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Abstract 

Background:  We consider cluster size data of SARS-CoV-2 transmissions for a number of different settings from 
recently published data. The statistical characteristics of superspreading events are commonly described by fitting a 
negative binomial distribution to secondary infection and cluster size data as an alternative to the Poisson distribution 
as it is a longer tailed distribution, with emphasis given to the value of the extra parameter which allows the variance 
to be greater than the mean. Here we investigate whether other long tailed distributions from more general extended 
Poisson process modelling can better describe the distribution of cluster sizes for SARS-CoV-2 transmissions.

Methods:  We use the extended Poisson process modelling (EPPM) approach with nested sets of models that include 
the Poisson and negative binomial distributions to assess the adequacy of models based on these standard distribu-
tions for the data considered.

Results:  We confirm the inadequacy of the Poisson distribution in most cases, and demonstrate the inadequacy of 
the negative binomial distribution in some cases.

Conclusions:  The probability of a superspreading event may be underestimated by use of the negative binomial dis-
tribution as much larger tail probabilities are indicated by EPPM distributions than negative binomial alternatives. We 
show that the large shared accommodation, meal and work settings, of the settings considered, have the potential 
for more severe superspreading events than would be predicted by a negative binomial distribution. Therefore public 
health efforts to prevent transmission in such settings should be prioritised.
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Background
In the public communication of information about the 
novel coronavirus disease COVID-19 there is emphasis 
frequently given to estimates of the basic reproduction 
number R0, the expected number of secondary cases aris-
ing from a single primary case in a fully susceptible popu-
lation, and the effective reproduction number Rt which is 
similarly defined to R0 but when a population is subject 
to control measures. Values of such R’s greater than one 
lead to the exponential growth of daily case numbers.

Of next importance, or perhaps equal, to the value of 
R0 or Rt is a measure of individual variation in infectious-
ness. Such variation is important because it can explain 
the occurrence of so-called superspreading events 
(SSE’s) where the numbers of secondary and subsequent 
cases are substantially more than expected from assum-
ing a Poisson distribution for the numbers of cases. In a 
Nature News Feature [1] the importance of SSE’s in the 
continued COVID-19 pandemic is emphasized and rel-
evant research reviewed.

SSE’s were considered in [2] by comparing right tail 
probabilities of the Poisson distribution with alternatives 
for the distribution of secondary cases. For highly skew 
negative binomial distributions, with variance equal to 
mean + mean2/k and small values of the extra parameter 
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k, the tail probabilities are much larger than those for the 
corresponding Poisson distribution with the same mean. 
The paper emphasises the importance of recognising 
the reasonable chance of SSE’s in the effective control of 
infectious diseases by targeting individual-specific con-
trol measures rather than population wide measures.

The importance of SSE’s in the COVID-19 pandemic is 
shown in [3] where the transmission of the virus SARS-
CoV-2 is characterised by high stochasticity under low 
prevalence. The importance of the control of SSE’s in 
the transmission of SARS-CoV-2 is stressed, and various 
types of SSE are described using negative binomial tail 
probabilities with small dispersion parameter k to quan-
tify the probability of an SSE.

Genomic epidemiology was used [4] to investigate the 
transmission of SARS-CoV-2 in the Boston, MA, area 
concluding that not all SSE’s for COVID-19 have the 
same impact on the community. Two SSE’s were com-
pared. One, in a skilled nursing facility led to widespread 
transmission within the facility, while another, in an inter-
national business conference, had a much greater impact 
on the local, US and international community with a very 
large number of transmissions. This study does suggest 
that SSE’s can affect in diverse ways the course of an epi-
demic, and that prevention, detection, and mitigation of 
such events should be a priority for public health efforts.

Given data on the number of secondary cases aris-
ing from each primary case, either individual secondary 
case data or clusters of such data, then the epidemiologi-
cal literature has suggested using the negative binomial 
distribution as an alternative to the Poisson distribution. 
Cluster size includes all primary or initial cases, second-
ary cases and all subsequent derived cases. This distri-
bution was considered [2] for the number of secondary 
cases for a number of infectious diseases including 
severe acute respiratory syndrome (SARS). A formula 
was derived for the probability of a given cluster size 
given a known number of initial cases, and the disper-
sion parameter k was estimated to be 0.16 with 90% con-
fidence interval (0.11, 0.64) from data on the Singapore 
SARS outbreak due to the SARS-CoV-1 virus. The nega-
tive binomial and geometric distributions were favoured 
over the Poisson distribution for several disease datasets.

For Middle East respiratory syndrome coronavirus 
(MERS-CoV) data clusters of cases from around the 
world were considered in [5], and a negative binomial 
distribution for the number of secondary cases was fitted 
and estimates reported for MERS-CoV: k = 0.26 (90% CI: 
0.11, 0.87, 95% CI: 0.09, 1.24).

For COVID-19 data sets, the negative binomial distri-
bution was fitted to sizes of outbreaks or clusters out-
side China in [6]. A dispersion parameter k estimate of 
0.1 was reported, with 95% Credible Interval (0.05, 0.2) 

for R0 equal to 2.5 (thereby ignoring any uncertainty in 
the estimation of R0). Joint inference for both R0 and k 
does have a large degree of uncertainty, but even so using 
WBIC it was shown that the negative binomial distribu-
tion was greatly favoured over the Poisson distribution.

The zero-truncated negative binomial distribution was 
fitted to COVID-19 secondary case data in [7], including 
possible cluster sizes of one; that is, cases with no further 
infections. The parameter k was estimated to be 0.32, 
95% CI (015, 0.64).

Given the common use of the negative binomial distri-
bution to model the distribution of secondary cases, clus-
ter sizes and hence SSE’s, it is important and of interest 
to investigate whether other long tailed distributions can 
reasonably describe the distribution of secondary cases 
and cluster sizes for SARS-CoV-2 transmissions and 
whether these distributions lead to more extreme SSE’s 
than predicted by a negative binomial distribution.

Methods
Data
The data analysed in this paper are from an Excel data-
base dated 06-07-2020 (North American style) [8]. They 
were collected for various “settings” within which infec-
tions took place; these ranged from “Building site” to 
“Work”. The database gave “The total number of cases 
per cluster” for all 265 entries, with breakdowns into 
numbers of “primary cases” and” secondary cases” only 
included for less than a third of these. So to maximize the 
amount of data available for analysis, cluster sizes were 
considered as the response with settings as a covariate. 
Transmission of infection was presumed to be limited to 
the specific setting with no infections from other settings 
included.

The overall aim in [8] was to gather information on 
reported clusters of COVID-19 cases to determine the 
different settings in which SARS-CoV-2 transmission was 
occurring. This was done from a search of the scientific 
literature and media articles detailing clusters of SARS-
CoV-2 transmission. Data from such sources will have 
several limitations, including inherent recall bias, biased 
media reporting and incomplete information – deciding 
to work with data on cluster sizes being a consequence of 
the last of these. About half the data related to outbreaks 
occurring in China and Singapore.

Modelling
The Poisson distribution ([9], chapter 4) is a basic statis-
tical model for count data and corresponds to “events” 
occurring randomly over time in a Poisson process of 
fixed “rate”, λ > 0; that is, where the probability of an 
event occurring in a short time interval of length δt 
is λδt, independently of the occurrence of any other 
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events. The number of events occurring in a finite time 
interval of length t (which can be taken, without loss of 
generality, to be one) then has the Poisson distribution 
with mean = variance = λ. This limitation on the vari-
ation has prompted generalisations to admit variance 
greater than the mean with the negative binomial ([9], 
chapter 5) being one such generalisation where the rate 
of the Poisson process is allowed to vary between differ-
ent observed processes according to a gamma distribu-
tion with shape parameter k (> 0); this leads to a mixed 
Poisson distribution with variance = mean + mean2/k. 
Such a measure, k, of extra variation compared to Pois-
son in any mixed Poisson distribution expressed gen-
erally as μ2/(σ2 - μ), where μ and σ2 are the mean and 
variance of the counts, is the reciprocal of the square of 
the coefficient of variation of the mixing distribution. 
So the smaller this quantity is the greater the extra vari-
ation with the Poisson distribution corresponding to an 
infinite value.

An alternative way of varying the rate of the underly-
ing Poisson process is to relax the above assumption of 
independence and have dependency on the accumulat-
ing number of events n, say, occurring: λn = a(n + k), 
n ≥ 0, corresponds to the negative binomial distribution 
with mean k [exp(a) - 1]. Having λn = a(n + b)c with c ≠ 1 
thus generalises the negative binomial distribution (c = 1 
and b = k) with c < 0 resulting in variance < mean, and 
c > 0 variance > mean [10]. So this generalisation admits 
a range of dispersion from sub-Poisson (c < 0) through 
Poisson (c = 0) to negative binomial (c = 1) and beyond 
(c > 1). Details of calculating the probabilities from 
sequences λn, n ≥ 0, are given in an Additional file 1.

This extended Poisson process modelling (or EPPM) 
was introduced in [11] with subsequent papers ([12] and 
references therein) developing and applying this model-
ling. A complication arises when the power parameter c 
in the above formulation of the λn’s exceeds one, in that 
the resulting probability distribution is dishonest with 
the sum of the probabilities being less than one, and they 
require re-normalising by dividing by this sum before 
they can be applied – details of doing this in practice are 
also given in the Additional file 1.

Using this λn = a(n + b)c, n ≥ 0, formulation a single 
degree of freedom test for departures from negative bino-
mial variation thus corresponds to testing the hypothesis 
c = 1 (with b = k). Although c = 0 corresponds to λn being 
constant and the Poisson distribution, the parameter 
b becomes redundant in this special case. However, the 
limiting case of b → ∞ and c → ±∞ leads to λn = α exp. 
(βn) with β = 0 corresponding to the Poisson distribution, 
and β > 0 (< 0) to probability distributions with variance 
>(<) mean (again, re-normalisation of the probabilities is 
required if β > 0). Hence a single degree of freedom test 

for departures from the Poisson distribution can be car-
ried out.

Model fitting
All the probability distributions considered:

	(i)	 basic Poisson distribution with variance = mean,
	(ii)	 EPPM with λn = α exp. (βn), n ≥ 0 (to assess the 

adequacy of the Poisson distribution, β = 0),
	(iii)	 negative binomial distribution (if Poisson is inade-

quate, to estimate the additional dispersion param-
eter k), and

	(iv)	 EPPM with λn = a(n + b)c, n ≥ 0 (to assess the ade-
quacy of the negative binomial, c = 1)

Have support on 0, 1, 2, … but cluster sizes are by defini-
tion non-zero. Distributions (i) – (iv) were therefore fit-
ted to cluster sizes minus one for each setting. Maximum 
likelihood estimation (again, practical details including 
MATLAB® code are in the Additional file 1), rather than 
simple moment estimation, was used in fitting the distri-
bution and the results compared across the different set-
tings. For each setting, a Poisson model was first fitted 
to the data and compared with an EPPM (ii) fit using a 
likelihood ratio test; if there were no significant improve-
ment then the Poisson model was selected. If there were 
significant improvement, then a negative binomial model 
was fitted and compared with an EPPM (iv) fit; if this 
resulted in no further significant improvement in fit then 
the negative binomial model was chosen. If there were 
some significant improvement, then the EPPM (iv) model 
was selected; since this was the most general of the mod-
els, assessments of the resulting fits were done using P-P 
plots.

Results
The data [8] provided ten subsets of specific settings 
of SARS-CoV-2 transmission, where there were suf-
ficient numbers of clusters (at least 10) for reason-
able prospects of getting Sufficiently precise estimates. 
These were: elderly care (n = 21), food processing plants 
(n = 21), household (n = 38), large shared accommoda-
tion (n = 29), meal (in restaurants, etc., n = 17), party 
(n = 14), religious (gatherings, n = 22), school (n = 11), 
sport (n = 22) and work (n = 15). Table  1 shows results 
from the above fitting process, with the most parsimo-
niously parameterised model chosen. The P-P plots in 
Fig. 1 show the improvement in fit of the EPPM (iv) over 
the negative binomial model for the work data, with the 
former showing quite a good fit to the data and a better 
match to the upper tail of the empirical distribution. The 
models fitted to the large shared accommodation and 
meal data showed similar P-P plots.
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Only household transmission could reasonably be 
described by the Poisson distribution (chi-squared good-
ness of fit statistic 2.21 on 4 d.f.), with all the other set-
tings showing highly significant departures from Poisson 
variation (p-values < 0.001). The negative binomial distri-
bution was quite adequate for elderly care, food process-
ing plants, party, religious, school and sport. However, 

large shared accommodation, meal and work all showed 
significantly more variation than that described by the 
negative binomial distribution.

The maximum likelihood estimates of the parameter k 
from the negative binomial fits to the above mentioned 
six subsets varied between 0.66 with standard error 
0.17 (food processing) and 1.16 with standard error 0.34 

Table 1  Details of model fitting for ten different settings for COVID-19 cluster size data [8]. One of three possible models [(i) – (iv), as 
described in the text] was chosen based on the log-likelihood ratio statistic, the value of which is given for testing a simpler model 
versus a more complex one [β = 0 for (ii) versus (i), and c = 1 for (iv) versus (iii)]. The p-value of this statistic is also given

Setting Model chosen Log-likelihood ratio statistic for comparison 
with alternative model

p-value for comparison 
with alternative model

Elderly care Negative binomial 1.54 0.21

Food processing plants Negative binomial 0.25 0.62

Household Poisson 2.30 0.13

Large shared accommodation EPPM 5.18 0.023

Meal EPPM 7.19 0.0073

Party Negative binomial 0.44 0.51

Religious Negative binomial 0.12 0.73

School Negative binomial 0.53 0.47

Sport Negative binomial 1.15 0.28

Work EPPM 10.00 0.0016

Fig. 1  P-P plots for fitted models to the work data: negative binomial (dashed line) and EPPM (solid line); the diagonal dotted line represents 
perfect correspondence
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(elderly care). These relatively large standard errors sug-
gest that this parameter may be assumed to be constant 
across the subsets, which is confirmed by fitting nega-
tive binomial distributions with the same value of the 
k parameter but different values of the means to these 
data: log-likelihood ratio statistic 2.75 on 5 d.f. Shown in 
Table 2 are the estimated means and (common) param-
eter k.

Estimates of the parameter k for the large shared 
accommodation, meal and work subsets had to be cal-
culated from first principles from the fitted distribu-
tions, as there are no simple algebraic expressions for 
the moments from the EPPM formulation; this does 
make likelihood based inferences problematic. The 
three estimates of k and their standard errors are also 
shown in Table 2; all three estimates are lower than the 
(common) estimate of k for the other settings (exclud-
ing household). However, the standard errors are very 
large, suggesting that the three subsets having the same 
value of k could be a quite acceptable hypothesis, but 
also that k might not be such a useful measure of extra 
variation for long-tailed distributions like EPPM’s,.

In Fig.  2 are plots of the fitted probability distribu-
tions corresponding to the estimated models described 
in Tables 1 and 2. As the means varied from about four 
(household) to nearly 200 (food processing), upper tail 
probabilities have been plotted against multiples of their 
respective means. The negative binomial distributions 
(elderly care, food processing.

plants, party, religious, school and sport) all with a 
common value of the parameter k are quite similar show-
ing a roughly linear decline on the log-scale. The EPPM 
distributions for.

Meal and work with lower values of k are also quite 
similar but convex decreasing (on the log-scale) indicat-
ing the much longer tails of these distributions. While 
the EPPM distribution for large shared accommodation 
with an even lower k and also a lower value of the param-
eter c shows even longer tails. The Poisson (household) 
distribution shows its much shorter tail with a concave 
decreasing plot.

Discussion
Maximum likelihood estimation has been used here to 
estimate the dispersion parameter k, rather than moment 
estimation which seems to be more common in epide-
miological studies [2, 5–7]. Indeed, the estimates quoted 
in Table  2 are somewhat larger than those from these 
studies, although they are all rather imprecise (with wide 
confidence intervals or large standard errors). Estimates 
based on moments, or k-statistics, do have a tendency 
to be smaller with data from long-tailed probability dis-
tributions as simple moments are more influenced by 
extremes than maximum likelihood estimates.

Even though, as shown in Fig. 2, larger tail probabilities 
of the negative binomial compared to Poisson are plainly 
apparent, superspreading may be underestimated by 
use of the negative binomial distribution [2, 3] as much 
larger tail probabilities are indicated from the EPPM 
distributions.

Cluster sizes are necessarily positive and have been 
modelled using truncated (zero excluded) distributions 
with support on 1, 2, … in [7]. Here, untruncated dis-
tributions have been used to model cluster size minus 
one which has an interpretation as the number of addi-
tional infections in a superspreading event initiated by 

Table 2  Details of parameter estimates with standard errors (s.e.) for ten different settings for COVID-19 cluster size data [8]. Values are 
given for the dispersion parameter, or k-parameter, defined for all models fitted and the c-parameter for the EPPM models. A value of 0 
for the c-parameter corresponds to a Poisson model and a value of 1 a negative binomial model

Setting Mean estimate (s.e.) k-parameter estimate (s.e.) c-parameter estimate 
from EPPM formulation 
(s.e.)

Elderly care 37.95 (9.01) 0.86 (0.11) 1

Food processing plants 187.47 (44.10) 0.86 (0.11) 1

Household 3.68 (0.60) ∞ 0

Large shared accommodation 85.19 (37.23) 0.23 (0.29) 1.24 (0.13)

Meal 6.03 (1.53) 0.64 (0.34) 3.97 (1.19)

Party 29.14 (8.50) 0.86 (0.11) 1

Religious 39.77 (9.22) 0.86 (0.11) 1

School 33.91 (11.13) 0.86 (0.11) 1

Sport 5.86 (1.44) 0.86 (0.11) 1

Work 11.62 (3.04) 0.42 (0.24) 3.34 (0.76)
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a single infected individual. Both truncated and untrun-
cated modelling gave similar results from the data con-
sidered here, with no one type consistently preferred over 
the other by likelihood based criteria. However, untrun-
cated EPPM’s were preferred over truncated for the large 
shared accommodation, work and meal data.

Extreme value like distributions offer other longer-tailed 
alternatives to the negative binomial distribution, but the 
theory behind such distributions (i.e., maxima of equal sam-
ple sizes) would not apply to epidemic clusters. Pragmatically 
though, distributions of such forms could be applied to any 
data but they should be in discrete form for numbers of infec-
tions. For example, a discrete Pareto distribution with prob-
ability mass function proportional to (n + a)-(b + 1), for n = 0, 1, 
2, … with a, b > 0, gave much the same fits to the large shared 
accommodation and work data as the EPPM’s, but a rather 
worse fit to the meal data – much the same as the negative 
binomial in fact. Such distributions are quite different from 
EPPM’s, without the Poisson and negative binomial distribu-
tions as special cases. And the EPPM family of distributions 
does have the appeal of containing these standard distribu-
tions as special cases enabling significance testing of improve-
ments from more general alternatives within the family.

Settings of SARS-CoV-2 infection have been the sub-
ject of other recent studies. In [13] the authors inves-
tigated the risk of transmission in outdoor settings 

compared with indoor settings, conducting a systematic 
review of peer-reviewed papers and identifying five stud-
ies which found a lower proportion of reported global 
SARS-CoV-2 infections occurring outdoors: odds-ratio 
of 18.7 (95% confidence interval 6.0–57.9) for infec-
tion indoors compared with outdoors. And in [14] the 
authors analysed outbreaks by industry sector in the first 
wave of the pandemic, and associated household cases. 
They found that 80% of cases belonged to three sectors: 
manufacturing; agriculture, forestry, fishing and hunting; 
and transportation and warehousing. Household cases 
were associated with 31% of outbreak cases, increasing 
the burden of illness by 56%. The results presented here 
are not dissimilar in that SSE’s were associated with the 
work and meal settings, the latter being an indoor setting 
as would be large shared accommodation. And house-
holds being associated with increasing the burden of 
illness would not be at variance with the finding here of 
household infection not initiating SSE’s per se.

Conclusions
Long-tailed probability distributions are necessary to 
adequately describe the variation in sizes of clusters of 
infections emanating from a common source, as the Pois-
son distribution was quite inadequate for all but one of 

Fig. 2  Shows plots of the fitted probability distributions corresponding to the estimated models described in Tables 1 and 2 for COVID-19 cluster 
size data [8]. These are of upper tail probabilities of cluster size plotted against multiples of their respective means. Poisson (dotted line), negative 
binomial (solid lines) and EPPM (dashed lines)



Page 7 of 7Faddy and Pettitt ﻿BMC Medical Research Methodology           (2022) 22:32 	

the subsets of data considered. The negative binomial 
distribution proved to be adequate for all but three of 
the other settings, where the extra parameter of the 
EPPM formulation was necessary to describe the varia-
tion. Given that the negative binomial distribution was 
indicated for 60% of the settings considered here, this 
model might be considered as a “standard” for numbers 
of infections in a developing pandemic, with the Poisson 
(less dispersion) as well as the EPPM (greater dispersion) 
notable exceptions. Implications of such longer-tailed 
distributions of numbers of infections in more complex 
modelling of epidemics would be of further interest.

Considerable heterogeneity of transmission is appar-
ent with large shared accommodation, meal and work 
having higher excess variation and being the most het-
erogeneous, while household was more homogeneous 
with the Poisson distribution adequate. Household also 
had the lowest mean cluster size, with food processing 
the highest. The large shared accommodation, meal and 
work settings, of those considered, have the potential 
for more severe SSE’s than would be predicted by a neg-
ative binomial distribution, which suggests that public 
health efforts to reduce transmission in such settings 
(such as encouraging working from home wherever 
possible, for example) should be a high priority.

The data considered in this paper were aggregated 
from many countries in Asia, Europe and North Amer-
ica, and so are certainly comprehensive; they are openly 
available and their sources varied. They are probably 
as reliable as any data on a developing pandemic, and 
adequately accounting for their variability can only be 
beneficial to the robustness of any inferences.
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