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Abstract 

Background:  Early screening and accurately identifying Acute Appendicitis (AA) among patients with undifferenti-
ated symptoms associated with appendicitis during their emergency visit will improve patient safety and health care 
quality. The aim of the study was to compare models that predict AA among patients with undifferentiated symptoms 
at emergency visits using both structured data and free-text data from a national survey.

Methods:  We performed a secondary data analysis on the 2005-2017 United States National Hospital Ambulatory 
Medical Care Survey (NHAMCS) data to estimate the association between emergency department (ED) patients with 
the diagnosis of AA, and the demographic and clinical factors present at ED visits during a patient’s ED stay. We used 
binary logistic regression (LR) and random forest (RF) models incorporating natural language processing (NLP) to 
predict AA diagnosis among patients with undifferentiated symptoms.

Results:  Among the 40,441 ED patients with assigned International Classification of Diseases (ICD) codes of AA and 
appendicitis-related symptoms between 2005 and 2017, 655 adults (2.3%) and 256 children (2.2%) had AA. For the LR 
model identifying AA diagnosis among adult ED patients, the c-statistic was 0.72 (95% CI: 0.69–0.75) for structured var-
iables only, 0.72 (95% CI: 0.69–0.75) for unstructured variables only, and 0.78 (95% CI: 0.76–0.80) when including both 
structured and unstructured variables. For the LR model identifying AA diagnosis among pediatric ED patients, the 
c-statistic was 0.84 (95% CI: 0.79–0.89) for including structured variables only, 0.78 (95% CI: 0.72–0.84) for unstructured 
variables, and 0.87 (95% CI: 0.83–0.91) when including both structured and unstructured variables. The RF method 
showed similar c-statistic to the corresponding LR model.

Conclusions:  We developed predictive models that can predict the AA diagnosis for adult and pediatric ED patients, 
and the predictive accuracy was improved with the inclusion of NLP elements and approaches.
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Background
AA is one of the most common surgical emergencies 
but has a high rate of misdiagnosis in the United States 
[1]. It is also the second most common condition among 
pediatric malpractice claims and third for adult malprac-
tice claims [2, 3]. The lifetime risk of developing appen-
dicitis is approximately 7% and usually requires surgical 
treatment [4, 5]. The annual national rate of AA is up to 
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13/100,000 patients [6], but the diagnosis of AA is missed 
at a rate of 3.8-15% for children and 5.9-23.5% for adults 
during ED visits [7–11]. While the clinical diagnosis may 
be straightforward in patients who present with classic 
signs and symptoms, atypical presentations may result 
in diagnostic confusion and delay in treatment. The diag-
nosis of AA can be challenging even in the most experi-
enced hands. Abdominal pain is the primary presenting 
complaint of patients with AA. Accurately identifying 
AA among patients with undifferentiated symptoms at 
emergency visits can potentially improve the patient 
safety and health care quality.

Technological innovations that employ NLP and 
machine learning (ML) techniques can be used to extract 
useful features from the complex structured and unstruc-
tured retrospective electronic health records (EHRs) data 
to potentially replicate the clinician’s thought process at 
ED presentation. These features can be used to accurately 
identify a patient’s diagnosis, which has the potential to 
improve ED patient safety [12]. Among ED patients, the 
ML and NLP techniques have proven useful in better 
understanding the associated factors related to ED health 
outcomes, such as hospitalization and medical resource 
utilization, and thus, they can be used to improve predic-
tive performance for these outcomes [13–16]. However, 
few studies have focused on using NLP and ML to iden-
tify a patient’s diagnosis and potential misdiagnosis [17].

The aim of the study was to develop ML and NLP 
models as an assistive technique to predict AA among 
patients with undifferentiated symptoms at ED vis-
its. We hypothesize that the prediction accuracy can be 
improved with the inclusion of NLP elements.

Methods
Study design and setting
We carried out the study on combined data from the ED 
component of the NHAMCS datasets (2005-2017). The 
Centers for Disease Control and Prevention (CDC) has 
been publishing the NHAMCS data annually since 1992, 
which collects data on the utilization and provision of 
ambulatory care services in hospital emergency and out-
patient departments. The ED component of NHAMCS 
is a multistage, stratified probability sample of ED visits 
from 300 hospital-based EDs each year, which was ran-
domly selected from about 1900 geographically defined 
areas across the United States, administered by the 
National Center for Health Statistics (NCHS) [18]. The 
NHAMCS is a public use dataset that does not require 
ethical committee or institutional review board approval.

Definition of appendicitis
AA in this study was defined by the ICD, 9th and 
10th Revision, Clinical Modification (ICD-9-CM and 

ICD-10-CM) diagnosis codes from category 540-542 
(ICD-9-CM) and K35-K37 (ICD-10-CM), which refers 
specifically to essential (or primary) appendicitis [19]. 
Along with the implementation of ICD-10-CM since 
2015, an ICD-10-CM category of K35-K37 was used to 
define the diagnosis of primary appendicitis, which is 
equivalent to the ICD-9-CM category 540-542, accord-
ing to the ICD-10-CM General Equivalence Mapping 
(GEM), a crosswalk between the two code standards 
maintained by the Centers for Medicare and Medicaid 
Services (CMS) and the CDC.

Study patients
A total of 356,333 patient visits were included in the 
ED component of the survey datasets from 2005 to 
2017. According to the ICD-9-CM and ICD-10-CM, we 
selected 40,041 patients from which were assigned a ICD 
code of AA and showed at least one symptoms (abdomi-
nal pain, constipation, diarrhea, fever, and nausea and/
or vomiting) associated with appendicitis during the ED 
(Tables S1 and S2). We then divided the patients into two 
groups by age (>=18 years old or <18 years old), respec-
tively: the adult group (N = 28657, 71.57%) and the pedi-
atric group (N = 11384, 28.43%).

Study variables
Outcomes
The primary outcome variable for this study was whether 
the eventual diagnosis was AA during an ED visit. The 
outcome variable was assigned a value of 1 if the eventual 
diagnosis was appendicitis, while symptoms associated 
with appendicitis but not assigned an ICD code of AA 
was assigned a value of 0.

Predictors
The predictors for ML models were chosen from rou-
tinely available data at ED components using a priori 
knowledge [20–22]. This study classified predictors into 
two categories, structured variables and unstructured 
variables.

Specifically, the structured predictors included: sex, 
race, ethnicity, type of residence, insurance, visit year, 
month and day, arrival time, initial vital signs (body tem-
perature, respiratory rate, systolic and diastolic blood 
pressure, pulse oximetry), 5 point triage level (immediate, 
emergent, urgent, semi-urgent, nonurgent), pain scale 
(mild, moderate, very severe), 72 hour revisit, whether 
the visit was related to an injury, poisoning, or adverse 
effect of medical treatment, whether is injury/poisoning 
intentional, and the diagnostic services (any laboratory 
tests or imaging tests) provided.

Unstructured data included up to three reasons for vis-
iting the ED and three causes of injury recorded by the 
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providers for each patient in the triage notes; the limit of 
three was by design of the NHAMCS. The reason for visit 
classification system derived by the NCHS is a modular 
framework into which the reason for visit is broadly cat-
egorized as a type of complaint (e.g., symptoms, diseases, 
injury) and a methodology for systematically recording 
these complaints within a specific organ or area of the 
body. The system then records the complaint in a pre-
specified fashion according to an alphabetical index of 
complaints (for example, “eye pain” is changed to “pain, 
eye”) while maintaining the emphasis on the patient’s lay 
terminology rather than a clinician’s translation of the 
patient’s reason for the visit.

Missing values
Before statistical modelling, the k-nearest neighbors 
(k-NN) approach was used to impute missing data for 
most predictors. For a given patient with missing values, 
the k-NN method identified the k-nearest patients based 
on Euclidean distance. Using these patients, missing val-
ues were then replaced using a majority vote for discrete 
variables and weighted means for continuous features. 
One advantage of using this method is that missing val-
ues in all features are imputed simultaneously without 
the need to treat features individually [23].

Statistical analysis
NLP
NLP is a field of Artificial Intelligence (AI) that gives 
the machines the ability to read, understand and derive 
meaning from human languages; in NLP there are many 
techniques to vectorize human languages -- either a word, 
a sentence, a paragraph, or even a document [24]. Since 
the unstructured variables in this study were all sentence 
forms, we carried out Doc2Vec method in Python, an 
embedded encoding method, for vectorization.

We first pre-processed the unstructured data, includ-
ing word segmentation and removal of stop words. Then 
we used TaggedDocument in the gensim package to wrap 
the input sentence and change it to the input sample for-
mat required by Doc2Vec [25, 26]. After that, we loaded 
the Doc2vec model with window size of 3 and started 
training, and finally we mapped the unstructured data 
into 128-dimensional paragraph vectors and made fur-
ther predictions.

The ML methods are data-driven and therefore rely on 
accurate data. Although there may be some misclassifica-
tion in the survey data, in the 10% quality control sample 
of NHAMCS, the coding error rate was less than 1% [27]. 
Therefore, we established two main types of ML models 
to compare the predictive accuracy of being diagnosed 
of AA or not in a population of ED patients at the time 

of triage, using standard binary LR and RF methods in 
Python.

LR
LR is a member of the general linear model (GLM) fam-
ily. It has the underlying assumption that the output fol-
lows a Bernoulli distribution with parameter p, where p is 
the probability of success (in our case the probability of 
appendicitis). This assumption is consistent with our 
appendicitis 0, 1 outcome. LR also uses a canonical link 
function in the form of: log

(

pi
1−pi

)

= exiβ . With a trans-
formation we get pi = 1

1+e−xiβ
 . Since the expectation of a 

Bernoulli distribution is p, the output of our predicted 
outcome is pi for patient i.

The fitting of parameter β is done by a Maximum Like-
lihood Estimation (MLE); once the estimated betas are 
fitted, the predicted values can be calculated using the 
equation, pi = 1

1+e−xiβ
 . In this study, the model building 

strategy for LR is direct (i.e., full, standard, or simultane-
ous), all predictors are entered into the equation at the 
same time.

In this study, we separately fitted three LR models for 
adults and children to determine the model’s predictive 
performance in identifying the eventual diagnosis: (1) 
models with structured variables only; (2) models with 
unstructured data; and (3) models with both structured 
and unstructured variables.

RF
We then employed a RF classifier, which has been widely 
used for classification and prediction in the fields of med-
icine and bioinformatics, to build prediction models of 
appendicitis in adults and children during ED visits [28–
30]. The RF classifier is an ensemble of decision trees, 
and each tree learns from a randomly selected set of the 
training data. The information content of the decision 
tree classifier is derived from each attribute in the data-
set. Therefore, the decision tree classification algorithm 
first selects the attribute with the most abundant infor-
mation for classification. Sample training data sets are 
selected randomly and returned to ensure that the total 
size of each random sample is the same. For prediction, 
each decision tree is applied to the test set and the error 
is evaluated, and the final classification decision is made 
by majority voting on all decision trees.

Because of this non-parametric model setting, RF can 
be used in non-linear separable problems. However, 
this property is also problematic given that it makes the 
model very sensitive to noise. Therefore, before we car-
ried out the classification, we did the data cleaning on 
the unstructured data. Firstly, Principal Component 
Analysis (PCA) was used to convert the original features 
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to orthogonal ones. Then, based on the p-value of the 
Welch’s approximated t-test, we chose those features 
with statistical significance at a level of p<0.01, selecting 
24 principal components out of the original 128 features. 
Based on the 20 structured and 24 unstructured data-
sets, we applied the standard RF classification package in 
Scikit-learn (Sklearn) on three models, the same as in LR, 
using 1000 trees in the RF implementation [31, 32]. The 
number of jobs to run in parallel was 90. The number of 
features selected at random at each tree node was set to 
log2*(n), where n was the total number of features [33].

Model evaluation
For both LR and RF models, we used 5-fold cross-valida-
tion to evaluate our model performance. Patients were 
randomly divided into 5 sets, and 4 of the 5 sets were 
used to train the models while the remaining set was 
used as the testing set. In the testing set, we measured the 
prediction performance of each model by computing (1) 
C-statistic (the area under the receiver operating curve, 
AUC) and (2) prospective prediction results (sensitiv-
ity, specificity, threshold, and accuracy). To address the 
class imbalance in the outcome, we chose the threshold 
of prospective prediction results based on the Receiver 
Operating Characteristics (ROC) curve (the value with 
the shortest distance to the perfect model) [15]. The C 
statistic informs in a single numerical value about the 
overall diagnostic accuracy of the index test. The C statis-
tic ranges from 0.50 to 1.00, with higher values indicating 
better predictive models. Values above 0.80 indicate very 
good models, between 0.70 and 0.80 good models, and 
between 0.50 and 0.70 weak models. The average ROC 
curve was derived by comparing the prediction values 
from all 5 cross-validated testing sets. The ROC curve 
mentioned above is a curve that shows the overall per-
formance of a specific model. Accordingly, with thresh-
old from 0 to 1, we calculate the corresponding False 
Positive Rate (FPR) (  TP

TP+FN
 ) and the True Positive Rate 

(TPR) (  FP
FP+TN

 ). We then draw the point in a rectangular 
coordinator with the FPR as the horizontal coordinate 
and the TPR as the longitudinal coordinate. The better 
tendency the curves have to access the up-left corner of 
the coordinate, the better performance of the model. The 
perfect model should have a ROC curve as a line linking 
(0,0), (0,1), (1). The meaning of AUC is the possibility that 
while randomly choosing one positive patient and one 
negative patient, the score of the positive patient will be 
greater than the negative patient. So, the bigger the value, 
the better we have classified the two classes of patients.

Sensitivity  The recall depicts the ability of the model 
to search for all positive data. The calculation function is 
R =

TP
TP+FN

.

Specificity  The precision depicts the ability of the model 
to search for all negative data. The calculation function is 
P =

TN
TN+FP

.

Results
Among the 40,441 ED patients with appendicitis-related 
symptoms between 2005 and 2017, 655 of 28,657 adults 
(2.3%) and 256 of 11384 pediatric patients (2.2%) had 
appendicitis (Table  1). Male appendicitis patients (3.5% 
for adults and 3.1% for pediatric patients) present at a 
higher proportion than female patients (1.7% for adults 
and 1.5% for pediatric patients). The proportion of appen-
dicitis patients was highest among Asian adults (4.4%) 
and highest among white pediatric patients (2.7%). The 
highest proportion of triage level in adults and pediat-
ric appendicitis patients was immediate (5.6 and 10.0%). 
The highest proportion of the pain level in the adults and 
pediatric patients with appendicitis was very severe (2.7 
and 5.7%). A total of 2.4% of adult patients and 3.2% of 
pediatric patients who were provided diagnostic services 
were diagnosed as AA, which is higher than those adults 
patients (1.3%) and pediatric (0.5%) patients who did not 
have diagnostic services.

The crude and adjusted odds ratio of adult and pediat-
ric ED patients with acute appendicitis (vs. non-appen-
dicitis) for each predictive factor using binary LR are 
presented in Table 2. The adjusted analysis showed that 
the risk of being diagnosed with AA was higher in adult 
males (aOR=2.327; 95% CI:1.984-2.728) and pediatric 
males (aOR=2.759; 95% CI:2.102-3.622) than females. 
Compared with patients with private insurance, adults 
(aOR=0.462; 95%CI: 0.370-0.578) and pediatric patients 
(aOR=0.691; 95% CI: 0.517-0.923) with Medicaid or 
Children’s Health Insurance Program (CHIP) or other 
state-based program had a lower risk of being diagnosed 
with AA. Adults and pediatric patients with immedi-
ate triage levels were more likely to be diagnosed with 
AA. The risk of adults with moderate (aOR=2.016; 95% 
CI: 1.513-2.687) and very severe (aOR=2.527; 95% CI: 
1.915-3.335) pain levels had greater odds than those 
being diagnosed with AA with mild pain. Similarly, the 
risk of pediatric patients with moderate (aOR=5.291; 
95% CI: 3.587-7.805) and very severe (aOR=8.094; 95% 
CI: 5.414-12.099) pain levels had greater odds than those 
being diagnosed with AA with mild pain. Adults (aOR = 
2.268; 95% CI: 1.445-3.560) and pediatric patients (aOR 
= 3.385; 95% CI: 2.106-5.441) who received diagnostic 
services had greater odds of AA than those who did not 
receive diagnostic services.

In Fig. S1, before using the LR and RF approaches, we 
showed the contribution (weights) of each 128 Doc2Vec 
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Table 1  Baseline characteristics of the United States appendicitis patients presenting to the ED NHAMCS 2005–2017

All Adult 
N(%)

Adult 
Appendicitis 
N(%)

Adult Non-
appendicitis 
N(%)

p-value1 All Pediatric 
N(%)

Pediatric 
Appendicitis 
N(%)

Pediatric 
Non-
appendicitis 
N(%)

p-value1

28657(100.0) 655(2.3) 28002(97.7) 11384(100.0) 256(2.2) 11128(97.8)

Sex Female 19052(66.5) 317(1.7) 18735(98.3) < 0.001 5877(51.6) 88(1.5) 5789(98.5) < 0.001

Male 9605(33.5) 338(3.5) 9267(96.5) 5507(48.4) 168(3.1) 5339(96.9)

Age 44.16±19.61 38.24±15.97 44.30±19.66 < 0.001 5.69±5.42 10.72±3.97 5.57±5.39 < 0.001

Ethnicity Hispanic or 
Latino

4769(16.6) 137(2.9) 4632(97.1) 0.003 3494(30.7) 85(2.4) 3409(97.6) 0.378

Not Hispanic 
or Latino

23888(83.4) 518(2.2) 23370(97.8) 7890(69.3) 171(2.2) 7719(97.8)

Race White 21993(76.7) 550(2.5) 21443(97.5) < 0.001 8213(72.1) 225(2.7) 7988(97.3) < 0.001

Black/African 
American

5577(19.5) 62(1.1) 5515(98.9) 2590(22.8) 20(0.8) 2570(99.2)

Asian 617(2.2) 27(4.4) 590(95.6) 304(2.7) 6(2.0) 298(98.0)

Native Hawai-
ian/Other 
Pacific Islander

171(0.6) 6(3.5) 165(96.5) 107(0.9) 2(1.9) 105(98.1)

American 
Indian/Alaska 
Native

188(0.7) 8(4.3) 180(95.7) 88(0.8) 1(1.1) 87(98.9)

More than 
one race 
reported

111(0.4) 2(1.8) 109(98.2) 82(0.7) 2(2.4) 80(97.6)

Residence Private resi-
dence

27749(96.8) 644(2.3) 27105(97.7) 0.004 11318(99.4) 254(2.2) 11064(97.8) 0.646

Nursing home 466(1.6) 1(0.2) 465(99.8) 15(0.1) 0(0.0) 15(100.0)

Homeless/
homeless 
shelter

134(0.5) 0(0.0) 134(100.0) 8(0.1) 0(0.0) 8(100.0)

Other 308(1.1) 10(3.2) 298(96.8) 43(0.4) 2(4.7) 41(95.3)

Insurance Private insur-
ance

9942(34.7) 372(3.7) 9570(96.3) < 0.001 3342(29.4) 122(3.7) 3220(96.3) < 0.001

Medicare 6351(22.2) 64(1) 6287(99.0) 147(1.3) 2(1.4) 145(98.6)

Medicaid or 
CHIP or other 
state-based 
program

7494(26.2) 111(1.5) 7383(98.5) 6990(61.4) 110(1.6) 6880(98.4)

Worker’s com-
pensation

41(0.1) 2(4.9) 39(95.1) 2(0.0) 0(0.0) 2(100.0)

Self-pay 3818(13.3) 87(2.3) 3731(97.7) 666(5.9) 15(2.3) 651(97.7)

No charge/
Charity

312(1.1) 9(2.9) 303(97.1) 26(0.2) 0(0.0) 26(100.0)

Other 699(2.4) 10(1.4) 689(98.6) 211(1.9) 7(3.3) 204(96.7)
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Table 1  (continued)

All Adult 
N(%)

Adult 
Appendicitis 
N(%)

Adult Non-
appendicitis 
N(%)

p-value1 All Pediatric 
N(%)

Pediatric 
Appendicitis 
N(%)

Pediatric 
Non-
appendicitis 
N(%)

p-value1

28657(100.0) 655(2.3) 28002(97.7) 11384(100.0) 256(2.2) 11128(97.8)

Visit year 2005 1988(6.9) 69(3.5) 1919(96.5) < 0.001 538(4.7) 31(5.8) 507(94.2) < 0.001

2006 2079(7.3) 67(3.2) 2012(96.8) 767(6.7) 28(3.7) 739(96.3)

2007 2248(7.8) 67(3.0) 2181(97.0) 593(5.2) 18(3.0) 575(97.0)

2008 2244(7.8) 58(2.6) 2186(97.4) 594(5.2) 23(3.9) 571(96.1)

2009 2452(8.6) 56(2.3) 2396(97.7) 1270(11.2) 27(2.1) 1243(97.9)

2010 2716(9.5) 64(2.4) 2652(97.6) 1231(10.8) 13(1.1) 1218(98.9)

2011 2569(9.0) 71(2.8) 2498(97.2) 1038(9.1) 23(2.2) 1015(97.8)

2012 2543(8.9) 55(2.2) 2488(97.8) 1025(9.0) 22(2.1) 1003(97.9)

2013 2200(7.7) 28(1.3) 2172(98.7) 911(8.0) 20(2.2) 891(97.8)

2014 2207(7.7) 37(1.7) 2170(98.3) 1094(9.6) 17(1.6) 1077(98.4)

2015 1942(6.8) 27(1.4) 1915(98.6) 826(7.3) 15(1.8) 811(98.2)

2016 1870(6.5) 34(1.8) 1836(98.2) 782(6.9) 6(0.8) 776(99.2)

2017 1599(5.6) 22(1.4) 1577(98.6) 715(6.3) 13(1.8) 702(98.2)

Visit month January 2464(8.6) 59(2.4) 2405(97.6) 0.988 1058(9.3) 22(2.1) 1036(97.9) 0.009

February 2181(7.6) 48(2.2) 2133(97.8) 1018(8.9) 20(2.0) 998(98.0)

March 2408(8.4) 56(2.3) 2352(97.7) 987(8.7) 16(1.6) 971(98.4)

April 2432(8.5) 51(2.1) 2381(97.9) 966(8.5) 16(1.7) 950(98.3)

May 2480(8.7) 58(2.3) 2422(97.7) 1006(8.8) 22(2.2) 984(97.8)

June 2385(8.3) 57(2.4) 2328(97.6) 892(7.8) 17(1.9) 875(98.1)

July 2468(8.6) 61(2.5) 2407(97.5) 841(7.4) 16(1.9) 825(98.1)

August 2641(9.2) 60(2.3) 2581(97.7) 893(7.8) 22(2.5) 871(97.5)

September 2394(8.4) 58(2.4) 2336(97.6) 958(8.4) 38(4.0) 920(96.0)

October 2167(7.6) 50(2.3) 2117(97.7) 890(7.8) 31(3.5) 859(96.5)

November 2402(8.4) 45(1.9) 2357(98.1) 976(8.6) 18(1.8) 958(98.2)

December 2235(7.8) 52(2.3) 2183(97.7) 899(7.9) 18(2.0) 881(98.0)

Visit day Sunday 3926(13.7) 83(2.1) 3843(97.9) 0.469 1812(15.9) 38(2.1) 1774(97.9) 0.451

Monday 4498(15.7) 90(2.0) 4408(98.0) 1808(15.9) 37(2.0) 1771(98.0)

Tuesday 4229(14.8) 107(2.5) 4122(97.5) 1637(14.4) 29(1.8) 1608(98.2)

Wednesday 4201(14.7) 102(2.4) 4099(97.6) 1508(13.2) 44(2.9) 1464(97.1)

Thursday 4081(14.2) 91(2.2) 3990(97.8) 1558(13.7) 39(2.5) 1519(97.5)

Friday 3879(13.5) 100(2.6) 3779(97.4) 1460(12.8) 33(2.3) 1427(97.7)

Saturday 3843(13.4) 82(2.1) 3761(97.9) 1601(14.1) 36(2.2) 1565(97.8)

Arrival time Morning 7966(27.8) 195(2.4) 7771(97.6) 0.697 2435(21.4) 53(2.2) 2382(97.8) 0.136

Afternoon 8027(28.0) 178(2.2) 7849(97.8) 2605(22.9) 74(2.8) 2531(97.2)

Evening 6111(21.3) 133(2.2) 5978(97.8) 2993(26.3) 61(2.0) 2932(98.0)

Night 6553(22.9) 149(2.3) 6404(97.7) 3351(29.4) 68(2.0) 3283(98.0)

Temperature 36.78±0.59 36.92±0.64 36.77±0.58 < 0.001 37.44±1.06 37.18±0.83 37.45±1.06 < 0.001

Triage level Immediate 375(1.3) 21(5.6) 354(94.4) < 0.001 80(0.7) 8(10.0) 72(90.0) < 0.001

Emergent 2353(8.2) 82(3.5) 2271(96.5) 607(5.3) 32(5.3) 575(94.7)

Urgent 20269(70.7) 483(2.4) 19786(97.6) 5854(51.4) 170(2.9) 5684(97.1)

Semi-urgent 4677(16.3) 57(1.2) 4620(98.8) 4166(36.6) 38(0.9) 4128(99.1)

Nonurgent 983(3.4) 12(1.2) 971(98.8) 677(5.9) 8(1.2) 669(98.8)
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output to the first 24 principle components for the 
unstructured data.

As shown in Table 3 and Fig. 1, for the LR model iden-
tifying AA diagnosis among adult ED patients, the AUC 
was 0.72 (95% CI: 0.69–0.75) for structured variables 
only, and 0.72 (95% CI: 0.69–0.75) for unstructured vari-
ables only, and 0.78 (95% CI: 0.76–0.80) when includ-
ing both structured and unstructured variables. For the 
LR model identifying AA diagnosis among pediatric ED 
patients, the AUC was 0.84 (95% CI: 0.79–0.89) for struc-
tured variables only, 0.78 (95% CI: 0.72–0.84) for unstruc-
tured variables, and 0.87 (95% CI: 0.83–0.91) when 
including both structured and unstructured variables.

For the RF model identifying AA diagnosis among 
adult ED patients, the AUC was 0.71 (95% CI: 0.65–0.77) 
for structured variables, 0.68 (95% CI: 0.64–0.72) for 
unstructured variables, and 0.75 (95% CI: 0.71–0.79) for 
structured and unstructured variables. For the RF model 
identifying AA diagnosis among pediatric ED patients, 
the AUC was 0.84 (95% CI: 0.83–0.85) for structured 
variables, 0.78 (95% CI: 0.76–0.80) for unstructured 

variables, and 0.86 (95% CI: 0.84–0.88) for structured and 
unstructured variables. The discrimination ability of dif-
ferent models, as represented by ROC curves, is shown 
in Fig. 1.

The standardized and non-standardized coefficients 
of structured variables were used as modeling examples 
(Tables S3 and S4) to determine whether to diagnose AA 
among adult and pediatric ED patients. The standard-
ized coefficient can be used to compare which variable 
has the greater influence on the prediction of confirmed 
AA. The standardized coefficients of insurance and triage 
levels were highest among adults with ED. Among chil-
dren with ED, the highest standardized coefficients were 
insurance and pain levels.

Discussion
In this study, we used data from the 2005-2017 NHAMCS 
ED survey and applied statistical models to predict 
whether adult and pediatric patients were diagnosed 
with AA. A novel part of this study was a traditional sta-
tistics and ML approach (LR algorithm) and a advanced 

Table 1  (continued)

All Adult 
N(%)

Adult 
Appendicitis 
N(%)

Adult Non-
appendicitis 
N(%)

p-value1 All Pediatric 
N(%)

Pediatric 
Appendicitis 
N(%)

Pediatric 
Non-
appendicitis 
N(%)

p-value1

28657(100.0) 655(2.3) 28002(97.7) 11384(100.0) 256(2.2) 11128(97.8)

Is injury/
poisoning 
intentional

Intentional 145(0.5) 2(1.4) 143(98.6) < 0.001 19(0.2) 0(0.0) 19(100) 0.007

Unintentional 2113(7.4) 12(0.6) 2101(99.4) 480(4.2) 1(0.2) 479(99.8)

Questionable 
injury status

26399(92.1) 641(2.4) 25758(97.6) 10885(95.6) 255(2.3) 10630(97.7)

Visit related to 
an injury/poi-
son/adverse 
effect of medi-
cal treatment 
with in 72 
hours

No 26123(91.2) 644(2.5) 25479(97.5) < 0.001 10831(95.1) 256(2.4) 10575(97.6) 0.001

Yes 2534(8.9) 11(0.5) 2523(99.5) 553(4.9) 0(0.0) 553(100.0)

Systolic blood pressure 134.17±22.87 130.93±19.10 134.24±22.94 0.190 110.53±14.20 117.16±15.25 110.38±14.14 0.003

Diastolic blood pressure 78.62±18.28 76.76±12.11 78.67±18.40 < 0.001 69.16±49.87 67.43±12.34 69.20±50.40 < 0.001

Pulse Oximetry 87.66±17.99 87.38±19.08 87.66±17.96 < 0.001 120.70±31.04 103.63±23.95 121.10±31.08 < 0.001

72h Revisit Yes 1394(4.9) 22(1.6) 1372(98.4) 0.070 448(3.9) 10(2.2) 438(97.8) 0.981

No 27263(95.1) 633(2.3) 26630(97.7) 10936(96.1) 246(2.2) 10690(97.8)

Pain level Mild 5711(19.9) 62(1.1) 5649(98.9) < 0.001 6337(55.7) 36(0.6) 6301(99.4) < 0.001

Moderate 9496(33.1) 226(2.4) 9270(97.6) 3210(28.2) 116(3.6) 3094(96.4)

Very severe 13450(46.9) 367(2.7) 13083(97.3) 1837(16.1) 104(5.7) 1733(94.3)

Diagnostic ser-
vices provided

No 3665(12.8) 47(1.3) 3618(98.7) < 0.001 3944(34.6) 21(0.5) 3923(99.5) < 0.001

Yes 24992(87.2) 608(2.4) 24384(97.6) 7440(65.4) 235(3.2) 7205(96.8)

Missing value for patient’s residence type, diagnostic services provided, arrival time, body temperature and whether the visit is related to injury/poisoning is lower 
than 5%. Missing values for source of payment, pulse oximetry are between 5 and 10%. Missing value for race, heart rate, 72 h revisit, systolic and diastolic blood 
pressure are between 10 and 15%. Missing value for ethnicity and triage level are 15 and 20%. Missing value for pain level is 24.89%. Missing value for is injury/
poisoning intentional is 43.20%

Note: 1p-values in this table came from the chi-squared test for categorical variables and from the t-test for continuous variables
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Table 2  Adjusted odds ratio (aOR) of characteristics of adult and pediatric during the emergency department visit (appendicitis vs. 
non-appendicitis), NHAMCS 2005–2017

Adult Pediatric

Crude Adjusted Crude Adjusted

Sex Famale Reference Reference Reference Reference

Male 2.156(1.846-2.518) 2.327(1.984-2.728) 2.070(1.595-2.686) 2.759(2.102-3.622)

Ethnicity Hispanic or Latino Reference Reference Reference Reference

Not Hispanic or Latino 0.749(0.619-0.907) 0.722(0.590-0.884) 0.888(0.683-1.156) 0.830(0.618-1.116)

Race White Reference Reference Reference Reference

Black/African American 0.438(0.337-0.571) 0.502(0.382-0.659) 0.276(0.175-0.437) 0.340(0.210-0.552)

Asian 1.784(1.202-2.648) 1.679(1.117-2.522) 0.715(0.315-1.621) 0.856(0.366-2.002)

Native Hawaiian/Other Pacific 
Islander

1.418(0.625-3.216) 1.442(0.627-3.314) 0.676(0.166-2.757) 0.704(0.159-3.124)

American Indian/Alaska Native 1.733(0.849-3.536) 1.853(0.888-3.863) 0.408(0.057-2.943) 0.508(0.068-3.816)

More than one race reported 0.715(0.176-2.904) 0.623(0.151-2.566) 0.888(0.217-3.633) 1.268(0.286-5.610)

Residence Private residence Reference Reference Reference Reference

Nursing home 0.091(0.013-0.645) 0.182(0.025-1.312) - -

Homeless/homeless shelter - - - -

Other 1.412(0.749-2.665) 1.646(0.856-3.165) 2.125(0.511-8.832) 1.690(0.373-7.664)

Insurance Private insurance Reference Reference Reference Reference

Medicare 0.262(0.200-0.342) 0.297(0.226-0.390) 0.364(0.089-1.487) 0.451(0.106-1.910)

Medicaid or CHIP or other state-
based program

0.387(0.312-0.479) 0.462(0.370-0.578) 0.422(0.325-0.548) 0.691(0.517-0.923)

Worker’s compensation 1.319(0.317-5.484) 1.926(0.438-8.466) - -

Self-pay 0.600(0.474-0.760) 0.574(0.450-0.732) 0.608(0.353-1.047) 0.611(0.345-1.082)

No charge/Charity 0.764(0.391-1.495) 0.755(0.381-1.495) - -

Other 0.373(0.198-0.703) 0.378(0.199-0.717) 0.906(0.417-1.965) 1.142(0.489-2.667)

Visit year 2005 Reference Reference Reference Reference

2006 0.926(0.658-1.304) 0.857(0.604-1.215) 0.620(0.367-1.046) 0.813(0.464-1.425)

2007 0.854(0.607-1.202) 0.811(0.572-1.150) 0.512(0.283-0.926) 0.572(0.305-1.074)

2008 0.738(0.518-1.052) 0.730(0.508-1.048) 0.659(0.379-1.145) 0.701(0.388-1.265)

2009 0.650(0.455-0.929) 0.617(0.428-0.890) 0.355(0.210-0.601) 0.524(0.299-0.921)

2010 0.671(0.475-0.948) 0.633(0.443-0.903) 0.175(0.091-0.336) 0.253(0.127-0.502)

2011 0.790(0.565-1.107) 0.759(0.537-1.073) 0.371(0.214-0.642) 0.546(0.303-0.982)

2012 0.615(0.429-0.881) 0.598(0.413-0.866) 0.359(0.206-0.626) 0.432(0.238-0.784)

2013 0.359(0.230-0.559) 0.372(0.236-0.585) 0.367(0.207-0.651) 0.548(0.296-1.014)

2014 0.474(0.317-0.710) 0.475(0.314-0.719) 0.258(0.142-0.471) 0.385(0.203-0.729)

2015 0.392(0.250-0.615) 0.395(0.249-0.625) 0.302(0.162-0.566) 0.408(0.209-0.796)

2016 0.515(0.340-0.780) 1.076(0.601-1.927) 0.126(0.052-0.305) 0.363(0.142-0.929)

2017 0.388(0.239-0.630) 0.406(0.248-0.665) 0.303(0.157-0.585) 0.389(0.193-0.781)

Visit month January Reference Reference Reference Reference

February 0.917(0.624-1.349) 0.876(0.592-1.295) 0.944(0.512-1.740) 0.916(0.483-1.735)

March 0.971(0.670-1.405) 0.911(0.625-1.328) 0.776(0.405-1.486) 0.891(0.455-1.743)

April 0.873(0.598-1.275) 0.822(0.559-1.209) 0.793(0.414-1.519) 0.868(0.444-1.699)

May 0.976(0.676-1.409) 0.936(0.644-1.359) 1.053(0.579-1.913) 1.206(0.648-2.242)

June 0.998(0.690-1.443) 0.935(0.643-1.360) 0.915(0.483-1.734) 1.064(0.548-2.067)

July 1.033(0.719-1.484) 0.985(0.681-1.424) 0.913(0.477-1.750) 0.987(0.501-1.943)

August 0.948(0.659-1.363) 0.877(0.606-1.271) 1.189(0.654-2.162) 1.204(0.644-2.249)

September 1.012(0.701-1.461) 0.969(0.666-1.408) 1.945(1.142-3.313) 2.33(1.331-4.082)

October 0.963(0.658-1.410) 0.879(0.597-1.295) 1.699(0.977-2.957) 1.834(1.024-3.286)

November 0.778(0.526-1.152) 0.769(0.517-1.145) 0.885(0.472-1.660) 1.063(0.552-2.044)

December 0.971(0.666-1.416) 0.950(0.648-1.395) 0.962(0.513-1.805) 1.244(0.645-2.400)
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machine learning modeling techniques (RF algorithm), 
which can be used to diagnose and identify the clinical 
problem of appendicitis and to judge the predicted per-
formance of the two machine learning modeling tech-
niques through a series of indicators. In addition, in the 
aspect of preprocessing of unstructured text information, 
we used Doc2Vec technology in natural language pro-
cessing to extract features of unstructured text and use it 
for modeling and prediction, so as to improve the predic-
tion ability of the two machine learning models. In gen-
eral, the performance of both models was significantly 
improved after NLP by using predictors that combined 
structured data with unstructured data.

To our knowledge, this is the first time that Doc2Vec 
technology of NLP has been used to conduct unstruc-
tured text analysis of the reason for patient visit and 
the reason for injury to predict AA diagnosis using 

NHAMCS ED survey data. This study also serves as a 
teaching case to help physicians, nurses, researchers, and 
others learn about NLP technologies. Combined with 
the structured data, LR algorithm and RF algorithm were 
used to establish the diagnosis and prediction model of 
emergency hospitalized appendicitis. Many other stud-
ies have shown that in the fields of electronic case min-
ing and bioinformatics, the predictive performance of 
models can be greatly improved by incorporating textual 
information [34–37]. There are several potential expla-
nations for the incremental gains in the prediction abil-
ity by the NLP. First, NLP can more effectively capture 
more word and context information from the unstruc-
tured text, which cannot be addressed by traditional text 
analysis approaches, such as word spotting and manual 
rules [38]. Additionally, end-to-end training and learn-
ing of representations differentiate deep learning from 

Table 2  (continued)

Adult Pediatric

Crude Adjusted Crude Adjusted

Visit day Sunday Reference Reference Reference Reference

Monday 0.945(0.699-1.278) 0.954(0.703-1.295) 0.975(0.617-1.541) 0.903(0.559-1.458)

Tuesday 1.202(0.899-1.606) 1.222(0.910-1.640) 0.842(0.517-1.372) 0.842(0.507-1.400)

Wednesday 1.152(0.859-1.544) 1.163(0.864-1.566) 1.403(0.904-2.178) 1.370(0.862-2.178)

Thursday 1.056(0.782-1.427) 1.086(0.801-1.474) 1.199(0.763-1.884) 1.182(0.735-1.900)

Friday 1.225(0.913-1.645) 1.300(0.963-1.753) 1.080(0.674-1.730) 1.086(0.662-1.781)

Saturday 1.009(0.742-1.374) 1.032(0.755-1.411) 1.074(0.677-1.703) 0.987(0.608-1.603)

Arrival time Morning Reference Reference Reference Reference

Afternoon 0.904(0.736-1.110) 0.953(0.774-1.175) 1.314(0.919-1.878) 1.355(0.931-1.972)

Evening 0.887(0.709-1.108) 0.900(0.718-1.129) 0.935(0.645-1.356) 0.956(0.648-1.409)

Night 0.927(0.747-1.151) 0.872(0.700-1.086) 0.931(0.648-1.338) 0.911(0.624-1.332)

Triage level Immediate Reference Reference Reference Reference

Emergent 0.609(0.372-0.996) 0.596(0.358-0.990) 0.501(0.222-1.129) 0.671(0.267-1.684)

Urgent 0.412(0.263-0.645) 0.447(0.279-0.715) 0.269(0.128-0.568) 0.346(0.146-0.820)

Semi-urgent 0.208(0.125-0.347) 0.234(0.138-0.398) 0.083(0.037-0.184) 0.176(0.071-0.439)

Nonurgent 0.208(0.101-0.428) 0.213(0.103-0.444) 0.108(0.039-0.295) 0.213(0.070-0.644)

Is injury/poisoning intentional Intentional Reference Reference Reference Reference

Unintentional 0.408(0.091-1.842) 0.293(0.062-1.395) - -

Questionable injury status 1.779(0.440-7.199) 0.216(0.037-1.249) - -

Visit related to an injury/poison/
adverse effect of medical treat-
ment within 72 hours

No Reference Reference Reference Reference

Yes 0.176(0.097-0.320) 0.119(0.042-0.339) - -

72h Revisit Yes Reference Reference Reference Reference

No 1.482(0.966-2.275) 1.374(0.890-2.122) 1.008(0.532-1.910) 0.893(0.458-1.740)

Pain level Mild Reference Reference Reference Reference

Moderate 2.221(1.674-2.948) 2.016(1.513-2.687) 6.562(4.504-9.561) 5.291(3.587-7.805)

Very severe 2.556(1.949-3.351) 2.527(1.915-3.335) 10.504(7.164-15.401) 8.094(5.414-12.099)

Diagnostic services provided No Reference Reference Reference Reference

Yes 1.919(1.424-2.588) 2.268(1.445-3.560) 6.093(3.893-9.538) 3.385(2.106-5.441)
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traditional ML methods and make it a powerful tool for 
NLP [39]. Moreover, Doc2Vec technology allows us to 
extract/infer specific features for both the word and the 
paragraph, which cannot be solved by word2vec tech-
nology. Our results show that the value of AUC is the 
highest when both structured and unstructured data are 
included in the prediction model.

Although many previous studies have shown that the 
performance of a RF algorithm is better than that of a LR 
algorithm [40–42], LR and RF algorithms were used for 
different patients in our study, and the results showed that 
the predictive performance of LR algorithm was no dif-
ferent from the RF algorithm for both adult and pediatric 
patients. This may be because LR model works well as a 
classifier if the relationship between the input variables 
(structured variables) and output variable (AA) is linear 
and the data is relatively balanced between classes. If the 
relationship between the input and the output variable is 
linear, RF algorithm will only approximate linear regres-
sion methods like LR in the limit case of an infinite number 
of trees. RF algorithm exchanges a high degree of variance 
between each tree for a low bias in predicting the outcome 
variable. A more unbiased estimate may be given if other 
methods are assumed not to violate the linearity, collinear-
ity, and homogeneity of the parameters [43–45].

Compared with ED patients with private insurance, 
patients with Medicaid or CHIP or other state-based 
programs and self-pay patients had a significantly lower 
risk of being diagnosed with appendicitis. The reasons 
for these differences should be further explored in future 

studies to determine the appropriateness of including or 
excluding these variables in predictive models, which is 
important to determine whether such predictive models 
can be used as a more objective tool to predict whether 
a patient has appendicitis based on the clinical context 
[46]. Sex, race, ethnicity, triage level, pain level and diag-
nostic services provided were also found to be impor-
tant predictors for identifying patients with appendicitis. 
As expected, patients with immediate triage level were 
more likely to be diagnosed with appendicitis than those 
with other triage levels. Patients with moderate and very 
severe pain levels were generally more likely to be diag-
nosed with AA than those with mild pain levels.

The clinical practice of adult ED is quite different 
from that of pediatric ED. In particular, the diagnosis 
of appendicitis in pediatric populations is more com-
plex and time-consuming than that in adults because of 
their physiological and developmental differences [47]. 
Compared with patients with immediate triage level, 
the risk of diagnosis of urgent, semi-urgent and nonur-
gent appendicitis in pediatric patients is lower than adult 
patients. However, compared with mild patients, pediat-
ric patients with moderate pain levels and very severe AA 
had a higher risk of diagnosis than adults.

Since the prediction model is based on whether 
patients with ED will eventually be diagnosed with AA, 
the prediction model can not only predict AA, but also 
help doctors, nurses and triage personnel to choose more 
helpful examination items in advance, so as to make more 
efficient use of medical resources. Previous studies have 

Table 3  Predictive performance of LR and RF models with 5-fold classification in identifying diagnosed appendicitis ED patients, 
NHAMCS 2005-2017

Models Sensitivity
(95% CI)

Specificity
(95% CI)

Threshold
(95% CI)

Accuracy
(95% CI)

AUC​
(95% CI)

LR for adult
  Structured + Unstructured variables 0.73 (0.68-0.78) 0.68 (0.59-0.77) 0.12 (0.10-0.14) 0.96 (0.95-0.97) 0.78 (0.76-0.80)

  Structured variables 0.64 (0.54-0.74) 0.70 (0.60-0.80) 0.08 (0.06-0.10) 0.95 (0.93-0.97) 0.72 (0.69-0.75)

  Unstructured variables 0.69 (0.64-0.74) 0.67 (0.63-0.71) 0.05 (0.05-0.05) 0.93 (0.92-0.94) 0.72 (0.69-0.75)

LR for pediatric
  Structured + Unstructured variables 0.81 (0.74-0.88) 0.78 (0.73-0.83) 0.13 (0.09-0.17) 0.95 (0.93-0.97) 0.87 (0.83-0.91)

  Structured variables 0.83 (0.71-0.95) 0.71 (0.59-0.83) 0.11 (0.04-0.18) 0.94 (0.89-0.99) 0.84 (0.79-0.89)

  Unstructured variables 0.75 (0.70-0.80) 0.73 (0.61-0.85) 0.06 (0.04-0.08) 0.90 (0.83-0.97) 0.78 (0.72-0.84)

RF for adult
  Structured + Unstructured variables 0.67 (0.56-0.78) 0.71 (0.59-0.83) 0.13 (0.11-0.15) 0.97 (0.96-0.98) 0.75 (0.71-0.79)

  Structured variables 0.68 (0.59-0.77) 0.65 (0.58-0.72) 0.14 (0.13-0.15) 0.97 (0.97-0.97) 0.71 (0.65-0.77)

  Unstructured variables 0.65 (0.59-0.71) 0.63 (0.55-0.71) 0.11 (0.10-0.12) 0.96 (0.95-0.97) 0.68 (0.64-0.72)

RF for pediatric
  Structured + Unstructured variables 0.82 (0.73-0.91) 0.75 (0.69-0.81) 0.13 (0.12-0.14) 0.96 (0.96-0.96) 0.86 (0.84-0.88)

  Structured variables 0.81 (0.75-0.87) 0.72 (0.63-0.81) 0.15 (0.12-0.18) 0.96 (0.95-0.97) 0.84 (0.79-0.89)

  Unstructured variables 0.8 (0.71-0.89) 0.65 (0.59-0.71) 0.11 (0.09-0.13) 0.95 (0.94-0.96) 0.78 (0.76-0.80)
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shown that because the ED is a critical staging area for 
critically ill patients, developing more efficient tools to 
avoid overcrowding and increase the efficiency of the use 
of healthcare resources in the ED and ultimately improve 
the quality of care and health outcomes for ED patients 
[48–50]. The prediction model developed in our study for 
adults and pediatric ED patients with diagnosed appen-
dicitis is consistent with the goal of establishing a better 
decision system in ED [51, 52].

The prediction model of diagnosed ED patients with 
AA produced in this study is designed to help doctors, 
nurses, and triage personnel make decisions and cannot 
completely replace their roles. Although we developed 
an improved prediction model of diagnosing ED patients 
with AA, it still needs the actual clinical work. There is 
a certain risk that the model is still imperfect at present, 
so it may increase the possibility of misdiagnosis of AA if 
clinicians rely on it more than as an assistive tool.

Limitations
Our study has several limitations. First, due to the large 
span of survey years, the questionnaire variables are 
inconsistent in different years, so some available vari-
ables are not included in the prediction model, such as 
complications, arriving by ambulance, etc., which may 
affect the prediction ability of the model [53]. Second, the 
NHAMCS data did not gather more useful clinical vari-
ables for the diagnosis of appendicitis, such as hyperbili-
rubinemia, white blood cells (WBCs) count and absence 
of inflammatory changes, etc. However, the goal of this 
study is not to use a large number of predictors to build 
predictive models, but to use a limited number of predic-
tors to build machine learning models, which are often 
easier to practice. However, the results of this study still 
lack clinical operability and need to be further verified 
and improved. Third, more dimensions of the feature 
extraction technology of Doc2Vec were not attempted. 

Fig. 1  ROC curves for the LR and RF models for predicting the diagnosed appendicitis (adult and pediatric)
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The dimension values used in this paper were mainly 
based on the experience of previous literature, which may 
affect the prediction ability of the prediction model [38, 
54]. Fourth, The dataset is a large administrative data-
set that may have more limitations such as the sampling 
techniques used to generate the data, the decreasing 
number of AA as the years go by, and the lack of clinical 
context of the patients that only come from using more 
robust clinical data [55, 56]. Finally, The low incidence 
of AA in the study population suggests that the number 
of patients actually considered or AA was much smaller 
than the inclusion criteria suggest. Only 2-3% positive is 
very low as compared to other studies, which may affect 
the predictive performance of the model.

Conclusions
Based on the analysis of 40,041 patients with AA-related 
symptoms in the NHAMCS ED survey, we examined the 
information relating to the patients’ social economic, 
demographic and clinical factors during the patients’ ED 
visits, including the unstructured free-text, such as the 
reason for visits and the cause of the injury, and devel-
oped a prediction model to diagnose AA for adults and 
children. Although external prospective validation is 
necessary, these observations suggest an opportunity to 
apply advanced predictive methods to routinely available 
triage data -- as an assistive technique -- to enhance cli-
nicians’ diagnostic decisions, which in turn will lead to 
more accurate and effective clinical identification of AA 
in the ED.
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