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Abstract 

Background:  Although frequentist paradigm has been the predominant approach to clinical studies for decades, 
some limitations associated with the frequentist null hypothesis significance testing have been recognized. Bayes-
ian approaches can provide additional insights into data interpretation and inference by deriving posterior distribu-
tions of model parameters reflecting the clinical interest. In this article, we sought to demonstrate how Bayesian 
approaches can improve the data interpretation by reanalyzing the Rural Engagement in Primary Care for Optimizing 
Weight Reduction (REPOWER).

Methods:  REPOWER is a cluster randomized clinical trial comparing three care delivery models: in-clinic individual 
visits, in-clinic group visits, and phone-based group visits. The primary endpoint was weight loss at 24 months and the 
secondary endpoints included the proportions of achieving 5 and 10% weight loss at 24 months. We reanalyzed the 
data using a three-level Bayesian hierarchical model. The posterior distributions of weight loss at 24 months for each 
arm were obtained using Hamiltonian Monte Carlo. We then estimated the probability of having a higher weight loss 
and the probability of having greater proportion achieving 5 and 10% weight loss between groups. Additionally, a 
four-level hierarchical model was used to assess the partially nested intervention group effect which was not investi-
gated in the original REPOWER analyses.

Results:  The Bayesian analyses estimated 99.5% probability that in-clinic group visits, compared with in-clinic indi-
vidual visits, resulted in a higher percent weight loss (posterior mean difference: 1.8%[95% CrI: 0.5,3.2%]), a greater 
probability of achieving 5% threshold (posterior mean difference: 9.2% [95% CrI: 2.4, 16.0%]) and 10% threshold (pos-
terior mean difference: 6.6% [95% CrI: 1.7, 11.5%]). The phone-based group visits had similar result. We also concluded 
that including intervention group did not impact model fit significantly.

Conclusions:  We unified the analyses of continuous (the primary endpoint) and categorical measures (the second-
ary endpoints) of weight loss with one single Bayesian hierarchical model. This approach gained statistical power for 
the dichotomized endpoints by leveraging the information in the continuous data. Furthermore, the Bayesian analysis 
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Introduction
Although frequentist paradigm has been the predomi-
nant approach to clinical studies in the past several 
decades and we have seen tremendous progress in 
medicine, some limitations associated with the fre-
quentist null hypothesis significance testing (NHST) 
that reports dichotomized p values have been recog-
nized in statistic society [1, 2]. One of the important 
problems with NHST is that p values are very prone 
to misinterpretation and are often misused in medi-
cal studies [3]. The most common misinterpretation of 
p values is the probability of the null hypothesis. Fre-
quentist methods do not estimate the probability of 
hypotheses and a p value is the probability of observing 
data as extreme or more extreme if the null hypothesis 
is true (no treatment effect), which may not be of the 
researcher’s interest. Additionally, p values are rou-
tinely dichotomized using a predefined α level (usually 
0.05) to facilitate medical decision-making. A nonsig-
nificant p value (> 0.05) is sometimes misinterpreted as 
‘no effect’ while a nonsignificant result does not distin-
guish between a true null effect and a lack of statistic 
power [4]. When the sample size is small or when the 
variation is big, p values can be big even when there is 
a true effect. Bayesian approaches, on the other hand, 
can provide additional in-depth insights into data inter-
pretation by deriving posterior distributions of model 
parameters reflecting clinical interests. The probabili-
ties of different hypotheses can be estimated from the 
posterior distributions of model parameters, e.g., the 
probability of treatment A better than treatment B, or 
the probability of treatment A equivalent to treatment 
B, etc. This allows one to make probabilistic interpre-
tations according to the entire posterior distributions. 
Furthermore, Bayesian approaches are also extremely 
flexible in that the posterior distributions can be con-
verted to metrics of clinical interests without having to 
use extra modeling. In this article, we focused on dem-
onstrating how Bayesian approaches can improve inter-
pretation by reanalyzing the REPOWER [5] data using 
Bayesian models. We aim to accomplish three goals 
for weight loss clinical trials: (1) encourage posterior 
probabilities for interpretation; (2) harmonize clinical 
weight loss metrics for percent weight loss (continu-
ous) and achievement of weight loss clinical thresholds 
(binary); and (3) model the clustering of the partially 

nested intervention group effect common in weight loss 
studies but ignored in the original REPOWER paper.

Obesity is a chronic condition affecting an increas-
ing number of Americans with the prevalence reach-
ing 42% in 2017–2018 [6]. It is a serious health risk 
and is associated with a wide range of morbidities 
[7]. The Centers for Medicare and Medicaid Services 
(CMS) approved to cover Intensive Behavioral Ther-
apy for Obesity (IBT) with up to 22 individual 15-min 
face-to-face visits over a 12-month period in 2011 [8]. 
The CMS employs a fee-for-service delivery model 
which has been challenged and questioned. A variety 
of care delivery models have arisen in addition to the 
traditional face-to-face office visit. REPOWER [5] is a 
cluster randomized clinical trial comparing the fee-for-
service individual delivery model to two alternatives: 
in-clinic group visits and phone-based group visits. 
Participant weight was measured at baseline, 6, 18, 
and 24 months by trained staff. The primary endpoint 
was weight loss at 24 months. The secondary endpoints 
included the proportions of participants achieved 5 and 
10% weight loss at 24 months.

In the original analyses [5], frequentist methods were 
used and inferences were drawn based on p values and 
confidence intervals. For the primary endpoint, a lin-
ear mixed model was used. The in-clinic group visits, 
but not the phone-based group, resulted in a statisti-
cally significantly higher weight loss at 24 months when 
compared with the in-clinic individual visits. For the 
secondary endpoints, two separate mixed effect logistic 
models were used to compare the proportions of partic-
ipants of achieving 5 and 10% weight loss at 24 months. 
None of the comparisons resulted in a significant p 
value. In this article, we reanalyzed the percent weight 
loss over time using a Bayesian hierarchical model with 
noninformative priors. We first obtained the posterior 
distributions of weight loss at 24 months for each arm 
using Hamiltonian Monte Carlo. We then estimated the 
probabilities of having a greater weight loss in the in-
clinic group visits and the phone-based group visits vs. 
the in-clinic individual visits. With the same model, we 
also obtained the posterior distributions for the prob-
abilities of achieving 5% (or 10%) weight loss in each 
arm and the probabilities of having greater probabili-
ties of achieving the weight loss thresholds in the two 
group-based arms vs. the in-clinic individual visits. The 

enabled additional insights into data interpretation and inference by providing posterior distributions for parameters 
of interest and posterior probabilities of different hypotheses that were not available with the frequentist approach.
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Bayesian approach not only provided a better interpre-
tation by reporting probabilities of different hypothe-
ses, but also unified the analyses of the continuous (the 
primary endpoint) and categorical measures of weight 
loss (the secondary endpoints) using a single model. 
This approach resulted in consistent inferences for dif-
ferent endpoints and achieved higher power for the 
secondary endpoints in comparison with the original 
analyses.

Moreover, the original analyses took into consideration 
the clustering of sites but ignored the clustering of inter-
vention group in the two group-based arms. Intervention 
group was partially nested because it was relevant to the 
two group-based arms only. The Bayesian approach can 
easily handle complex problems using the same statistical 
framework. We used a four-level hierarchical model with 
an additional level to assess the partially nested group 
assignment on the effect of delivery models.

Methods
Study design and data structure
REPOWER is a cluster randomized clinical trial with 
thirty six primary practices from three affiliations (aca-
demic medical centers that recruited participants for 
the study: the University of Kansas Medical Center 
(KUMC), the University of Nebraska Medical Center 
(UNMC), and the Marshfield Clinic in Wisconsin 
(Marshfield clinic)) randomly assigned to one of the 
three study arms in equal numbers: 1) in-clinic indi-
vidual visits in which the participants received 15-min 
face-to-face individual counseling sections; 2) in-clinic 
group visits in which the participants received group 
visits held at practices with a median of 14 partici-
pants per group; 3) Phone-based group visits in which 
participants received lifestyle intervention delivered 
remotely via audio-only conference calls with a median 
of 14 participants per group. The trial was approved by 
institutional review boards at the University of Kansa 
Medical Center and the VA Nebraska-Western Iowa 
Health Care System. All participants provided written 
informed consent. The re-analysis was done on dei-
dentified data.  1407 participants were included in the 
final analysis. Weight was measure at baseline, 6, 18, 
and 24 months by trained staff. The primary outcome 
was weight loss at 24 months. The secondary outcomes 
included the proportions of achieving 5 and 10% weight 
loss at 24 months. The detailed information about the 
trial conduction has been published by Befort et al. [5]. 
In this article, we first analyzed the percent weight loss 

using a three-level Bayesian hierarchical model to com-
pare the effect of different intervention delivery models 
on percent weight loss. A second Bayesian hierarchical 
model additionally included intervention group as a 
partially nested effect to assess its effect on weight loss.

Model 1: three level Bayesian hierarchical model 
for percent weight loss
Let yijt be the percent weight loss for participant j from 
site i at time t. x1 and x2 are the arm indicators: (0,0) for 
in-clinic individual visits, (1,0) for in-clinic group visits, 
and (0,1) for phone-based group visits. t18 and t24 are 
the time indicators: (0,0) for month 6, (1,0) for month 
18, and (0,1) for month24. We also include arm and 
time interactions so that delivery model effect can be 
evaluated at each time point. To be consistent with the 
original analyses, we included affiliation indicators as 
covariates (denoted by x3 and x4). The three-level Bayes-
ian hierarchical model can be represented as follows.

•	 α0ij = α0i0 + γj, where γj ∼ N
(

0, σ 2
γ

)

 is patient level 
variation.

•	 α0i0 = α000 + ηi, where ηi ~ N
(

0, σ 2
η

)

 is site level varia-
tion and a000 is the model intercept.

•	 ϵijt~N(0, σ2) is within patient residual error.

Noninformative priors were used to make like to like 
comparison with the frequentist analyses: Stan default 
flat prior, uniform distribution on the real line, was used 
for a000 and βs; truncated normal distribution N+(0, 10) 
was used for the standard deviations (σ, σγ, and ση  ) to 
ensure only positive values were allowed.

Model 2: Bayesian hierarchical model for percent weight 
loss with group assignment as a partially nested effect
Participants in the in-clinic group visits arm and the 
phone-based group visits arm received the interventions 
in groups. We wanted to examine the impact of group 
assignment on the effect of intervention delivery meth-
ods for the two group-based arms, which was not tackled 
in the original analyses. In model 2, we utilized a four-
level hierarchical Bayesian model with the group assign-
ment as a partially nested effect to assess the effect of 
intervention group.

Let k > 0 index the intervention group for participants 
in the two group-based arms. For participants in the in-
clinic individual visits arm, k = 0. The four-level Bayesian 
hierarchical model can be represented as follows.

yijt = α0ij+β1x1+β2x2+β3t18+β4t24+β5x1∗t18+β6x1∗t24+β7x2∗t18+β8x2∗t24+β9x3+β10x4+ǫijt
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•	 α0ikj = α0ik0 + γj, where γj ∼ N
(

0, σ 2
γ

)

 represents the 
patient level variation.

•	 α0ik0 = α0i00 + ϑk, where ϑk ∼ N
(

0, σ 2
ϑ

)

 represents the 
intervention group level variation for participants in 
the two group-based arms and for participants in the 
in-clinic individual arm ϑ0 = 0.

•	 α0i00 = α0000 + ηi, ηi ~ N
(

0, σ 2
η

)

 represents the site 
level variation and a0000 is the intercept.

•	 ϵikjt~N(0, σ2) is the within patient residual error

The same noninformative priors as in Model 1 were 
used. To assess whether including intervention group as 
an additional hierarchical level improved model fit, we 
used two model selection methods to compare Model 1 
and Model 2: leave-one-out cross-validation (Loo-CV) 
and widely available information criterion (WAIC) [9]. 
Both methods are implemented in the loo R package [10].

Quantities of interest
The quantities representing the expected 24 months per-
cent weight loss for participants from the three affilia-
tions in the in-clinic individual arm are Δ1 _ 1 = a000 + β4, 
Δ1 _ 2 = a000 + β4 + β9, and Δ1 _ 3 = a000 + β4 + β10, 
respectively. We use the arithmetic average 
�1 =

�1_1+�1_2+�1_3

3
= a000 + β4 +

1
3
β9 +

1
3
β10 

to represent the average expected percent weight 
loss for the in-clinic individual arm. Similarly, for 
in-clinic group visits and phone-based group, the 
average expected 24 months percent weight loss 
are �2 = a000 + β1 + β4 + β6 +

1
3
β9 +

1
3
β10 and 

�3 = a000 + β2 + β4 + β8 +
1
3
β9 +

1
3
β10 respectively. 

Their posterior distributions can be obtained from the 
MCMC samples of a000 and β ′ s. The absolute differ-
ences in 24 months percentage weight loss in compari-
son to the in-clinic individual visits can be assessed using 
δ2 = Δ2 − Δ1 = β1 + β6 for the in-clinic group arm and 
δ3 = Δ3 − Δ1 = β2 + β8 for the phone-based group arm. 
The probabilities of having a higher weight loss can be 
evaluated using the proportions of the corresponding 
MCMC samples greater than 0.

Additionally, the posterior predictive distribution for 
the probability of achieving 5% or 10% threshold can be 
obtained using MCMC samples of model parameters. Let 
z1 be the 24 months percent weight loss for a new partici-
pant in the in-clinic individual arm. It follows a 
N
(

�1, σ
2 + σ 2

r + σ 2
η

)

 conditional on model parameters 
θ1 =

{

�1, σ
2, σ 2

r , σ
2
η

}

 . The posterior predictive distribu-
tion of z1 is therefore ∫φ(z1| θ1)p(θ1| y)dθ1, where 

yikjt = α0ikj+β1x1+β2x2+β3t18+β4t24+β5x1∗t18+β6x2∗t18+β7∗t24+β8x2∗t24+β9x3+β10x4+ǫikjt

φ(z1| θ1) is the normal probability density function and 
p(θ1| y) is the posterior distribution of θ1. The posterior 
predictive distribution for the probability of achieving 5% 
threshold is 

∫∞
5

∫

φ(z1|θ1)p(θ1|y)dθ1dz1, which is equiv-
alent to 

∫ ∫∞
5
φ(z1|θ1)dz1p(θ1|y)dθ1 and its posterior 

MCMC samples can be obtained by evaluating 
∫∞
5
φ(z1|θ1)dz1 at each MCMC samples of the model 

parameters α000, βs, and σs. Similarly, the posterior pre-
dictive distribution of probability of achieving 5% thresh-
old for the in-clinic group arm and phone-based group 
arm can be obtained by MCMC samples of 
∫∞
5
φ(z2|θ2)dz2 and 

∫∞
5
φ(z3|θ2)dz3 respectively, where 

θ2 =
{

�2, σ
2, σ 2

r , σ
2
η

}

 and θ3 =
{

�3, σ
2, σ 2

r , σ
2
η

}

 . The 
posterior predictive distributions of the probabilities of 
achieving 10% weight loss at 24 months can be obtained 
by simply changing the lower integration bound to 10.

Computation and software
Hamiltonian Monte Carlo [11] was performed in Stan 
[12] to obtain the posterior distributions for parameters 
of interest. Figure representations of posterior distri-
butions were computed from gaussian kernel density 
estimates, which provided a smoothed version of the 
sampled histograms. R package Rstan was used as the 
interface to call Stan code [13]. All the other analyses 
and plots were conducted in R. The Stan code for the two 
models can be found in the Additional file 1.

Results
Model convergence assessment and predictive checking
For both models we ran four parallel MCMC chains with 
starting points randomly generated from the prior distri-
butions. For each chain, we allowed 3000 iterations for 
the sampler to converge and another 3000 for sampling 
the posterior distributions. Convergence was checked 
visually utilizing trace plots. We also checked the poten-
tial scale reduction factor [14] and the effective sample 
size. For all model parameters, R̂ was less than 1.01 and 
effective sample size was > 400.

Model result
Model 1
Table 1 summarizes the model parameters using poste-
rior means and 95% credible intervals (CrI, calculated 
by taking the 2.5 and 97.5 percentiles of the posterior 
distributions) based on their MCMC samples of the 
posterior distributions. Because non-informative priors 
were used, the means and 95% CrIs were very close to 
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the result from the original linear mixed-effect multi-
level model.

Figure  1A displays the posterior distribution of the 
expected 24 months weight loss for the three arms: in-
clinic individual visits (Δ1), in-clinic group visits (Δ2), and 
phone-based group visits (Δ3). The corresponding poste-
rior means and credible intervals were 2.5%[95% CrI: 1.4, 
3.5], 4.3[95% CrI: 3.3, 5.3], and 4.0%[95% CrI: 3.0, 4.9], 
respectively. They were almost identical to the estimated 
means and confidence intervals reported in the original 
analysis: 2.5%[95%CI: 1.4, 3.5], 4.3[95% CI: 3.3, 5.3], and 
3.8[95% CI: 2.8,4.9], respectively.

Figure  1B displays the posterior distributions of the 
absolute difference in the expected 24 months percent 
weight loss for the in-clinic group visits (δ2) and the 
phone-based group visits (δ3) when compared with the 
in-clinic individual visits. The corresponding posterior 
means and 95% credible intervals were 1.8% [95% CrI: 
0.5,3.2] and 1.5% [95% CrI: 0.1, 2.8] respectively. The 
shaded areas to the right of zero represent the prob-
abilities of having a greater weight loss: 99.5 and 98.2% 
respectively. The original analyses reported there was a 
significant difference between the in-clinic group vis-
its (1.8% [95% CI: 0.4, 3.2; p value: 0.01]), but not in the 
phone-based visits (1.3[95% CI: − 0.1, 2.8; p value: 0.06]) 
because the p value was slightly bigger than 0.05.

Figures 2A and 3A display the posterior distributions 
for the probabilities of achieving 5 and 10% 24 months 
weight loss respectively. The shapes of the three den-
sity plots were very similar to those in Fig.  1A due to 
the relationship between the probabilities of achiev-
ing weight loss threshold and Δ1, Δ2, and Δ3 illustrated 
in the section Quantities of interest. In the order of 

in-clinic individual visits, in-clinic group visits, and 
phone-based group visits, the posterior mean and the 
95% credible interval were 37.4%[95% CrI: 32.3, 42.4], 
46.5%[95% CrI: 41.6, 51.6], and 44.7%[95% CrI: 39.7, 
49.7] for achieving 5% threshold; 16.8%[95% CrI: 13.5, 
20.4], 23.4%[95% CrI: 19.6, 27.5], and 21.9%[95% CrI: 
18.1, 26.0] for achieving 10% threshold. In the origi-
nal analyses, two separate mixed effect logistic models 
were used to estimate proportions of 5 and 10% weight 
loss: 36.0% [95% CI:30.2, 42.3], 44.1% [95% CI: 35.2, 
47.8], and 41.4% [95% CI: 37.9, 50.6] for 5% threshold, 
and 17.1% [95% CI: 13.3, 21.8], 22.6% [95% CI: 18.1, 
27.9], and 22.3% [95% CI: 17.9, 27.6] for 10% thresh-
old. While the Bayesian point estimates for propor-
tions of achieving 10 and 5% weight loss were close to 
the original result, the interval widths were narrower in 
the Bayesian model because it leveraged the continuous 
model.

Figures  2B and 3B display the absolute differences 
in the probabilities of achieving 24 months weight loss 
thresholds for the in-clinic group visits and the phone-
based group visits when compared with the in-clinic 
individual visits: 9.2% [95% CrI: 2.4, 16.0] and 7.3%[95% 
CrI: 0.6, 14.0] respectively for achieving 5% threshold, 
and 6.6% [95% CrI: 1.7, 11.5] and 5.1%[95% CrI: 0.4, 10.0] 
respectively for achieving 10% threshold. The shaded 
areas (to the right of zero) represent the probabilities of 
having a higher probability of achieving the thresholds. 
For both 5 and 10% weight loss, the probabilities were 
99.5% for in-clinic group arm and 98.2% for the phone-
based group arm and they were consistent with the prob-
abilities of having a greater weight loss than the in-clinic 
individual visits arm as shown in Fig. 1B. In the original 

Table 1  Posterior means and 95% credible intervals for model parameters in Model 1

Mean Standard Deviation 2.50% 97.50%

Intercept a000 6.24 0.54 5.18 7.29

In-clinic group effect (ref: in-clinic indiv) β1 2.67 0.69 1.36 4.04

Phone-based group effect (ref: in-clinic indiv) β2 1.98 0.69 0.64 3.34

18 months effect (ref: 6 months) β3 −2.26 0.28 −2.8 −1.72

24 months effect (ref: 6 months) β4 −3.05 0.28 −3.6 − 2.52

In-clinic group effect * 18 months effect β5 0.06 0.61 −1.15 1.26

Phone-based group effect *18 months effect β6 −2.16 0.79 −3.7 − 0.62

In-clinic group effect * 24 months effect β7 −0.41 0.38 −1.16 0.34

Phone-based group effect * 24 months effect β8 −0.1 0.4 −0.87 0.68

Affiliation: Marshfield Clinic (ref: KUMC) β9 −0.83 0.39 −1.58 −0.07

Affiliation: UNMC (ref: KUMC) β10 −0.51 0.39 −1.28 0.28

Observation level variation σ 3.92 0.06 3.8 4.03

Site level variation ση 0.98 0.36 0.22 1.67

Patient level variation σr 6.66 0.15 6.38 6.95
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analyses, the odds ratios of achieving the thresholds were 
reported for the in-clinic group visits and the phone-
based group visits: 1.4 [95% CI: 1.0, 2.0; p value: 0.07] 
and 1.3 [95% CI: 0.9, 1.8; p value: 0.22] respectively for 
5% threshold, and 1.4 [95% CI: 0.9, 2.1; p value: 0.09] and 
1.4 [95% CI: 0.9, 2.1; p value: 0.11] respectively for 10% 
threshold. The authors concluded there was no signifi-
cant difference for both threshold and for both in-clinic 
group vs. in-clinic individual and phone-based group vs. 
in-clinic individual comparisons.

Model 2
Table  2 shows the posterior means and 95% credible 
intervals for model parameters in Model 2 based on their 
MCMC samples of the posterior distributions. The values 
were very close to Model 1 for the parameters in com-
mon. The mean and 95% CrIs for σϑ were 1.28 [95% CrI: 
0.28, 2.08]. Both Looic and WAIC were slightly bigger in 
Model 1 (Table 3): 22025 vs. 22,016 and 21,816 vs. 21,814, 
respectively. The differences were small in compari-
son with their standard error: 8.4 (4.6) and 2.4 (3.0). We 

Fig. 1  Posterior distributions of the expected weight loss(%) (A) and posterior distributions of the absolute difference in weight loss(%) when 
compared with in-clinic individual visits (B) at 24 months
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concluded that Model 2 did not improve model fit signifi-
cantly. All conclusions drawn in Model 1 held in Model 2.

Conclusion and discussion
Frequentist analyses base inferences on p values and 
confidence intervals. P values are not the probability 
of null hypotheses and heavily depends on the sample 
size and the variation of the endpoints. The decision-
making using dichotomized p values is not as objective 

as some researchers believe. A p value of 0.06 and 
0.01 are not very different, yet when using the thresh-
old α = 0.05, a p value of 0.06 indicates a nonsignifi-
cant result and a p value of 0.01 indicates a significant 
result. For example, the original analyses concluded, 
when compared to in-clinic individual visit, there was 
a significantly greater weight loss at 24 months for the 
in-clinic group visits (p value: 0.01), but not for phone-
based group visits (p value: 0.06). Conversely, the 

Fig. 2  Posterior distributions of the probability of achieving 5% weight loss (A) and Posterior distributions of the absolute difference in the 
probability of achieving 5% weight loss when compared with in-clinic individual visits (B)
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current Bayesian analysis reported that the probabil-
ity of with a greater weight loss in the in-clinic group 
visits and phone-based group visits were 99.5 and 
98.2% respectively, from which we concluded that both 
group-based arms were superior than the in-clinic 
individual visits with high confidence.

For the secondary endpoints, the original analyses 
used two separate mixed effect logistic regressions to 
compare the odds of achieving 5 and 10% weight loss. 

Studies have shown that dichotomizing continuous 
endpoints results in a loss of information and reduced 
power [15–17]. The current Bayesian analysis assessed 
the probabilities achieving 5 and 10% weight loss by 
integrating the posterior predictive distributions of the 
weight loss and reported 99.5 and 98.2% respectively 
while the original analyses reported there were no sig-
nificant differences across the board. Furthermore, the 
Bayesian analysis also provided the absolute differences 

Fig. 3  Posterior distributions of the probability of achieving 10% weight loss (A) and Posterior distributions of the absolute difference in the 
probability of achieving 10% weight loss when compared with in-clinic individual visits (B)
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in probabilities of achieving 5 and 10% weight loss in 
the in-clinic group visits and phone-based group visits 
vs. the in-clinic individual visits, which may be preferred 
by clinicians than odds ratios reported in the original 
analysis.

In the Quantities of interest section, we used arithmetic 
average across affiliations to obtain the average expected 
percent weight loss for each arm. This method gives each 
affiliation the same weight. There are other choices for 
the averaging weights, e.g., weights that are proportionate 
to the numbers of participants or the numbers of sites in 
each affiliation. The method to use should be determined 
by the inference one intends to make. For the current study, 
the primary goal was to compare the three treatment arms. 
When the proportions of patients in each affiliation are 
similar across the three arms, the method would not affect 
the conclusion because β9 and  β10 will be cancelled out 
when we take the difference between arms. Therefore, we 
would reach the same conclusion if we use different weights 
that are proportionate to the numbers of participants in 
each affiliation. Besides the advantages we discussed in this 
study, Bayesian approaches have other strengths including 
the ability to incorporate previous evidence through prior 
distributions to inform the posterior distributions and the 

ability to update the posterior distributions when new evi-
dences emerge. Bayesian approaches have gained popular-
ity in recent years owing to the advancement in powerful 
computing capacity and the invention of efficient Bayesian 
statistical software. However, Bayesian approaches remain 
underused and are often used as secondary re-analyses. We 
hope to see Bayesian approaches being adopted more fre-
quently as primary analysis in clinical studies.
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