-
inflation model is given by

where I(.) denotes as the indicator function; π = p(Yit > 0) 
is the probability of a non-zero malaria case; f(yit| μit, θ) 
is the base probability distribution with mean μit con-
ditioned on all parameters θ in the model. The spatio-
temporal zero-inflation model specified above partitions 
the zeros into two types: structural or inaccessibility 
zeros. Hence, the true (inaccessibility) zeros part can, for 
instance, be represented as those that occur because they 
were not susceptible to malaria infection (e.g. residence 
in areas unsuitable for transmission). The structural part 
is to generate chance or sampling zeros which form those 
that occur by chance among those with susceptibility. So 

Yit = yit ∼ (1− π)I(yit=0) + π f
(

yit |µit , θ
)

I(yit>0)

Fig. 1  Maps of sub-district level P. falciparum malaria incidence (as indicated in each interval under different colors) in Tak province during the rainy 
season (weeks 16–30) in 2016
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π can be expressed as the “at-risk” probability which can 
also be interpreted as the probability of belonging to an 
at-risk sub-population [46, 47].

Lagged effects of potential climate factors on malaria 
incidence
The association between malaria incidence and different 
environmental factors is complex with inconsistent find-
ings between studies. Besides the variations due to exces-
sive zeros which can pose an analytical challenge which 
was addressed in the previous section, the inconsistent 
evidence of the association may also result from invalid 
statistical assumptions including from the misspecifica-
tion of the single fixed lag. The comprehensive lag pattern 
for climatic factors which has been thoroughly examined 
previously should be investigated. Thus, lagged modeling 
may have the potential to better understand the rela-
tionship and improve forecasting of changes in malaria 
incidence which would help public health authorities on 
how to more effectively plan and distribute resources for 
malaria elimination.

Modeling the relationship with environmental expo-
sures then requires the additional lag dimension of an 
exposure–incidence relationship, describing the time 
series of the effect. Thus, we further extended the spa-
tiotemporal zero-inflated modeling in the previous sec-
tion to account for the delayed effects. Distributed lag 
modeling has been developed and applied to many areas 

(please see examples in [18, 19, 21, 22, 48]). A general 
specification to describe the lagged structure can be 
expressed as

where L is the maximum lag. μit is the mean malaria inci-
dence of each sub-district i and week t, from an assumed 
base distribution, i.e. E(Yit) = μit. h(.) is the link function 
of mean incidence and g(.) represents a function of the 
association between malaria incidence and exposures, 
xit, with coefficient parameter vector βl. The variable δit 
could include random effect terms and other risk factors 
with linear effects specified by the related coefficients. 
This specification allows the effect of a single risk factor 
to be modeled over a period of time, using various para-
metric forms to describe the distributed contributions at 
different time lags.

This class of models has been extensively used to 
assess the lagged effects of environmental factors which 
can be done through the choice of a basis function [12]. 
The related basis functions comprise a set of completely 
known transformations of the original exposure variable 
that generate a new set of variables, termed basis vari-
ables though specification of g(.). The simplest formula-
tion is an unconstrained structure, specified in a form of 
the inclusion a parameter for each lag using direct linear 
summation [21, 49]. However, this estimation of effects 
at each time lag can be very unstable and in turn inflate 

h(µit) = β0 +
∑L

l=1
g
(

xit−l;β l

)

+ δit

Fig. 2  Plot of weekly percentages of districts without P. falciparum malaria cases in Tak province in 2016. The grey line represents the overall mean 
of 76.28%
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variance due to the collinearity between exposures at 
lag times [50]. Then some conditions can be imposed to 
improve the estimation precision of the distributed lag 
association. For instance, a constant association within 
lagged time intervals [23], or a smooth temporal rela-
tion using continuous mean functions, e.g., polynomial 
transformations [21, 51] or splines [22] can be assumed. 
This family of model specifications can be applied in 
which the formulation of the lags along time series is 
modeled with an appropriate basis function. Thus, an 
expression of the constrained model can be generally 
defined as g(xit; βl) = ∑lβlxit − l, where the coefficient vec-
tor is also a linear combination of basis variables. Hence, 
βl =

∑M
mBlmam where Blj is a member in the (L + 1) × M 

matrix of basis variables with the particular functional 
bases with degree of freedom M to the time lag l vector 
and am, corresponding coefficient vector for the basis 
function. There are variants of the basis function as 
mentioned. For instance, the matrix can be defined as a 
diagonal matrix for the unconstrained model, or a series 
of polynomials or spline mean functions of period l for 
distributed modeling to explain the effect as a smoothed 
association along lagged time periods.

Spatio‑temporal distributed lag modeling for sparse areal 
malaria incidence data
To investigate the association with climatic factors, we 
propose a spatio-temporal distributed lag space-time 
model for excessive zeros in our study population. To 
capture the variability in the positive count data, we con-
sider a Poisson distribution as a standard assumption 
for areal disease mapping [39, 42]. Although alternatives 
such as Negative Binomial distribution have also been 
used to manage dispersion problems, the Poisson likeli-
hood with random effect terms can account for the extra 
variation in space-time disease mapping [52]. Therefore, 
the proposed model can be expressed as

The conditional mean malaria incidence μit is linked to 
the linear predictor through a logarithm function as the 
conical link function for the exponential family with the 
offset set as the population on the log scale in each spa-
tial unit. Then the conditional mean and variance of the 
zero-inflation Poisson (ZIP) model are E(Yit) = πiμit and 
Var(Yit) = πiμit[1 + (1 − πi)μit]. β0 is the common intercept 
Blm is generated from a natural spline basis matrix with 
degree of freedom J to the delay l vector and am a vector 

p(Yit = 0) = (1− πi)+ πie
−µit

p(Yit > 0) = πi
µit

yit

yit !
,µit > 0

i = 1, . . . , I; t = 1, . . . ,T

log (µit) = log (popi)+ δit +
∑K

k

∑L
l βlxkit−l

βl =
∑M

mBlmam; δit = β0 + ui + �t

of corresponding parameters specific for distributed lag 
coefficients.

For parameter estimation, we applied a fully Bayesian 
approach in which prior distributions for all parameters 
in the model need to be assumed. In general, it is impor-
tant to include full random effects in space and time 
dimensions with interactions. However, in this case we 
aim to reduce the variation in the estimation and overly 
saturated specification could lead to severe identifiable 
estimates which might result in an increase in variance 
instead. Therefore, we rely in our analysis on a parsimo-
nious specification using separate spatial and temporal 
random terms. To incorporate the spatial correlation 
structure and borrowing of information across neigh-
boring sub-districts, the spatially structured effect, ui, is 
assumed to follow the intrinsic conditional autoregres-
sive (ICAR) model proposed by Besag et  al. [53]. The 
spatial correlation is introduced by defining 
[

ui|uj , i �= j, τ−1
i

]

∼ N
(

ui, τ
−1
i

)

, where ui  is the weighted 
average and τi is its precision parameter. They are 
defined as ui =

∑

j ujwij
∑

j wij
, and τ−1

i =
τ−1
u

∑

j wij
 . The ICAR 

model assumes maximum spatial correlation with a 
binary weighted matrix wij = 1 for neighboring districts 
and wij = 0 otherwise, is taken. The temporal effect λt is 
modelled by a first order random walk process, where 
each week is influenced by variability of the previous 
except the first. In general, a random walk is assumed to 
have a prior Gaussian distribution with mean as the 
previous time point which can be either positive or neg-
ative [39, 54, 55]. Then the temporal trend can be 
expressed as 

𝜆t ∼ Normal
(

𝜆t−1, 𝜏
−1

𝜆

)

, t > 0;𝜆t ∼ Normal
(

0, 𝜏−1
𝜆

)

, t = 0
 . 

The prior distribution of all precision parameter was 
assumed as a non-informative distribution [39, 42, 56, 
57].

Simulation study
To evaluate the performance of the proposed spatio-
temporal models, we conducted a study based on 
ground-truth simulation of lagged effect curves rep-
resenting the delayed relation with excessive zero 
malaria cases as seen in our study population. The 
spatial unit used in the simulation was 60 sub-dis-
tricts in Tak province (I = 60). The risk factor xit was 
set to represent the weekly series of climatic covari-
ate as xi1~Normal(1, 0.01), t = 1 and xit = ρxit − 1 + εt, 
εt~Normal(0, 0.01), t > 1 with ρ = 0.8 and 0.3 to repre-
sent two different situations of high and low levels of 
collinearity, correlation between lagged variables. Col-
linearity is expected to produce unstable computation 
and increase uncertainty in model estimates depending 
on the strength of correlation. Results from a simula-
tion study suggested that even low correlation might 
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decrease accuracies in model parameter estimation 
[58]. Therefore, we also investigated the model behav-
iors at different levels of collinearity based on previous 
research and simulations [58–60]. Then we generated 
the coefficients, βl, to represent two situations of lagged 
effects in the simulation study as depicted in Fig.  3. 
The first curve (Fig.  3 left) was the situation in which 
the effect increased with a peak in lag at 3 weeks and 
died out subsequently whereas the effect of the sec-
ond assumed situation (Fig. 3 right) was an exponential 
decay over lag periods.

To assess different levels of zero-case percentages, 
since the overall mean of weekly zero-case percentages 
during the study period was 76.28% (~ 80%, please see 
Fig.  1), we set πi = 0.8 ∀i in one simulation scenario 
to represent the excessive zeros in our data set which 
was relatively high. However, we also would like to 
consider another situation with a lower degree of zero 
inflation in our simulation study and therefore πi = 0.4 
was set in the other simulation scenario. One hundred 
data sets were then generated and for each simulation 
replicate we created an outcome series yit of weekly P. 
falciparum malaria incidence, with time period, t = 1, 
…,20 weeks, from a Poisson distribution coupled with 
relative risk μit. Hence the simulated data were created 
as yit~ZI − Poisson(μit) which follows

yit ∼

{

πi × 1{yit=0}
(1− πi)× Poisson(µit); yit ≥ 0

i = 1, . . . , 60; t = 1, . . . , 20

log (µit) = log (popi)+ δit +
∑10

l=1βlxit−l

δit = β0 + υi + �t

xi1 ∼ Normal(1, 0.01)
xit = ρxit−1 + εt , εt ∼ Normal(0, 0.01), t > 1

where the priors were modeled as

To compare the performance of different model 
assumptions, we denoted the unconstrained model 
without the zero-inflation structure (one-part model) as 
GLM, regarded as regular generalized linear modeling 
with Poisson likelihood; the one-part distributed lag 
model was named as DLM; and zero-inflation uncon-
strained and zero-inflation distributed lag models were 
denoted ZIPGLM and ZIPDLM respectively. To fit the 
models, the coefficients of the unconstrained models, 
GLM and ZIPGLM, were fitted as βl~Normal(0, 100) 
for all l (L = 10), while DLM and ZIPDLM were fitted 
with three sets of degree of freedom for the basis natu-
ral spline as βl =

∑J
j Bljαj where Blj is the element(l,j) 

of a natural spline matrix (degrees of freedom = 3,4,5). 
The intercept was assumed to have a zero-mean Gauss-
ian distribution whereas the prior of the probability of 
being at the point- mass zero was assumed to follow. The 
prior distribution of all precision parameter was defined 
as τ−1

β0
, τ−1

v , τ−1
�

∼ Unif (0, 100) . This allowed the maxi-
mum value of variance to be 100 which was reasonably 
high for random effect terms on the log scale [55–57, 61]. 
The results were obtained using the WinBUGS software 
with two chains of MCMC chains and 100,000 posterior 
samplers were collected after the burn-in part of 100,000.

Evaluation metrics
To assess the model assumptions under different simu-
lation conditions, five metrics were used to evaluate the 

β0 ∼ Normal
(

0, τ−1
β0

)

,ui ∼ ICAR
(

τ−1
v

)

,

�t ∼ Normal
(

�t−1, τ
−1
�

)

, t > 0; �t ∼ Normal
(

0, τ−1
�

)

, t = 0

τ−1
β0

, τ−1
v , τ−1

�
∼ Unif (0, 100)

Fig. 3  Plots of coefficients with lagged effect (βl) of two assumed situations used in the simulation study. Lag shown in weeks



Page 8 of 15Rotejanaprasert et al. BMC Medical Research Methodology          (2021) 21:287 

performance of models: bias, root mean squared error 
(RMSE), credible interval (CrI) coverage probability, 
mean squared predictive error (MSPE) and model infor-
mation criteria. The first measure was bias computed as 
the average difference between the simulated (true) mean 
and its estimate across the simulated datasets in each sce-
nario. This measure is preferred to be near zero. To inves-
tigate the estimation uncertainty, we then also calculate 
the RMSE, summation of the variance of estimation with 
the bias squared, which was calculated as the squared 
root of the average squared deviation between the true 
and estimated means across the simulation replicates. 
The next metric was the coverage probability calculated 
as the percentage of the credible interval containing the 
generated value and preferred to have coverage similar to 
the pre-specified level. In this simulation study we pre-
determined the credibility level at 95%. Then the mean 
squared predictive error was calculated as the squared 
root of the average squared difference between the simu-
lated data and the predicted incidence from the posterior 
predictive distribution across the simulation replications. 
The posterior predictive distribution of yit is in the form 
of p(yit| y) = ∫Θp(yit| θ, y)p(θ| y)dθ where y and θ denote 
all data and parameters used to fit the model. Finally, the 
deviance information criterion (DIC) was also used as 
the global metric for goodness of fit of models. For any 
sample primary parameter value θg for the conditional 
likelihood, the deviance is D(θg) = −2 log fθ |y

(

y|θg
)

 and 
D is the average deviance over the g posterior samplers. 
The effective number of parameters (pD) is estimated as 
pD = D − D

(

θ
)

 , and finally, DIC = D + pD . The DIC 
was calculated under the assumption of single point esti-
mate of the primary parameter of interest which may not 
be appropriate for mixture modeling as we assumed for 
zero inflation [29, 62]. Then an alternative is to compute 
pDr as the variance of deviance and define another meas-
ure variant as DICr = D + pDr.

Simulation results
Results of evaluation metrics are shown in Tables 1 and 
2. For DLM and ZIPDLM, results were averaged over 
the spline basis orders. Figures  4-5 represent the esti-
mated lagged effect curves of the true (simulated) coef-
ficients with various simulation scenarios and parameter 
values. Overall, the distributed lag modeling appeared 
superior to the unconstrained counterpart, and zero-
inflation models outperformed the models which did 
not account for excessive zeros. All zero-inflation models 
had similar estimations of zero proportions, π. For bias 
comparison, zero-inflation models had smaller bias while 
one-part models, GLM and DLM, had negative bias. This 
suggested that without properly accounting for exces-
sive zeros the estimates can be negatively biased due to 

the large number of zeros pulling the estimates towards 
zero. To investigate the variation in estimation, RMSEs 
were calculated under model assumptions. In general, 
the ZIP models showed smaller RMSEs than one-part 
models. Interestingly in  situations with high collinear-
ity, e.g. ρ = 0.8, the credible bands of DLM appeared to 
be slightly narrower than ZIPDLM. However, the RMSE 
does not include only the variance information but is 
summation of the variance of an estimate plus the square 
of its bias. Since DLM yielded bigger bias due to excessive 
zeros, RMSEs of DLM were larger than ZIPDLM.

From this evidence we should not only evaluate on 
point estimates but also should compare interval esti-
mation. To assess the interval estimation, we compared 
models using the coverage probability. ZIPDLM has the 
nearest coverage probability to the pre-specified level of 
0.95 whereas other models yielded relatively lower cover-
age probabilities. According to the simulation results in 
Tables 1 and 2, DLM particularly had the least coverage 
especially under high collinearity and excessive zeros. 
This might be resulting from the interval estimation of 
narrow credible intervals combined bias pulling towards 
zero which made the intervals miss the true values. To 
evaluate the goodness of fit, we applied the MSPE and 
information criteria to compare overall model fitting. 
Although all models had similar MSPEs, ZIPDLM had 
slightly smaller (better) MSPE. In addition, ZIPDLM 
also had the best (smallest) DIC and DICr. In general, the 
ZIPDLM model shows an improved the best result across 
assessment measures in the simulation study.

Results
Case study of lagged effects on sparse malaria incidence 
in an elimination setting along the Thailand‑Myanmar 
border
In this section, weekly malaria incidence data of Takin 
2016 were used to demonstrate the application of the 
proposed models in the previous section. As a hot spot 
of malaria incidence sub-districts in Tak along the Thai-
Myanmar border were chosen to be a case study to show 
the performance of the models developed in the previous 
section. In addition, fine scale subnational data, in this 
case at sub-district level, have rarely been investigated 
in previous studies of climate and incidence. All cases 
had infection confirmed by microscopy (thick and thin 
films) and rapid diagnostic tests done at hospitals (mostly 
government hospitals) and/or malaria posts in the study 
area. Records were put into the national surveillance 
format and joint into the database of the Bureau of Vec-
tor Borne Disease at the Ministry of Public Health by 
the data management unit of each health facility. Clini-
cal and demographic including gender, occupation, age, 
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residential location, disease onset and treatment date 
were collated from the surveillance system. Individual 
data were anonymized for their privacy protection.

The sub-district level population data were extracted 
from the online public database of the Bureau of Regis-
tration Administration. Geographical and administrative 
unit information were collated from the Ministry of Inte-
rior. The updated official geographical information system 
files at sub-district level were supplied by the Department 
of Local Administration. Data on average daily tempera-
ture, average daily relative humidity and total daily rain-
fall were considered in this study and collected from the 
Meteorological Department from five weather stations 
across the region during the study period. The weather 
variables were estimated using inverse distance weighted 
interpolation with tension spline in ArcGIS software 
version 10.3.1 and aggregated to weekly intervals at sub-
district level as total weekly rainfall and average weekly 
temperature and relative humidity.

Fig.  6 shows the lag-coefficients between sub-district 
malaria incidence and climatic factors. The four mod-
els in the previous section were used to investigate the 
shapes of their relationships with the three environ-
mental variables. The distributed lag models, both DLM 
and ZIPDLM, yielded smaller credible intervals and 
smoother mean lagged estimates of the coefficients for 
all weather factors. For humidity, the association started 
with a slightly negative effect for early lags and had a peak 
at around weeks 3–4 followed by a slowly declining trend. 
The relationship with rainfall began with a positive effect 
and then decreased over time. The association dropped 
to zero around lag 3 and was negative thereafter. The 
negative bias in one-part modeling similar to the simula-
tion also occurred in the association with temperature. It 
could be seen that lagged estimates in GLM had a rela-
tively large negative coefficient which might have resulted 
from the excessive zeros in our data. So, we focused on 
the ZIPDLM model for the temperature effect. The trend 

Table 1  Simulation result evaluation metrics from different models in simulation scenario 1

Measure Model π = 0.4 π = 0.8

ρ = 0.3 ρ = 0.8 ρ = 0.3 ρ = 0.8

Bias ZIPGLM 0.037 0.055 −0.008 0.012

ZIPDLM −0.003 0.008 −0.004 −0.006

GLM −0.178 −0.438 − 0.093 −0.067

DLM −0.091 −0.217 − 0.071 −0.051

RMSE ZIPGLM 0.791 0.881 0.508 0.574

ZIPDLM 0.487 0.505 0.288 0.314

GLM 0.942 0.959 0.833 0.875

DLM 0.552 0.568 0.471 0.485

CrI Coverage ZIPGLM 0.773 0.710 0.764 0.700

ZIPDLM 0.933 0.799 0.927 0.740

GLM 0.665 0.522 0.726 0.682

DLM 0.607 0.484 0.710 0.599

DIC (pD) ZIPGLM 1839.276 (36.599) 1994.511 (37.958) 3577.608 (61.961) 4056.092 (63.363)

ZIPDLM 1838.029 (36.446) 1991.848 (35.182) 3576.794 (62.771) 4053.807 (61.442)

GLM 1871.325 (58.264) 2025.734 (48.241) 3610.005 (69.376) 4078.526 (69.081)

DLM 1868.994 (45.269) 2030.592 (45.277) 3629.755 (68.752) 4076.888 (65.247)

DICr (pDr) ZIPGLM 1839.296 (36.579) 1998.464 (39.911) 3577.627 (61.978) 4059.542 (68.232)

ZIPDLM 1838.321 (36.223) 1992.372 (35.182) 3576.157 (65.141) 4055.133 (62.772)

GLM 1881.538 (58.264) 2035.515 (49.288) 3642.345 (81.376) 4085.638 (74.148)

DLM 1874.314 (50.584) 2040.936 (54.709) 3637.313 (74.097) 4082.538 (72.898)

MSPE ZIPGLM 81.268 160.155 143.496 332.312

ZIPDLM 81.108 159.774 143.082 315.261

GLM 82.093 164.001 144.612 315.224

DLM 81.609 165.531 144.096 313.981

π ZIPGLM 0.399 0.402 0.802 0.797

ZIPDLM 0.401 0.401 0.802 0.797

GLM – – – –

DLM – – – –
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started negatively and then increased until around week 
8 in which the curve remained afterwards. It seemed 
the proposed models, particularly ZIPDLM producing 
the best performance across evaluation measures, could 
be used to analyze the shape of association with malaria 
incidence useful for future disease control planning. 
However, additional issues were further discussed in the 
following section.

Discussion
This study presents a new method to better quantify the 
association between climate and malaria over space and 
time which is suitable for near elimination settings. This 
can help better understand the impact of different fac-
tors on past spatiotemporal trends in incidence and to 
better predict future trends. It does so by simultaneously 
addresses the analytical challenges of accounting for the 
lag between changes in climate and changes in malaria 
transmission due to mosquito and parasite life cycles and 

an excess of zero cases in the data encountered in low 
transmission settings. While count distributions, such as 
the negative binomial, can add flexibility by incorporat-
ing a separate heterogeneity parameter, these distribu-
tions do not always ensure adequate fit [43], especially in 
the case of excessive zeros. Without proper modeling, the 
high number of zeros tends to lower the mean estimates 
and neglect of excess zeroes can result in the biased esti-
mation of parameters [44].

To address the analytical challenges, we developed a 
methodology which accommodates the zero inflation 
and delayed effects present in our data. In our simula-
tion study, results showed that it was crucial to address 
both excessive zero cases and lagged nature of disease 
transmission. The models which did not accommodate 
for excessive zeros, i.e. GLM and DLM, yielded nega-
tively biased estimates. This is important when planning 
for disease elimination because the bias can consequently 
lead to false recommendations and therefore potentially 

Table 2  Simulation result evaluation metrics from different models in simulation scenario 2

Measure Model π = 0.4 π = 0.8

ρ = 0.3 ρ = 0.8 ρ = 0.3 ρ = 0.8

Bias ZIPGLM 0.131 −0.052 0.082 0.008

ZIPDLM −0.039 −0.021 −0.014 −0.002

GLM −0.157 −0.408 −0.119 −0.099

DLM −0.175 −0.418 −0.091 −0.081

RMSE ZIPGLM 0.874 0.932 0.727 0.559

ZIPDLM 0.522 0.608 0.388 0.291

GLM 1.186 1.124 0.828 0.669

DLM 0.619 0.702 0.434 0.328

CrI Coverage ZIPGLM 0.712 0.700 0.750 0.740

ZIPDLM 0.933 0.817 0.923 0.803

GLM 0.632 0.580 0.755 0.695

DLM 0.619 0.468 0.756 0.630

DIC (pD) ZIPGLM 1720.445 (35.864) 2012.758 (38.732) 3635.735 (62.453) 3983.145 (69.391)

ZIPDLM 1718.355 (34.256) 2011.769 (37.748) 3633.122 (60.932) 3969.928 (61.206)

GLM 1762.11 (48.589) 2058.123 (50.145) 3660.459 (68.444) 4002.552 (74.235)

DLM 1754.994 (44.321) 2053.159 (46.978) 3658.244 (64.442) 4000.879 (72.926)

DICr (pDr) ZIPGLM 1723.112 (39.782) 2016.447 (42.552) 3638.445 (65.534) 3986.157 (70.763)

ZIPDLM 1719.562 (35.834) 2012.224 (38.026) 3634.559 (61.952) 3970.251 (62.529)

GLM 1764.965 (55.123) 2059.624 (53.998) 3672.428 (79.952) 4009.482 (75.992)

DLM 1762.889 (52.216) 2051.223 (52.217) 3667.393 (73.591) 4005.938 (73.576)

MSPE ZIPGLM 98.299 140.603 196.451 289.122

ZIPDLM 97.002 140.102 196.112 288.112

GLM 99.506 140.989 197.125 289.756

DLM 98.954 140.559 196.478 288.422

π ZIPGLM 0.3976 0.425 0.789 0.789

ZIPDLM 0.3976 0.425 0.791 0.791

GLM – – – –

DLM – – – –
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ineffective control activities. On the other hand, the 
unconstraint model produced high uncertain estima-
tion due to collinearity between lags periods which could 
mask the significant association. In contrast, addressing 
only the lag effect could yield too narrow interval quan-
tification. The model which accommodated both issues, 
ZIPDLM, appeared to have the overall best performance 
across evaluation metrics and simulation scenarios.

To demonstrate this with real data, we applied the 
developed framework to a case study of malaria inci-
dence in Tak in which there were malaria hot spots. As 
suggested by previous studies there may be a temperature 
range critical for mosquito survivability [63, 64]. In addi-
tion, higher temperatures also accelerate multiplication 
of the Plasmodium parasites inside the vectors [14]. Since 
the peak period of malaria transmission in the GMS 
is usually in the rainy season which usually has a lower 
temperature, this could prolong the vector’s longevity in 
the region and hence the transmission could also occur 
at longer lags in the GMS. It has also been suggested that 
the optimal rainfall increases the adult mosquito’s size 
at early lags of 1 to 2 weeks [65] which was also similar 
to our finding. In our analysis, it was also found that the 
strongest associations of malaria with humidity occurred 
at lags 3–4 and declined thereafter. Increasing relative 

humidity in an optimal lag period and range has a posi-
tive relationship with malaria incidence [66]. On the 
other hand, rainfall had a shorter lagged effect in our 
results with negative effect after a few weeks’ lag. Though 
increasing rainfall can make Anopheles larval habitats 
more receptive [67], flooding due simply to redundantly 
heavy rainfall, which often occurs in Thailand during the 
rainy season, may affect the vector’s life cycle. It has been 
shown that extreme weather can also impact the sur-
vival of vectors [68, 69] while light rainfall with suitable 
amounts of rain may be a more suitable condition for 
mosquito development.

There are several limitations in our study that should be 
acknowledged. We only considered three climatic factors 
(average humidity, total rainfall and average temperature) in 
association with malaria incidence due to data availability, 
although a wide range of other climate variables exist [70]. 
Other environmental variables than climate such as from 
remote sensing e.g. normalized difference vegetation index 
(NDVI) and surface water could also be incorporated [71]. 
Nonetheless, as the malaria parasite is transmitted from 
human to human via the bite of infected female mosqui-
toes of the genus Anopheles and the malaria case distribu-
tion and dynamics have been found to be closely related to 
environmental factors, it is sensible to include this nature 

Fig. 4  Plots of True and estimated lagged effects, β, from the proposed models at different lags (in weeks) under the first simulation scenario in 
which the effect increased with a peak and died out subsequently. The solid lines are posterior estimates while the dash lines represent the 95% 
credible band
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of the transmission process when available. Epidemiologi-
cally there is a lag between changes in environmental and 
entomological factors and malaria transmission due to both 
the life cycle of mosquitoes. Hence, we have developed the 
methodology to deal with the lagged time-varying distribu-
tion of the association which can partly account for the fluc-
tuation of the environmental and entomological variates.

Malaria modeling is not an easy task due to the com-
plex nature and difficulties in data collection. Various fac-
tors including entomological and population movement 
factors are important to investigate malaria transmission 
especially in the GMS region. In addition, the asymp-
tomatic malaria may play important role in particular 
when malaria transmission comes to a very low level or 
very close to elimination in which the imported malaria 
cases may also contribute more than indigenous cases 
to malaria incidence. However, due to limited data and 
complex nature of malaria transmission, we could only 
apply secondary data from the national passive surveil-
lance system in the study. Nonetheless, there is a need 
for future development to include those factors and the 
developed platform can also be utilized and extended to 
include those epidemiological and entomological vari-
ables as available to form a more complex relationship 
with malaria incidence. Therefore, it is important to 

further consider confounding factors both at individual 
and population levels in future studies.

Even though there has been extensive research on factors 
that influence malaria transmission, the estimations that 
have been made in relation to climate in malaria endemic 
areas have been inconsistent across different regions [33]. 
Due to the complex relationship between malaria inci-
dence, gaps in understanding still exist in the underlying 
processes of the linkage. Despite the limitations due to data 
availability the models developed here, particularly those 
accommodating excessive zero cases and lag effects, should 
provide a practical and useful step forwards in developing 
methods to examine the influence of different factors on 
malaria transmission as new data become available.

Conclusions
In this study, we have developed a methodology which 
accommodates zero inflation and lagged complexities 
of the relationship between malaria transmission and 
weather dynamics. The modeling assumptions were 
compared and discussed to identify the most appro-
priate approaches. We also demonstrated proposed 
models with real data using weekly malaria incidence 
data at a fine spatial scale. Because of the complexity 
of malaria transmission, gaps in knowledge still exist 

Fig. 5  Plots of True and estimated lagged effects, β, from the proposed models at different lags (in weeks) under the first simulation scenario in 
which the effect was an exponential decay over lag periods. The solid lines are posterior estimates while the dash lines represent the 95% credible 
band
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in the underlying mechanisms. The developed meth-
odology is promising and may have the potential to 
help better understand and improve estimates of past 
and predict future trends in malaria incidence. This 
could help policymakers to more effectively distribute 
resources and plan strategies for malaria elimination.
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