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Abstract

Background: In clinical trials the study interest often lies in the comparison of a treatment to a control regarding a
time to event endpoint. A composite endpoint allows to consider several time to event endpoints at once. Usually,
only the time to the first occurring event for a patient is thereby analyzed. However, an individual may experience
more than one non-fatal event. Including all observed events in the analysis can increase the power and provides a
more complete picture of the disease. Thus, analytical methods for recurrent events are required. A challenge is that
the different event types belonging to the composite often are of different clinical relevance. In this case, weighting
the event types according to their clinical relevance is an option. Different weight-based methods for composite time
to event endpoints were proposed. So far, there exists no systematic comparison of these methods.

Methods: Within this work we provide a systematic comparison of three methods proposed for weighted composite
endpoints in a recurrent event setting combining non-fatal and fatal events of different clinical relevance. We consider
an extension of an approach proposed by Wei and Lachin, an approach by Rauch et al., and an approach by Bakal et
al.. Comparison is done based on a simulation study and based on a clinical study example.

Results: For all three approaches closed formula test statistics are available. The Wei-Lachin approach and the
approach by Rauch et al. show similar results in mean squared error. For the approach by Wei and Lachin confidence
intervals are provided. The approach by Bakal et al. is not related to a quantifiable estimand. The relevance weights of
the different approaches work on different level, i.e. either on cause-specific hazard ratios or on event count.

Conclusion: The provided comparison and simulations can help to guide applied researchers to choose an adequate
method for the analysis of composite endpoints combining (recurrent) events of different clinical relevance. The
approach by Wei and Lachin and Rauch et al. can be recommended in scenarios where the composite effect is
time-independent. The approach by Bakal et al. should be applied carefully.
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Background
The focus of many cardiovascular or oncologic trials lies
in the comparison of a treatment to a control interven-
tion with regard to a time to event endpoint like time to
myocardial infarction, time to stroke, time to relapse, or
time to death. Including only one of those event types
can result in a large number of patients that need to be
observed to gain an effect with sufficient power. To over-
come this issue and decrease the required sample size,
composite endpoints can be considered alternatively [1,
2]. Thereby, several events of interest can be combined
and analyzed at once. Commonly, methods for analyzing
the time to the first occurring event of an individual are
applied, like the log-rank test or the Cox proportional haz-
ards model [3]. Thus, it is neglected that an individual
may experience more than one event, e.g. several myocar-
dial infarctions or a myocardial infarction followed by
death. Incorporating all events experienced by an individ-
ual increases the amount of information used for effect
estimation and can further decrease the sample size due to
the expected higher amount of events. It further provides
a more complete picture of the disease process. Cox pro-
portional hazards based models were introduced for the
analysis of recurrent time to events like the Andersen-Gill
model [4], the marginal model by Wei, Lin and Weiss-
feld [5], and conditional models by Prentice, Williams and
Peterson [6]. In those models only one event type is con-
sidered and thus, when applied to a composite endpoint, it
is implicitly assumed that a myocardial infarction has the
same clinical relevance as death and the treatment effect is
the same in both endpoints [7]. An alternative modelling
approach for the combination of a recurrent event process
and a fatal event process are so-called joint frailty mod-
els [8, 9]. Thereby, a correlation between events can be
modelled and two effects are estimated, one for each event
type. Although this seems to be an appealing approach,
results are more difficult to interpret because they are
conditioned on the so-called frailty parameter and a sin-
gle all-cause effect is not provided. Such an all-cause effect
should be able to ease the interpretation if the compo-
nents are events of different clinical relevance. Weighted
effect measures were proposed to consider the clinical
relevance of the combined event types [10–13]. The com-
mon idea of these approaches is that a relevance weight
is assigned to each event type with the aim to make the
comparison between different events more fair. However,
most of these weighted approaches were only described
for the time to first event endpoint analysis.
Rauch et al. recently introduced the weighted all-cause

hazard ratio where pre-defined relevance weights aremul-
tiplied to the cause-specific hazards [14, 15]. A corre-
sponding closed formula test statistic was also provided
[15]. Although themethodwas described for a time to first
event analysis it can be easily extended to the situation

of a time to recurrent event analysis as it is shown in the
present work. Other weighting approaches for the analysis
of a composite endpoint combining a recurrent non-fatal
event with other fatal or non-fatal events were proposed:
Bakal et al. proposed a weighted non-parametric approach
[16, 17] and Wei and Lachin described a multivariate
approach [18, 19] which is extended to recurrent events
in this work. So far, the performance of these three meth-
ods in different clinical data scenarios was not analyzed
and compared systematically. This would help to better
understand the properties of the different approaches and
to gain recommendations for or against their application.
Therefore, in this work we provide a systematic compar-
ison of the three methods (approach by Wei and Lachin,
approach by Rauch et al., approach by Bakal et al.) with
the help of a Monte-Carlo simulation study.

Methods
We consider a two-arm clinical study with an interven-
tion (I) and a control (C), where the primary endpoint is
a composite time to event endpoint combining two event
types. Throughout this work, it is assumed that there is
one fatal event “death” (D) and the other non-fatal event
is “myocardial infarction” (M). The non-fatal event might
occur more than once per individual. An individual might
also experience no event in the observational period. We
consider classical continuous time to event data which
are right censored. Although, we illustrate the approaches
based only on two different event types, they can easily
be applied to scenarios with e.g. more than one non-fatal
event.
The total number of individuals n are randomized in a

1 : 1 allocation to the two groups. We consider a one-
sided test problem, where the null hypothesis states that
the control is better or equal to the intervention and the
alternative states that the intervention group is superior.
The test hypothesis are fomulated in terms of the under-
lying estimand for the specific model as specified below.
Only for the approach by Bakal et al. there is no formal
estimand and therefore no formal null hypothesis can be
formulated.

Formulation of the test problem and the estimand
In the following, the underlying test problems and the
corresponding estimands will be formulated for the
three weighted approaches under comparison. The test
hypotheses are similar across methods, however it is
important to highlight the differences in the underlying
modelling approaches (see also Table 1).

Approach byWei and Lachin
In the works by Wei and Lachin [19] and Lachin et al.
[18] only the time to the first event is considered. How-
ever, the approach can be easily extended to recurrent
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Table 1 Comparison of analysis methods

Wei-Lachin Rauch Bakal

Model assumptions • Stratified approach, i.e. • Stratified approach, i.e Not applicable because no

all 1st events in 1st stratum, all 1st events in 1st stratum, underlying model is specified.

all 2nd events in 2nd stratum, all 2nd events in second stratum,

and so on. I.e. individuals are at and so on. I.e. individuals are at

risk for a subsequent event riskrisk for a subsequent event

only if a previous event has occurred. only if a previous event has occurred.

Strong assumption • Proportional hazards are • Proportional hazards are

assumed within strata assumed within strata

and event types. and event types.

→ Equal cause-specific → Equal cause-specific baseline

baseline hazards. hazards (or specific underlying

event distribution)

→ Baseline hazards can be → Baseline hazards can be

strata-specific, i.e. risk for strata-specific, i.e. risk for

subsequent events subsequent events

is allowed to change. is allowed to change.

Estimation assumptions No difference to Cause-specific hazards • No difference between strata, i.e.

model assumptions. are different. no risk change for subsequent event.

• Individuals are at risk as long as

they are under observation

but their contribution to the

event number and number at risk

changes for subsequent events.

Weights • pre-specified • pre-specified • pre-specified

• non-negative • non-negative • non-negative

• relative weights • weights based on • relative weights

clinical relevance

• sum up to 1 • proposed highest weight of 1 • highest weight of 1 (for 1 type)

but could be higher

• works multiplicatly on the • works multiplicatly on the • works accumulatively multiplicative

logarithmized cause-specific cause-specific hazards (event counts) on the event count

hazard ratios

Test statistic multivariate procedure stratified weight based modified log-rank test

(semi-parametric) log-rank test (not stratified)

Effect estimator � � x

Confidence interval for effect � only bootstrap x

Interpretation • Weighted cause-specific • Weighted cause-specific Weighted individual score

logarithmic hazard ratios. hazards work on for event count and risk set.

Thus influence of event counts is not the event counts and hence is
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Table 1 Comparison of analysis methods (Continued)

Wei-Lachin Rauch Bakal

directely incoporated, i.e. a higher also satisfying in terms of variablity

cause-specific logarithmic hazard ratio for a low event number.

has a higher influence on Thus the composite effect is

the composite effect, which determined by the distribution of

results in a higher the clinically more relevant event.

variability when the estimation

is based on a low event number.

• weighted composite hazard ratio based • weighted composite effect based on

on weighted cause-specific weighted cause-specific hazards

logarthimic hazard ratios

events by defining the hazard functions as stratified haz-
ards, where the strata j = 1, ..., J define the subgroup of
all first, second, third events etc.. The stratified hazards
read as

λD,j(t) = λD,0j(t) · exp(βD · X) (1)
λM,j(t) = λM,0j(t) · exp(βI · X) (2)

where X is the group indicator and X = 1 refers
to the intervention group. This model implies
that the cause-specific baseline hazards (λD,j0(t),
λM,j0(t)) are strata-specific, i.e. hazards can change
for subsequent events, but the cause-specific effect
(exp(βD), exp(βM)) remain the same over all strata. This
model moreover suggests proportional hazards for both
event types within the strata.
Wei and Lachin [19] then define a so-called “weighted

hazard ratio” as

θL := exp(wL
DβD + wL

MβM), (3)
wL
D + wL

M = 1, wL
D,wL

M > 0,

where the index L denotes the Wei-Lachin weighting
approach and wL

D and wL
M are the pre-specified rele-

vance weights which are described to reflect the “relative
importance or severity” [18]. The weights are working on
the logarithmized cause-specific hazard ratios, but not
directly on the hazard function. This implies, that the
influence of the weight is independent from the under-
lying number of events, and as a consequence a high
weight has a large impact even if the corresponding cause-
specific hazard ratio is estimated based on a low number
of events. The corresponding hypotheses are then formu-
lated as follows:

H0 : θL ≥ 1 versus H1 : θL < 1. (4)

To test the above null hypothesis (4) the following test
statistic was proposed [18]:

TL = wL
Dβ̂D + wL

Mβ̂M√
(wL

D)2σ̂ 2
D + 2wL

Dw
L
Mσ̂D,M + (wL

M)2σ̂ 2
M

(5)

where the estimators for the cause-specific logarithmic
effects β̂D and β̂M can be obtained by using a stratified
Cox-model for each cause. The corresponding variance
estimators of βD and βM are denoted by σ̂ 2

D and σ̂ 2
M,

respectively and the covariance estimator of βD and βM as
σ̂D,M. Lachin and Bebu [18] show in their supplement how
σ̂ 2
D, σ̂ 2

M, and σ̂D,M can be calculated. Further the function
mmm in the R package multicomp also provides these
values [20–22]. The test statistic TL is asymptotically
standard normally distributed under the null hypothe-
sis. Thus, the null hypothesis is rejected if TL ≤ −z1−α ,
where z1−α is the (1− α)-quantile of the standard normal
distribution and α is the one-sided significance level.
By means of the estimators for the cause-specific loga-

rithmic effects and their variances, the estimated weighted
hazard ratio is given as:

θ̂L := exp
(
wL
Dβ̂D + wL

Mβ̂M
)
. (6)

The corresponding (1−2·α)-confidence interval is given
as:

exp
(
log(θ̂L) ∓ z1−α ·

√
(wL

D)2σ̂ 2
D + 2wL

Dw
L
Mσ̂D,M + (wL

M)2σ̂ 2
M

)
.

(7)

Approach by Rauch et al.
Rauch et al. [14] recently described the so-called
“weighted all-cause hazard ratio” for a composite time
to first event endpoint which we here extend to recur-
rent time to event analysis. A non-parametric estimator
for this approach was already described [15] and is now
extended within this work to allow multiple events per
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patient. As before for the Wei and Lachin approach, the
stratified cause-specific hazards given in (1) and (2) are
considered. Thereby, it is assumed that if e.g. death occurs
as a second event this event belongs to the second stratum.
The newly adapted definition by Rauch et al. [14] for the

“weighted all-cause hazard ratio” is given as

θR := 1
J

J∑
j=1

wR
DλID,j(t) + wR

MλIM,j(t)

wR
DλCD,j(t) + wR

MλCM,j(t)
, (8)

wR
D,wR

M ≥ 0, (9)

where the index R denotes the weighting approach by
Rauch et al. and wR

D and wR
M are the pre-specified rele-

vance weights. Note that in contrast to theWei and Lachin
approach the weights are not forced to sum-up to 1 since
they are implemented in the numerator and the denom-
inator. The weights are working on the hazard functions
and not on the hazard ratios. As the hazard function
estimator depends on the number of observed events, a
high weight can still have a low impact if the underlying
event rate is small. This is a fundamental difference to the
approach of Wei and Lachin. Ozga and Rauch [15] pro-
posed a guidance for the choice of weights where a weight
of 1 is assigned to the most clinical relevant event. For all
other event types a weight ≤ 1 is assigned. The weighted
all-cause hazard ratio can be interpreted as the weighted
average of cause-specific hazards/hazard ratios. In con-
trast, the weighted hazard ratio by Wei and Lachin does
not directly transfer to the common all-cause hazard ratio.
The weighted all-cause hazard ratio defines a simple

extension of the common all-cause hazard ratio, i.e. the
common all-cause hazard ratio is gained if all weights are
equal to 1.
The corresponding hypotheses for the weighted all-

cause hazard ratio can be formulated as follows:

H0 : θR ≥ 1 versus H1 : θR < 1. (10)

To test the above null hypothesis (10), Ozga and Rauch
[15] proposed a (stratified) weight-based log-rank test
statistic TR. The test statistic formula is given in the
Additional File.
The test statistic TR is approximately standard normal

distributed. Thus, the null hypothesis is rejected if TR ≤
−z1−α , where z1−α is the (1 − α)-quantile of the standard
normal distribution and α is the one-sided significance
level.
Ozga and Rauch [15] described a non-parametric esti-

mator for the weighted all-cause hazard ratio. The idea
of the non-parametric estimator is to replace the hazard
functions in (8) by the cumulative hazard functions, which
results in the same estimator under the assumptions of
equal baseline-hazards for the different event types:

θ̂R := 1
J

J∑
j=1

wR
D · �̂I

D,j(t) + wR
M · �̂I

M,j(t)

wR
D · �̂C

D,j(t) + wR
M · �̂C

M,j(t)
(11)

where �̂I
D,j(t), �̂I

M,j(t), �̂C
D,j(t), and �̂M

C,j(t) are the cause-,
group, and strata-specific Nelson-Aalen estimators for the
cumulative hazards at time t. This non-parametric estima-
tor was recently shown to be robust under deviations from
the equal baseline-hazards assumption [15].
Because a variance estimator cannot be derived for the

weighted all-cause hazard ratio, confidence intervals can
only be gained via bootstrap sampling.

Approach by Bakal et al.
The method described by Bakal et al. [16, 17] is a non-
parametric weighted estimation approach for the survival
probabilities, i.e. a weighted procedure for the Kaplan-
Meier estimate. However, they do not define any underly-
ing model and as a consequence the estimand is unspeci-
fied. By this, there naturally also is no effect estimator. The
approach is based on so-called “weighted survival func-
tions”, however the weighting scheme is only described on
the estimation level. Therefore, the formulation of formal
test hypotheses is not possible.
The weights proposed by Bakal et al. [16, 17] are

denoted by wB
M and wB

D ∈[0,1] where for fatal events or
the most relevant event a weight of 1 is assigned and for
non-fatal events a weight < 1 is used. They are working
recursively on the observed event counts where the recur-
sion is with respect to all previous events for an individual.
The other event types are then set in relation to this most
relevant event type. This choice of the weights is similar
to the approach of Rauch et al. [14].
The estimated weighted survival probabilities can be

gained in a two-stage process (an example can be found in
the Additional File).
Thereby for each individual i, i = 1, .., n, a weight wB

i (tk)
corresponding to the observed individual event at time tk
is assigned where tk are the ordered (not strata-specific)
distinct event times for k = 0, ..,K , where K ist the maxi-
mum number of events per individual and t0 = 0. In our
scenario wB

i (·) can either be wB
M(·) or wB

D(·). All obser-
vations per individual are included with the respective
weight.
Using this, the first step is to assign an individual score

for each patient at all event time points. This score is
used for calculating the net impact with which the individ-
ual events are included in the estimation of the weighted
survival probability. The weighted survival probability
thereby depends on the weighted event count and on a
weighted number at risk. The idea is that instead of con-
sidering an event as either present or not, in the approach
by Bakal et al. a patient can experience a partial event
counting less than a full event which, as a consequence,
reduces the risk set by an amount lower than 1.
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Each individual starts with a score of 1, i.e. the individ-
ual is fully at risk for an event. This score is subsequently
reduced as follows: if the patient experienced a non-fatal
event (weight smaller than 1) the patient remains partly
at risk and if a fatal event was observed (weight equal to
1) the patient is removed from the risk set. Formally, this
reads as:
1. Assign an individual score si(·), i = 1, ..., n, for all

observed event times tk , k = 1, ...,K :

si(tk) = si(tk−1)−[ si(tk−1) · wB
i (tk)] , (12)

si(t0) = 1. (13)

2. As a second step the weighted survival probabilities
are calculated by replacing the event counts by the above
defined scores.
For this we define the total number of weighted events

at tk as:

eBk :=
n∑

i=1
si(tk−1) −

n∑
i=1

si(tk). (14)

Further the total number of individuals at risk at tk are
defined as:

nBk :=
n∑

i=1
si(tk−1). (15)

Note, individuals can be only partly at risk as long as
they are still under observation, i.e. had no fatal event or
were censored but had a non-fatal event.
Analogously, the group-specific number of weighted

events and number of individuals at risk can be defined,
denoted by an additional upper index I or C.
Using this, the survival probabilities can be calculated

(recursive formula for Kaplan-Meier estimate):

KMB(tk) = KMB(tk−1) ·
(
1 − eBk

nBk

)
, (16)

KMB(t0) = 1. (17)

For group-wise calculation of these weighted sur-
vival probabilities only the corresponding individuals and
weights within the groups are used. As mentioned in the
publication ofWesterhout et al. [17] the common log-rank
test can be used in a modified version to test the hypoth-
esis whether these weighted survival probabilities for the
groups are the same.
The test-statistic is given as follows:

TB =
∑K

k=1

(
eB,Ik − nB,Ik ·eBk

nBk

)

√∑K
k=1

nB,Ik ·nB,Ck ·(nBk−eBk )·eBk
(nBk )2·(nBk−1)

. (18)

The test statistic TB is approximately standard normal
distributed. Thus, the hypothesis of equal weighted sur-
vival probabilities between the groups is rejected if TR ≤
−z1−α , where z1−α is the (1 − α)-quantile of the standard
normal distribution and α is the one-sided significance
level.

Simulation study
To provide a systematic comparison of the methods
described in the previous section, we conducted a simu-
lation study. As before, we consider a composite endpoint
combining two event types; one fatal event given by death
(D) and one non-fatal given by myocardial infarction (M).
For all scenarios 200 individuals per data set were gen-
erated with 100 in each treatment group. A follow-up of
three years was assumed, i.e. adminstrative censoring for
an individual follow-up after three years. Hence, the max-
imum number of events is limited by this observational
period and impacted by the underlying event distribution.
The mean event count per scenario is given in Table 3. In
the simulation, we additionally limited the maximal event
count per individual to 100. Patients who do not have an
event up to that time point remain in the analysis with a
censored time point. The effect estimates and tests will be
evaluated at three years, i.e. at the end of the study period.
In Table 2 the simulation scenarios are listed. Columns 2

to 5 show the assumed underlying hazard functions. The
hazards are displayed as products of the baseline hazards
and the cause-specific effects to underline the assumption
of equal baseline hazards. The cause-specific hazard are
assumed to be either exponentially orWeibull distributed.
The continuous event times are generated as described
by Bender et al. [23] for the fatal event and as described
by Jahn-Eimermacher et al. [24] for the non-fatal recur-
rent event. To gain first insights into the performance of
the three methods we consider scenarios where the base-
line hazards and hazard ratios do not change dependent
on previous events, i.e. there are also no strata-specific
effects.
The considered weights for the different weighting

approaches are listed in columns 6 to 9. For the Wei-
Lachin approach the weights for the fatal and non-fatal
event are chosen to sum up to 1 and such that the ratio
between the weights is equal to the weight ratio of the
other two approaches w∗

M
w∗
D
as given in Column 9. For the

fatal event the weight is set to 1 for the approach by Rauch
et al. and Bakal et al.. The weights for the non-fatal event
are ranging between 0.1 and 0.9 for the approach by Rauch
et al. and Bakal et al.. Scenarios a − e depict those weight
changes.
For Scenario 1 equal time independent baseline hazards

for the event types are assumed as well as equal cause-
specific effects. In Scenario 2 to 5 different cause-specific
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Table 2 Simulation scenarios

Scen. λI
M,j(t) λI

D,j(t) λC
M,j(t) λC

D,j(t) Weight for fatal event Weight for non-fatal event

Wei-Lachin Rauch and Bakal Wei-Lachin Rauch and Bakal

1a 0.25 · 0.5 0.25 · 0.5 0.25 0.25 0.5263 1 0.4737 0.9

1b proportional time independent hazards for event type 0.5882 1 0.4118 0.7

1c assumptions for approaches by Wei-Lachin and Rauch fulfilled 0.6667 1 0.3333 0.5

1d 0.7692 1 0.2308 0.3

1e 0.9091 1 0.0909 0.1

2a 0.25 · 0.5 0.25 · 0.7 0.25 0.25 0.5263 1 0.4737 0.9

2b see Scenario 1 for underlying assumptions 0.5882 1 0.4118 0.7

2c 0.6667 1 0.3333 0.5

2d 0.7692 1 0.2308 0.3

2e 0.9091 1 0.0909 0.1

3a 0.25 · 0.7 0.25 · 0.5 0.25 0.25 0.5263 1 0.4737 0.9

3b see Scenario 1 for underlying assumptions 0.5882 1 0.4118 0.7

3c 0.6667 1 0.3333 0.5

3d 0.7692 1 0.2308 0.3

3e 0.9091 1 0.0909 0.1

4a 0.25 · 1.5 0.25 · 0.7 0.25 0.25 0.5263 1 0.4737 0.9

4b see Scenario 1 for underlying assumptions 0.5882 1 0.4118 0.7

4c 0.6667 1 0.3333 0.5

4d 0.7692 1 0.2308 0.3

4e 0.9091 1 0.0909 0.1

5a 0.25 · 0.7 0.25 · 1.5 0.25 0.25 0.5263 1 0.4737 0.9

5b see Scenario 1 for underlying assumptions 0.5882 1 0.4118 0.7

5c 0.6667 1 0.3333 0.5

5d 0.7692 1 0.2308 0.3

5e 0.9091 1 0.0909 0.1

6a 0.25 · 0.5 0.1t · 0.7 0.25 0.1t 0.5263 1 0.4737 0.9

6b proportional hazards for each event type 0.5882 1 0.4118 0.7

6c time dependent hazards for one event type 0.6667 1 0.3333 0.5

6d assumptions for approaches by Wei-Lachin and Rauch fulfilled 0.7692 1 0.2308 0.3

6e 0.9091 1 0.0909 0.1

7a 0.25 · 0.7 0.1t · 0.5 0.25 0.1t 0.5263 1 0.4737 0.9

7b see Scenario 6 for underlying assumptions 0.5882 1 0.4118 0.7

7c 0.6667 1 0.3333 0.5

7d 0.7692 1 0.2308 0.3

7e 0.9091 1 0.0909 0.1

8a 0.1t · 0.5 0.25 · 0.7 0.1t 0.25 0.5263 1 0.4737 0.9

8b see Scenario 6 for underlying assumptions 0.5882 1 0.4118 0.7

8c 0.6667 1 0.3333 0.5

8d 0.7692 1 0.2308 0.3

8e 0.9091 1 0.0909 0.1
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Table 2 Simulation scenarios (Continued)

Scen. λI
M,j(t) λI

D,j(t) λC
M,j(t) λC

D,j(t) Weight for fatal event Weight for non-fatal event

Wei-Lachin Rauch and Bakal Wei-Lachin Rauch and Bakal

9a 0.1t · 0.7 0.25 · 0.5 0.1t 0.25 0.5263 1 0.4737 0.9

9b see Scenario 6 for underlying assumptions 0.5882 1 0.4118 0.7

9c 0.6667 1 0.3333 0.5

9d 0.7692 1 0.2308 0.3

9e 0.9091 1 0.0909 0.1

10a 0.192t−0.2 0.084t−0.3 0.28t−0.3 0.32t−0.2 0.5263 1 0.4737 0.9

10b non-proportional hazards for both event types (Weibull distributions) 0.5882 1 0.4118 0.7

10c assumptions for approach by Wei-Lachin not fulfilled 0.6667 1 0.3333 0.5

10d assumptions for approach by Rauch et al. fulfilled 0.7692 1 0.2308 0.3

10e 0.9091 1 0.0909 0.1

11a 0.084t−0.3 0.192t−0.2 0.32t−0.2 0.28t−0.3 0.5263 1 0.4737 0.9

11b see Scenario 10 for underlying assumptions 0.5882 1 0.4118 0.7

11c 0.6667 1 0.3333 0.5

11d 0.7692 1 0.2308 0.3

11e 0.9091 1 0.0909 0.1

Scen. =Scenario; λIM,j(t), λ
I
D,j(t), λ

C
M,j(t), and λCD,j(t) are the hazards for the non-fatal (M) and fatal event (D) in the intervention (I) and control (C) group for all strata j, respectively

effects are assumed. In the Scenarios 4 and 5 the cause-
specific effects of the two event types point into opposite
directions. In the Scenarios 6 to 9 one baseline hazard is
time dependent but the cause-specific effects and weights
are as for the Scenarios 2 and 3. For Scenarios 10 and 11
non-proportional cause-specific hazards are considered,
resulting in a time dependent effect estimand.
For each scenario 2000 data sets were simulated and

analyzed. In case of non-convergence for an approach the
data set will be excluded.
We used the statistic software R (Version 3.6.1 and 4.0.3)

[20] for the simulation study. R uses the Mersenne twister
[25] for generating random numbers.

Example data
To illustrate the methods further we apply all three meth-
ods to an open source clinical study data set available
within the R package frailtypack [26] named readmission.
This data is taken from a study published by Gonzales et
al. in 2005 [27]. They analyzed 403 patients with a new
diagnosis of colorectal cancer who had a surgery between
January 1996 and December 1998. They were actively fol-
lowed up until 2002. Time to rehospitalization and time
to death after surgery were included in the dataset. A
total of 458 readmssions were observed and 112 patients
died within the study period. The maximal event count
for a patient in the data set is 23 and the mean individ-
ual event count is 2.6 (± 2.8). The primary study aim is
to compare the number of observed fatal and non-fatal
events between patients who received chemotherapy (217

(53.8%)) and those who did not (186 (46.2%)). Since the
event death as a fatal event is assumed to be more clin-
ical relevant a higher weight will be assigned to death as
compared to readmission. However, results of different
weighting schemes will be shown for illustration. In clini-
cal practice and confirmatory trials the weighting scheme
should be pre-specified and other weighting schemes as
well as the unweighted case can be chosen as sensitivity
analysis.

Results
Results of simulation study
In Table 3 the results of the simulation study are displayed.
We start by looking at the estimands, estimator, and cor-

responding root mean squared error for the Wei-Lachin
approach and the approach by Rauch et al. since the devi-
ation from the true simulated values is of primary interest.
Recall that for the approach by Bakal et al. there is no
estimand and thus no estimator.
The true effects (estimands) for the Wei-Lachin

approach and the approach by Rauch et al. are in most
scenarios similar in magnitude and even equal in some
cases (if cause-specific hazards and hazard ratios are equal
between event types). With less influence of the recurrent
event (i.e. a smaller weight; going from scenario a to e)
the composite effect gets closer to the effect of the ter-
minal event that is the effect of the terminal event tends
to suppress the effect of the recurrent non-fatal event.
This effect is more or less prominent depending on the
underlying cause-specific hazards.
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Table 3 Simulation results

Scen. Mean amount of events (sd) Power Estimand Estimator
√
MSE

∗∗

at FU=3 (sd)∗

Non Fatal Per Wei- Rauch Bakal Wei- Rauch Wei- Rauch Wei- Rauch

fatal individual Lachin Lachin Lachin Lachin

1a 84.05 (9.66) 84.14 (6.71) 3.37 (0.70) 0.99 1.00 0.98 0.5 0.5 0.50 (1.18) 0.50 (1.18) 0.17 0.17

1b 0.99 1.00 0.98 0.5 0.5 0.50 (1.18) 0.50 (1.18) 0.17 0.17

1c 0.99 1.00 0.97 0.5 0.5 0.50 (1.19) 0.50 (1.19) 0.17 0.17

1d 0.98 0.99 0.95 0.5 0.5 0.50 (1.20) 0.50 (1.20) 0.19 0.19

1e 0.93 0.98 0.92 0.5 0.5 0.50 (1.23) 0.50 (1.23) 0.21 0.21

2a 82.01 (9.58) 93.69 (6.88) 3.36 (0.70) 0.92 0.97 0.72 0.60 0.61 0.59 (1.17) 0.61 (1.18) 0.16 0.16

2b 0.89 0.95 0.70 0.61 0.62 0.60 (1.18) 0.62 (1.18) 0.16 0.17

2c 0.84 0.92 0.66 0.63 0.63 0.62 (1.18) 0.63 (1.19) 0.16 0.17

2d 0.72 0.86 0.59 0.65 0.65 0.64 (1.19) 0.65 (1.20) 0.17 0.18

2e 0.51 0.71 0.49 0.68 0.68 0.68 (1.22) 0.68 (1.22) 0.20 0.20

3a 96.60 (10.43) 84.14 (6.71) 3.47 (0.69) 0.94 0.98 0.92 0.59 0.60 0.58 (1.17) 0.59 (1.17) 0.16 0.16

3b 0.94 0.99 0.93 0.57 0.58 0.57 (1.17) 0.58 (1.18) 0.16 0.16

3c 0.95 0.99 0.93 0.56 0.57 0.56 (1.18) 0.56 (1.18) 0.17 0.17

3d 0.94 0.98 0.92 0.54 0.55 0.54 (1.20) 0.54 (1.20) 0.18 0.18

3e 0.91 0.97 0.90 0.52 0.52 0.51 (1.23) 0.52 (1.23) 0.21 0.20

4a 140.43 (12.97) 93.69 (6.88) 4.48 (0.81) 0.02 0.03 0.04 1.00 1.08 1.00 (1.15) 1.07 (1.16) 0.14 0.15

4b 0.05 0.06 0.04 0.96 1.03 0.96 (1.16) 1.03 (1.17) 0.15 0.15

4c 0.10 0.12 0.07 0.90 0.97 0.90 (1.17) 0.97 (1.17) 0.16 0.16

4d 0.19 0.26 0.12 0.83 0.89 0.83 (1.19) 0.89 (1.18) 0.17 0.17

4e 0.32 0.46 0.25 0.75 0.77 0.75 (1.21) 0.77 (1.21) 0.19 0.19

5a 84.38 (9.90) 120.49 (6.66) 3.42 (0.71) 0.01 0.02 0.00 1.05 1.12 1.04 (1.16) 1.13 (1.17) 0.15 0.16

5b 0.01 0.01 0.00 1.10 1.17 1.09 (1.16) 1.18 (1.17) 0.15 0.16

5c 0.00 0.01 0.00 1.16 1.23 1.16 (1.16) 1.24 (1.18) 0.15 0.16

5d 0.00 0.00 0.00 1.26 1.32 1.26 (1.17) 1.32 (1.18) 0.15 0.17

5e 0.00 0.00 0.00 1.40 1.43 1.40 (1.19) 1.43 (1.19) 0.17 0.18

6a 99.16 (10.16) 63.25 (6.44) 3.52 (0.71) 0.87 0.98 0.71 0.60 0.61 0.59 (1.19) 0.59 (1.19) 0.18 0.18

6b 0.81 0.96 0.68 0.61 0.63 0.60 (1.20) 0.60 (1.20) 0.18 0.19

6c 0.72 0.94 0.62 0.63 0.64 0.62 (1.21) 0.61 (1.21) 0.19 0.20

6d 0.56 0.85 0.53 0.65 0.66 0.64 (1.23) 0.64 (1.23) 0.21 0.21

6e 0.36 0.64 0.38 0.68 0.69 0.67 (1.27) 0.67 (1.28) 0.24 0.24

7a 114.14 (11.00) 56.32 (6.14) 3.62 (0.72) 0.88 0.95 0.82 0.59 0.59 0.58 (1.20) 0.61 (1.18) 0.18 0.17

7b 0.87 0.96 0.82 0.57 0.57 0.57 (1.21) 0.60 (1.19) 0.19 0.18

7c 0.85 0.96 0.82 0.56 0.56 0.55 (1.23) 0.58 (1.20) 0.21 0.19

7d 0.82 0.95 0.81 0.54 0.54 0.53 (1.26) 0.56 (1.22) 0.23 0.20

7e 0.75 0.91 0.76 0.52 0.52 0.51 (1.30) 0.52 (1.28) 0.27 0.24
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Table 3 Simulation results (Continued)

Scen. Mean amount of events (sd) Power Estimand Estimator
√
MSE

∗∗

at FU=3 Estimator (sd)∗

Non Fatal Per Wei- Rauch Bakal Wei- Rauch Wei- Rauch Wei- Rauch

fatal individual Lachin Lachin Lachin Lachin

8a 39.86 (6.01) 93.69 (6.88) 1.97 (0.39) 0.78 0.88 0.47 0.60 0.60 0.59 (1.22) 0.64 (1.19) 0.20 0.19

8b 0.78 0.85 0.46 0.61 0.61 0.60 (1.21) 0.65 (1.19) 0.19 0.19

8c 0.76 0.81 0.46 0.63 0.63 0.62 (1.20) 0.66 (1.20) 0.18 0.19

8d 0.69 0.75 0.44 0.65 0.65 0.64 (1.20) 0.67 (1.22) 0.18 0.19

8e 0.52 0.67 0.42 0.68 0.68 0.67 (1.21) 0.69 (1.22) 0.19 0.20

9a 47.27 (6.58) 84.14 (6.71) 2.02 (0.35) 0.49 0.97 0.90 0.59 0.60 0.58 (1.21) 0.57 (1.19) 0.19 0.18

9b 0.88 0.97 0.90 0.57 0.59 0.57 (1.20) 0.56 (1.19) 0.18 0.19

9c 0.91 0.98 0.90 0.56 0.58 0.56 (1.20) 0.54 (1.20) 0.18 0.19

9d 0.92 0.98 0.90 0.54 0.55 0.54 (1.21) 0.53 (1.21) 0.19 0.20

9e 0.90 0.97 0.89 0.52 0.52 0.51 (1.23) 0.51 (1.24) 0.21 0.22

10a 111.94 (11.53) 84.44 (6.64) 4.07 (0.85) 1.00 1.00 1.00 0.41 0.45 0.41 (1.18) 0.44 (1.17) 0.17 0.16

10b 1.00 1.00 1.00 0.38 0.42 0.39 (1.19) 0.42 (1.17) 0.18 0.16

10c 1.00 1.00 1.00 0.35 0.38 0.36 (1.21) 0.39 (1.18) 0.19 0.16

10d 1.00 1.00 1.00 0.31 0.34 0.33 (1.22) 0.35 (1.19) 0.22 0.18

10e 1.00 1.00 1.00 0.27 0.27 0.29 (1.27) 0.30 (1.24) 0.26 0.23

11a 85.59 (10.21) 101.60 (7.06) 4.06 (0.88) 1.00 1.00 0.96 0.44 0.48 0.43 (1.19) 0.46 (1.18) 0.17 0.17

11b 1.00 1.00 0.95 0.47 0.52 0.46 (1.19) 0.49 (1.18) 0.17 0.17

11c 1.00 1.00 0.92 0.52 0.56 0.49 (1.19) 0.52 (1.18) 0.18 0.18

11d 0.95 0.97 0.86 0.58 0.62 0.53 (1.19) 0.56 (1.19) 0.20 0.20

11e 0.76 0.87 0.72 0.69 0.71 0.60 (1.21) 0.63 (1.21) 0.24 0.23

Scen. =Scenario; sd=standard deviation; FU=follow-up; ∗at FU=3 with sd based on logarithmic scale and afterwards back-transformed; ∗∗ root of mean squared error (MSE)
based on the logarithmized effect at FU=3

The estimators and corresponding standard deviations,
and thus the mean squared errors, are also similar (or
equal) for the two approaches within all scenarios. The
estimators also depict that with less influence of the recur-
rent event the composite effect gets closer to the effect of
the terminal event.
For the approaches by Wei-Lachin and by Rauch et al.

it is seen that with the decreasing weight for the recur-
rent event the variability in the estimator increases (i.e.
higher mean squared error is observed when changing
from Scenarios a to e). The mean squared error is highest
(mostly due to higher variability in estimation) in scenar-
ios with time dependent hazards (Scenarios 6 to 11). The
root mean squared error is best to compare the bias and
variability of the estimators. Since they are mostly almost
the same between the methods, the Wei-Lachin approach
and approach by Rauch et al. perform equally well in terms
of mean squared error.
For the Scenarios 10 and 11, the composite effect is time

dependent but in our Scenarios we only evaluate and test
the effect at a given time point, i.e. three years. In this case

the estimated effect might be closer to the true underlying
effect at some time points but at other time points estima-
tion might result in major bias. In Scenario 5 a composite
estimand greater than 1, i.e. effect in favor of the control,
is given. The estimators capture this. Since we consider a
one-sided null-hypothesis the power observed within Sce-
nario 5 is almost 0. In Scenario 4 the composite estimand
is closer to 1 than in other scenarios (except Scenario
5). Hence, smaller power values are observed due to the
one-sided study design.
The following observatios are made for the power val-

ues: The power for the approach by Bakal et al. is the low-
est in most scenarios. In some scenarios the power for the
approach by Bakal et al. is similar to the power observed
within the Wei-Lachin approach. For the approach by
Rauch et al. the highest power is seen in most sce-
narios. For Scenario 1a-e where the estimand remains
the same for all weighting schemes it is seen that the
power decreases with decreasing weight for the non-fatal
event (i.e. from Scenario 1a to 1e). In Scenarios 3 and 7
the power decreases although the estimands increase. In
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these scenarios a smaller effect for the recurrent event is
assumed and while decreasing the weight its influence on
the effect estimate decreases as well and hence the power
is based on the less occurring fatal event which leads to
more variability. In scenarios where the composite effect
approaches 1 with a smaller weight for the recurrent event
(i.e Scenarios 2 and 6) the power decreases radically.

Results of application
Table 4 shows the results for the example dataset. For
different weighting schemes the p-values are given for a
one-sided test for all three approaches. For the method
by Wei and Lachin and Rauch et al. the result for the
estimated weighted effect measure is shown.
The estimated unweighted cause-specific hazard ratios

comparing patients with chemotherapy to patients with-
out chemotherapy are 0.77 for the event readmission
and 1.44 for the event death. Note, that they point into
opposite directions, i.e. patients who received chemother-
apy have a higher chance to die compared to patients
who did not receive chemotherapy. In contrast, the
patients who are treated with chemotherapy have a lower
chance to experience readmission compared to those with
chemotherapy. This can also be seen in the results of all
three methods since with a lower weight for hospitaliza-
tion the difference between the patients with chemoth-
erpy and those without increases, i.e. depict more and
more the difference seen for the death event alone as seen
in the estimator which becomes larger. In the example,
the difference between the estimated weighted effect mea-
sure for the approach by Wei and Lachin and Rauch et
al. is more prominent than in the simulation study which

might be due to the higher event count for the non-fatal
event. The p-value within the approach by Bakal et al. is
always the highest and hence shows only a significance if
readmission is ingored, i.e. has a really low weight, in the
analysis.

Discussion
The analysis of composite endpoints combining events
of different clinical relevance with potentially recurrent
events is a challenging task in cardiovascular or onco-
logic trials. Therefore, we are the first to compare three
methods that were proposed in the literature to give an
overview of their properties in different clinical data situ-
ations. This should help the applied researcher to choose
an adequate method in future clinical trials. The proposed
methods differ in their properties and assumptions. How-
ever, for all approaches the choice of the weighting scheme
should be based on clinical relevance of event types.
Wei and Lachin proposed an approach where the pre-

specified relative weights work on the cause-specific log-
hazard ratios. For this approach not only an estimand
is given but also a closed formula for a corresponding
variance and thus confidence intervals. The power within
this approach gained via the multivariate testing proce-
dure was mostly between the power of the other two
approaches in our simulation study but more similar to
those gained for the approach by Bakal et al.. This can
be explained by the fact the weights work on the cause-
specific effects, which are thus estimated separately. The
combined effect is then a weighted average of the indi-
vidually estimated cause-specific effects. The estimation
is thus based on a smaller event count which results

Table 4 Application results

Weighting scheme p-value∗ Estimator∗∗

Wei-Lachin Rauch Bakal Wei-Lachin Rauch

Weight for death: 1 0.34 0.10 0.40 1.05 1.38

Weight for readmission: 1

Weight for death: 1 0.29 0.09 0.39 1.07 1.39

Weight for readmission: 0.9

Weight for death: 1 0.21 0.07 0.37 1.11 1.40

Weight for readmission: 0.7

Weight for death: 1 0.14 0.05 0.32 1.17 1.42

Weight for readmission: 0.5

Weight for death: 1 0.09 0.04 0.23 1.25 1.43

Weight for readmission: 0.3

Weight for death: 1 0.05 0.03 0.05 1.36 1.44

Weight for readmission: 0.1

∗one-sided test in favour of no chemotherapy; ∗∗ estimated weighted composite effect at end of study period for chemotherapy vs. no chemotherapy; composite endpoint
= (recurrent) hospitalization plus death
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in a higher variability for each cause-specific effect, i.e.
higher variances are combined in the multivariate proce-
dure. Furthermore, because the weights work only on the
cause-specific effects the event count and distribution of
events is not considered. Thus, a high cause-specific effect
which is based on a low event number has still a great
impact on the weighted composite effect which might be
questionable as an effect based on a small event count
has a high standard error. On the other hand, also an
effect estimated based on high uncertainty can be rele-
vant for clinical practice, so there are several views on this
aspect.
Rauch et al. proposed an approach that extends the

common all-cause hazard ratio and thereby naturally pro-
posed an underlying estimand. Although an estimand is
given, no closed formula for a corresponding variance
and thus no confidence intervals could be derived. How-
ever, the corresponding weight based log-rank test (which
was extended to a stratified approach in the present
study to account for recurrent events) showed the high-
est power in our simulation study with similar properties
(e.g. mean squared error) as compared to the approach by
Wei and Lachin. Pre-specified relevance weights work on
the cause-specific hazards and thus on the event count.
Hence, the weighted all-cause effect does not exclusively
rely on the cause-specific effects. This is an advantage
because in a situation where a low event number goes
along with an observed high cause-specific effect, the
influence on the weighted composite effect is reduced, i.e.
a more reliable effect estimate can be gained.
Bakal et al. proposed a weighted estimate for survival

probabilities in a Kaplan-Meier type estimation approach.
They did not provide an estimand and thus no effect esti-
mator can be reasonably reported. Pre-defined relevance
weights within this approach work on the event count as
well as on the number of patients at risk. Although, the
principle concept of Bakal’s approach seems appealing,
the methods lacks a theoretical foundation, an underlying
model and a prespecified estimand. Our results moreover
show the lowest power for this approach in most scenar-
ios. We therefore cannot recommend to use the approach
by Bakal et al..
For the approaches by Wei and Lachin and Rauch et al.

however, the results should be interpreted with care if the
proportional hazards assumption is not met for the com-
ponents. In this case the composite effect is time depen-
dent which is not captured whithin these approaches, i.e.
they assume constant effects. Hence the estimated effect
might be correctly estimated at some time points but
at others major bias might be observed. For the non-
parametric approach by Bakal et al. there is no assumption
about proportional hazards but since they did not state
a theoretical model it is not possible to evaluate the
performance in terms of bias.

The Wei-Lachin approach assumes a constant compos-
ite effect over time. Within the approach by Bakal et al.
time dependence is also not considered. Although for the
approach by Rauch et al. a time dependent estimate can be
gained the stratified weight based log-rank test does not
incorporate this time dependence.
This means, that the approach byWei et al. as well as the

approach by Rauch et al. make strong assumptions. Pro-
portional hazards are needed for the different causes and
on strata level which is usually not met in clinical prac-
tice. Rauch et al. developed their estimand based on the
assumption of a specific underlying survival distribution
(parametric model). To derive a non-parametric formu-
lation equal cause-specific baseline hazards are needed.
However, it was shown that this non-parametric approach
is robust against a miss-classification [15].
Furthermore, a disadvantage of all three methods is that

the dependence between the fatal event and the recurrent
event process is not modeled, which could be addressed
by joint frailty models [8], [9].
In future studies the evaluation of the illustrated meth-

ods within a two-sided test problem might be of interest
to confirm our results for the one-sided case (we do not
assume that there will be any differences). Furthermore,
the evaluation of the type one error in different scenarios
should be evaluated since this was only marginally cap-
tured within this work, i.e. only once when the weighted
composite estimand was 1 in the Wei-Lachin approach
(Scenario 4a). Thereby, it should be noted that there are
several constellations which yield a weighted estimand
of 1. Robust standard errors should mostly be applied
within recurrent time to event analysis, which might also
influence statistical significance and type one error and
hence it should be evaluated how they can be incorporated
within a log-rank type test statistic, since the log-rank
type test statistics (Rauch et al., Bakal et al.) do not allow
such an extension at the moment. More complex sce-
narios should also be evaluated, i.e. where a correlation
between event types is simulated or where more than
two event types are considered. We considered only the
three methods evaluated in this work where it was origi-
nally described that for the weighted components within
a composite endpoint an extension to multiple events
per patient is possible. However, it still might be useful
to compare other methods for weighted composite end-
points, e.g. by Buyse [10]. Buyse described how to perform
generalized pairwise comparisons between two groups of
observations with prioritized outcome. As this approach
is not based on a time to event model, we neglected it
within this paper.
We were only interested in the estimation of the com-

posite effect, but in clinical studies the cause-specific
effects should also be reported as recommended by sev-
eral guidelines [28–30]. It should also be noted that the
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events considered in the composite endpoint should all
be harmful or all be favorable, a mixture of harmful and
favorable events must be avoided.

Conclusion
In conclusion, for clinical studies where a two groups
comparison with respect to a composite endpoint com-
bining (recurrent) events of different clinical relevance is
of interest two approaches might be recommended which
have different pros and cons: The approach by Rauch et
al. can be recommended due to its intuitive interpretation
although it provides only bootstrap confidence intervals
for the effect estimate. The approach by Wei and Lachin
might be preferred, when all event types show a reason-
able event count and when the derivation of confidence
intervals is central. The approach by Bakal et al. in its
current form should be applied with care as a theoretical
foundation is lacking.
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