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Abstract 

Background:  When performed in an observational setting, treatment effect modification analyses should account 
for all confounding, where possible. Often, such studies only consider confounding between the exposure and out-
come. However, there is scope for misspecification of the confounding adjustment when estimating moderation as 
the effects of the confounders may themselves be influenced by the moderator. The aim of this study was to inves-
tigate bias in estimates of treatment effect modification resulting from failure to account for an interaction between 
a binary moderator and a confounder on either treatment receipt or the outcome, and to assess the performance of 
different approaches to account for such interactions.

Methods:  The theory behind the reason for bias and factors that impact the magnitude of bias is explained. Monte 
Carlo simulations were used to assess the performance of different propensity scores adjustment methods and 
regression adjustment where the adjustment 1) did not account for any moderator-confounder interactions, 2) 
included moderator-confounder interactions, and 3) was estimated separately in each moderator subgroup. A real-
world observational dataset was used to demonstrate this issue.

Results:  Regression adjustment and propensity score covariate adjustment were sensitive to the presence of 
moderator-confounder interactions on outcome, whilst propensity score weighting and matching were more sensi-
tive to the presence of moderator-confounder interactions on treatment receipt. Including the relevant moderator-
confounder interactions in the propensity score (for methods using this) or the outcome model (for regression 
adjustment) rectified this for all methods except propensity score covariate adjustment. For the latter, subgroup-
specific propensity scores were required. Analysis of the real-world dataset showed that accounting for a moderator-
confounder interaction can change the estimate of effect modification.

Conclusions:  When estimating treatment effect modification whilst adjusting for confounders, moderator-con-
founder interactions on outcome or treatment receipt should be accounted for.
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Introduction
Treatment effect modification (TEM) occurs when 
the effect of treatment on an outcome is influenced by 
a third variable, termed a moderator. Such an analy-
sis can identify patients who are more likely to ben-
efit or be harmed from treatment. In some cases, a 
moderator may have a strong scientific-rationale and 
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their investigation is pre-specified. For example, in 
their randomised controlled trial protocol, Kyle et  al. 
hypothesised that age may moderate the effect of cog-
nitive behavioural therapy for insomnia on cognitive 
functioning outcome [1]. In other cases, researchers 
may investigate several potential moderators in an 
exploratory manner at the analysis stage. TEM is typi-
cally evaluated by including a product term (statistical 
interaction) between treatment and the moderator in a 
regression model applied to the full cohort of patients 
in the study.

Randomised clinical trials provide the best evidence 
regarding the causal effects of treatments, and thus also 
the best evidence for the existence of TEM, although if 
the causal effect of a moderator is of interest, treatment 
randomisation does not ensure unbiased estimation of 
this [2]. Observational studies however are more feasible 
for many research questions, for example when investi-
gating rare treatment side-effects or assessing real-world 
effectiveness. Observational studies require appropriate 
adjustment of confounders in order for valid inference on 
the causal effect of treatments to be made [3]. Confound-
ers are often accounted for via regression adjustment in 
a multivariable regression model or, increasingly, by the 
use of propensity scores [4].

Observational studies attempt to adjust for confound-
ing of the treatment–outcome relationship but often do 
not consider any additional features required to unbias-
edly evaluate TEM [5]. Here, we focus on the situation 
where the moderator not only influences the relation-
ship between the treatment and outcome, but also the 
relationship between a confounder and either treatment 
receipt or the outcome.

Figure 1 illustrates the concept where path A represents 
the moderator influencing the effect of a confounder on 
treatment receipt and path B represents the moderator 
influencing the effect of a confounder on the outcome. 
If the moderator influences the effect of the confounder 
on treatment receipt, this implies that the way in which 
the confounder influences the decision to prescribe treat-
ment varies across the moderator, e.g. obesity (X) may 
discourage clinicians from prescribing a specific treat-
ment (T) in women more than in men (M). If the moder-
ator influences the effect of the confounder on outcome, 
this implies that the relationship between the confounder 
and the outcome varies across the moderator, e.g. obesity 
(X) may increase the risk of heart disease (Y) by a larger 
amount in men than in women (M). In many cases, the 
moderator will itself be a confounder – although not 
necessarily. For example, a treatment may be more effec-
tive in reducing cardiovascular disease in older people 
than in younger people, (i.e. age moderates the effect of 
treatment), but age would only also be a confounder if it 

were associated with both receipt of treatment and the 
outcome.

If the differential effect of the confounder across the 
moderator is not accounted for, this may introduce bias 
into the estimate of treatment effect modification. Sup-
pose M is binary and the effect of the confounder is 
greater in one subgroup of M than the other. Account-
ing for the overall effect of the confounder will lead to an 
underestimation of the effect of the confounder in one 
subgroup and an overestimation of the effect of the con-
founder in the other subgroup, which will lead to biased 
estimates of the subgroup treatment effects, and hence 
treatment effect modification. The magnitude of the bias 
will depend on the prevalence of the moderator, the rela-
tive sizes of the moderator and confounder effects, and 
the number of confounders which are influenced by the 
moderator. A more detailed explanation is given in the 
Supplementary material.

Failure to account for an interaction that exists between 
a moderator and confounder is essentially a misspeci-
fication problem. Both propensity score methods and 
regression adjustment are sensitive to model misspeci-
fication. Some research has indicated regression adjust-
ment (without PS methods) is more sensitive to model 
specification than PS methods [6]. Furthermore, there 
is variation amongst PS methods: Greifer and Stuart say 
that matching methods are less sensitive to misspecifi-
cation than weighting methods, as the former does not 
directly rely on the exact propensity score [7]. In prac-
tice, whether or not PS methods or regression adjust-
ment will perform better under the corresponding model 

Fig. 1  Graphical representation of a moderator which influences the 
confounder-exposure and confounder-outcome relationships. The 
moderator, M , by definition influences the relationship between the 
exposure, T  , and outcome, Y  , but also may influence the relationship 
between a confounder, X  , and the exposure and/or the relationship 
between a confounder and the outcome. The moderator may also 
be a confounder between the exposure and outcome (shown via a 
dotted line), but not necessarily
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misspecification will likely vary by study, depending on 
how complex or well understood the treatment model or 
outcome model is and how much information is available 
to model each.

Consideration of differences in treatment assignment 
across subgroups of a moderator when applying propen-
sity score (PS) methods to estimate subgroup-specific 
effects has been discussed previously [8–11, 12]. Radice 
et al. [9] and Krief et al. [8] showed that using subgroup-
specific propensity scores for PS matching and inverse 
probability of treatment weighting (IPTW) resulted in 
better covariate balance and lower bias than when differ-
ences in treatment assignment were ignored. Wang et al. 
[11] and Green and Stuart [10] focussed on different PS 
matching techniques and similarly found that balance 
metrics were improved when differences in treatment 
assignment were accounted for, either by estimating sub-
group-specific PS models or including moderator-con-
founder interactions in a single PS model.

In this paper, we aim to add to this literature by addi-
tionally considering 1) PS covariate adjustment and 
regression adjustment as confounding adjustment meth-
ods, 2) situations where the moderator influences the 
relationship between the confounder and either/both the 
treatment (or exposure) and outcome, and 3) bias intro-
duced into estimates of both TEM and subgroup-specific 
treatment effects. Patterns of bias under these different 
scenarios are explored in a simulation study. We discuss 
factors that influence the magnitude of bias and compare 
reduction in bias and precision of different approaches to 
accounting for moderator-confounder interactions.

To investigate the impact of the issues discussed in 
practice, we compared the estimates of treatment effect 
modification in a real observational dataset when moder-
ator-confounder interactions were and were not included 
in the confounding adjustment.   The dataset comprised 
information from the 2018-19 National Survey for Wales 
and the interest was in whether the effect of tinnitus on 
mental well-being was moderated by certain variables. 

Methods
Simulation study
We performed a simulation study to confirm and dem-
onstrate that 1) estimates of subgroup-specific treat-
ment effects and TEM can be biased if the moderator 
also influences the effect of the confounders and this is 
unaccounted for, 2) the presence of bias depends on the 
confounding adjustment method and whether or not the 
moderator influences the effect of the confounder on 
treatment receipt or the effect of the confounder on the 
outcome, and 3) the impact of this bias depends on the 
prevalence of the moderator and the relative effect sizes 
of the treatment effect moderation. We compared the 

accuracy and precision of estimates between methods of 
accounting for the moderator-confounder interactions.

Data generation
The simulated data comprised the following informa-
tion on each patient: T  – a binary indicator of treatment 
assignment (yes/no), Y   -  a continuous outcome meas-
ure, M – a binary treatment effect moderator, X1,X2,X3

—three continuous confounding variables, and X4,X5,X6 
– three binary confounding variables. Throughout this 
paper, we assume no treatment-induced confound-
ing [13]. Datasets of size 1000 were generated to reflect 
a moderately large but realistic sample size and to allow 
patterns in the magnitude of the standard errors to be 
more easily assessed graphically.

The three continuous confounders X1,X2,X3 were 
defined to follow a N (0, 1) distribution. Binary confound-
ers X4,X5,X6 were defined to have prevalence 0.1, 0.25 
and 0.5 respectively. M was simulated first with preva-
lence 0.5 and then 0.1.

An individual’s true probability of treatment was 
defined to depend on the main effects of the variables 
X1, . . . ,X6,M and a product term between M and X1 rep-
resenting modification of the effect of X1 on treatment 
receipt by M:

p is the probability of treatment allocation (i.e. 
P(T = 1|X ,M) ), and e1 ∼ N (0, 0.2) . The chosen values of 
the α coefficients are given in Table 1. The binary treat-
ment variable, T  , was generated via a Bernoulli distribu-
tion: T ∼ Bernoulli(p).

An individual’s outcome measure was defined to be 
dependent on the main effects of T  , M and X1, . . . ,X6 , as 
well as a product term between T  and M (representing 
the treatment effect modification effect) and a product 
term between M and X1 representing modification of the 
effect of X1 on the outcome by M:

The chosen values of the β coefficients are given in 
Table  1. These were not based on a specific dataset but 
agreed as realistic values for an observational study.

The simulations considered three different values of the 
coefficients αMX1 and βMX1 corresponding to null, moder-
ate and large effect sizes of the M × X1 term on treatment 
receipt and the M × X1 term on outcome respectively 
(Table 1). Two values for βTM were chosen to represent 
small and moderate treatment effect modification effect 
respectively (Table  1). All other coefficient values were 

log
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kept fixed. This resulted in 18 different combinations of 
modification effect sizes.

Confounding adjustment methods
Four methods of confounding adjustment were consid-
ered: (1) regression adjustment, (2) PS covariate adjust-
ment (where the estimated PS score is added as a linear 
term to the outcome model), (3) inverse probability of 
treatment weighting (IPTW) using the propensity score, 
and (4) PS nearest neighbour one-to-one matching, 
with replacement. For each, four confounding adjust-
ment models were considered, the first three being (a) 
adjusting for the main effects ofM , X1, . . . ,X6 , but no 
product terms, (b) adjusting for the main effects ofM , 
X1, . . . ,X6 and an M × X1 product term, and (c) adjust-
ing for the main effects ofM , X1, . . . ,X6 and six product 
termsX1 ×M,X2 ×M, . . . ,X6 ×M . The fourth model 
(d) was the adjustment of confounding separately within 
each subgroup ofM , thus separate linear models were fit 
in the two subgroups. This involved estimating subgroup-
specific PS models. Here, the term ‘adjustment model’ 
refers to the propensity score for the three propensity 
score methods and the outcome model for regression 
adjustment.

The estimated individual propensity scores were 
obtained by fitting a logistic regression model, regressing 
treatment receipt on the set of confounders, including M . 
The individual inverse probability of treatment weights 
were defined as the inverse of the probability of that indi-
vidual receiving the treatment allocation they did receive. 

The nearest neighbour matching was performed with no 
specified calliper.

For each confounding model and method combination 
(16 in total), estimates of the subgroup-specific treatment 
effects, β̂T |M=1 and β̂T |M=0 , and the treatment-effect 
moderation estimate, β̂TM = β̂T |M=1 − β̂T |M=0 were 
obtained via a linear regression model.

Parameter estimation
500 simulations were run per scenario (18 combinations 
of moderation effect sizes). This number of simulations 
was determined to be a conservative number required 
to detect a treatment-moderator interaction effect size 
of 0.3 within an accuracy of 10% when the sample size 
was 1000 [14]. For each scenario, the mean of the 500 
estimates of β̂T |M=1 , β̂T |M=0 and β̂TM from the 16 con-
founding adjustment method/model combinations were 
obtained, along with the empirical standard error (calcu-
lated as the standard deviation of the estimates over the 
500 simulations) and the average model standard error 
[15].

Applied example
To demonstrate the potential impact of accounting for 
interactions between a moderator and a confounder in 
practice, we used a dataset comprising information from 
the 2018–19 National Survey for Wales, a large-scale 
cross-sectional survey run annually by the Office for 
National Statistics on behalf of the Welsh Government. 
Participants are randomly selected from the population 
of Wales and asked a variety of questions regarding their 
health, lifestyle and interests. The anonymised data is 
available from the UK Data Service [16].

The specific example relates to the estimation of expe-
riencing tinnitus on mental well-being. Tinnitus is a 
self-reported binary measure (experiences tinnitus or 
does not experience tinnitus) and mental well-being was 
measured using the Warwick-Edinburgh Mental Well-
being Scale, a numerical scale scored between 14–70 
where a higher score indicates a higher level of mental 
well-being. We investigated whether the effect of tinni-
tus on mental well-being was moderated by three binary 
variables: gender, ethnicity (White/non-White) or cur-
rent smoking status (currently smoke/currently do not 
smoke). Additional potential confounders accounted for 
were age (in years) and BMI (as a numerical variable).

A series of linear regression models were fitted includ-
ing interactions between tinnitus and each of the three 
potential moderators. Confounding was adjusted for via 
both regression adjustment and IPTW. In the assessment 
of each of the three moderators, the other two potential 
moderators were included as potential confounders. Two 
confounding adjustment models for each method were 

Table 1  Model coefficient values in the data generation models 
in the simulation study. The values quantify the effects of the 
model covariates on both the probability of treatment allocation 
and the outcome. Three different values for the T ×M term in 
the outcome model, and the M × X1 term in the probability of 
treatment model and the outcome model were considered

Propensity Score Model Outcome model

Notation Value Notation Value

Intercept α0 0.1 β0 0.25

T βT 1.5

M αM 0.3 βM 0.5

T ×M βTM (0.3, 0.6)

X1 αX1 0.3 βX1 0.5

M × X1 αMX1
(0, 0.1, 0.2) βMX1

(0, 0.2, 0.4)

X2 αX2 0.2 βX2 0.5

X3 αX3 -0.1 βX3 -0.3

X4 αX4 0.4 βX4 1

X5 αX5 -0.2 βX5 0.6

X6 αX6 0.3 βX6 1
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specified, the first adjusting only for the main effects of 
each confounder, the second adjusting for the main effects 
of each confounder and interactions between the modera-
tor and each confounder.

Software
The simulation study and analysis for the applied example 
were performed in Stata version 14 [17].

Results
Simulation study
The forest plots in Figs.  2 and 3 show the estimated val-
ues of βT |M=1 , βT |M=0 and βTM for the various scenarios 
regarding the magnitude of the M × X1 effect size on 
both treatment receipt and outcome and for each of the 
confounding adjustment methods and models tested, 
averaged over the 500 simulations, where βT |M=1 = 1.8 , 
βT |M=0 = 1.5 and βTM = 0.3 . The 95% confidence inter-
vals (obtained using the estimated standard error assuming 
a normal distribution) are displayed. The prevalence M was 
0.5 for the results in Fig. 2 and 0.1 for Fig. 3. Tables display-
ing these results are given the Supplementary material.

We first discuss the patterns of bias observed when no 
moderator-confounder interactions were accounted for 
in the confounding adjustment (i.e. confounding model 
(a)). In Fig. 2 a non-zero αMX1 did not introduce bias into 
either the subgroup-specific treatment effect estimates or 
the interaction effect estimate β̂TM when the confounding 
method was regression adjustment or PS covariate adjust-
ment. However, there was bias in estimates obtained from 
these two methods when βMX1 > 0 . Alternatively, for 
IPTW and PS matching, increasing αMX1 from 0 did induce 
bias into the subgroup and the interaction effect. Increasing 
βMX1 also appeared to have a slight impact on the estimates 
from these latter two confounding adjustment methods. 
For all confounding adjustment methods, the magnitude of 
the bias increased as the effect size of the relevant modera-
tor-confounder interactions increased.

In this simulation study, the direction of bias was always 
positive for β̂T |M=1 and the interaction effect, β̂TM , and 
negative for β̂T |M=0 as the impact of the confounder X1 on 
both treatment receipt and the outcome was set to be larger 
when M = 1 (since both αMX1 > 0 and βMX1 > 0 ). When 
the average effect of X1 was adjusted for equally in both 
groups of M , this led to an under-adjustment of X1 when 
M = 1 and an over-adjustment of X1 when M = 0 . Because 
the inclusion of X1 attenuated the estimated treatment 
effect, this led to an overestimation of the treatment effect 
when M = 1 and an underestimation when M = 0.

When an M × X1 interaction term was included in the 
confounding adjustment model, i.e. for confounding model 
(b), the bias in each three parameter estimates was sub-
stantially reduced for regression adjustment, IPTW and PS 

matching. For PS covariate adjustment, a similar pattern of 
bias was seen as for confounding adjustment model (a).

Including all possible moderator-confounder interac-
tions in the confounding adjustment model, i.e. adjustment 
model (c), and performing the stratified analysis, i.e. adjust-
ment model (d), also resulted in substantially reduced lev-
els of bias in the subgroup-specific treatment effects and 
β̂TM for regression adjustment, IPTW and PS matching. 
Confounding models (c) and (d) gave the exact same results 
for regression adjustment and IPTW due to their nature. 
Adjustment model (c) resulted in similar biased estimates 
to (b) for PS covariate adjustment. Only in the stratified 
analysis did PS covariate adjustment produce accurate 
estimates.

In Fig. 3, the magnitude of bias in the β̂T |M=1 subgroup 
treatment effect was larger than in Fig. 2 and the magni-
tude of bias in the β̂T |M=0 was smaller. The bias in the 
overall interaction effect was similar but overall the confi-
dence intervals were wider in Fig. 3. Another discrepancy 
between Figs. 2 and 3 is seen for PS covariate adjustment 
using IPTW (model (c), method (2)). Even where αMX1 = 0 
and βMX1 = 0 , all estimates were biased when the preva-
lence of the moderator was 0.1. Otherwise, Figs.  2 and 3 
showed similar patterns of bias.

When βT |M=1 , βT |M=0 and βTM were larger, the magni-
tude of bias was the same but the impact of the bias in the 
TEM estimate is smaller relative to its larger magnitude 
(supplementary tables 1, 2, 3, 4, 5, 6, 7, 8).

To more thoroughly compare the accuracy in estimates 
across all models for each adjustment method, we com-
pared the mean bias in β̂TM across the set of αMX1 and βMX1 
values (Table 2).

As expected, the average bias tended to be highest when 
no moderator-confounder interactions were adjusted for 
(adjustment model (a)). Overall, the average bias was still 
reasonably small in magnitude for adjustment model (a); 
however, this is the average over all αMX1 and βMX1 values, 
and the bias was larger (up to 0.15 in magnitude) as αMX1 
and βMX1 increased.

The average bias in the estimation of β̂TM was the same 
(to 4dp) across adjustment models (b)-(d) for regression 
adjustment. For IPTW, the bias was smaller when all 
moderator-confounder interactions were accounted for 
and when a stratified analysis was performed than when 
only the one moderator-confounder was accounted for, 
and more so when the prevalence of M was 0.5. There 
was not a clear pattern for PS matching.

The precision of the various estimates of β̂T and β̂TM , 
i.e. how much confidence we have that sample estimates 
reflect the population parameter, can be most easily 
assessed in Figs. 2 and 3 and the results tables in the sup-
plementary material by examining the width of the 95% 
confidence intervals. Confounding models (b), (c) and (d) 
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gave similar levels of precision for estimates obtained via 
regression adjustment. For PS covariate adjustment, the 
precision (as well as the accuracy) of estimates was high-
est for confounding model (d), i.e. in the stratified analy-
sis. For IPTW, the precision was higher for confounding 
models (c) and (d) than confounding models (a) and (b). 

For PS matching, the precision was highest for confound-
ing model (d).

Comparing the empirical and average model standard 
error is a way of assessing bias in the estimation of the 
model standard error [15]. For regression adjustment, 
the average model standard errors are very close to the 

Fig. 2  Estimated subgroup-specific treatment effects and effect modification where the moderator has a prevalence of 0.5. β̂T |M=m is the 
subgroup-specific treatment effect and β̂TM is the treatment effect moderator effect. (a) adjusting for no moderator-confounders interactions, (b) 
adjusting for the one moderator-confounder interaction, (c) adjusting for all possible moderator-confounder interactions, (d) subgroup-specific 
confounding adjustment. (1) Regression adjustment, (2) Propensity score covariate adjustment, (3) IPTW, (4) Propensity score matching
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empirical standard errors across all models and sce-
narios, suggesting this methods accurately estimate the 
standard errors of the estimates. However, for the other 
methods using propensity scores, particularly IPTW and 
PS matching, the average model standard errors typically 
overestimated the empirical standard error, sometimes 

severely. The difference between the two standard errors 
was largest for confounding model d.

Morris et  al. say that the comparison of the empiri-
cal standard error and the average model standard error 
should be interpreted with caution when the methods are 
known to be biased as the empirical SEs can be small as 

Fig. 3  Estimated subgroup-specific treatment effects and effect modification where the moderator has a prevalence of 0.1. β̂T |M=m is the 
subgroup-specific treatment effect and β̂TM is the treatment effect moderator effect. (a) adjusting for no moderator-confounders interactions, (b) 
adjusting for the one moderator-confounder interaction, (c) adjusting for all possible moderator-confounder interactions, (d) subgroup-specific 
confounding adjustment. (1) Regression adjustment, (2) Propensity score covariate adjustment, (3) IPTW, (4) Propensity score matching
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a result [15]. However, large differences were seen even 
when the method was not biased in the estimates of β̂T 
and β̂TM . Other studies have shown that when propensity 
scores are used, the average model standard error can be 
larger than the empirical standard error [18, 19]. We sus-
pect this is due to the use of the robust variance estima-
tor in these models as this can overestimate the variance 
of effect to protect against some element of misspecifica-
tion [19].

This analysis did not primarily seek to compare the 
accuracy and precision of the different confound-
ing adjustment methods overall. In general, estimates 
obtained via regression adjustment had the smallest bias. 
However, this is likely to reflect the way in which the data 
was simulated, and will likely not be true in all applica-
tions. Estimates obtained via IPTW had noticeably 
higher precision than PS matching, but it is possible that 
a more sophisticated version of PS matching would have 
performed better.

Applied example
Table  3 displays the interaction effect estimates for tin-
nitus and each of gender, white ethnicity, and current 
smoking status on mental well-being obtained from fit-
ting a series of linear regression models. Confounding 
was adjusted for (separately) via both regression adjust-
ment and IPTW, and the confounding adjustment mod-
els included either no moderator-confounder interactions 
or all possible moderator-confounder interactions. The 
sample size in all models was 5402 observations.

Adjusting for interactions between the moderator and 
confounders in regression adjustment had little differ-
ence on the estimates of interaction between tinnitus and 
each of gender and current smoking status. Although 
not statistically significant in either case, the interaction 
effect between tinnitus and white ethnicity roughly tri-
pled in magnitude when moderator-confounder interac-
tions were adjusted for. Further inspection showed that 
an interaction between White ethnicity and age was 
present and statistically significant. This implies that the 
effect of age on mental well-being onset was different for 
people of White and non-White ethnicity.

Again, when IPTW was applied, adjusting for interac-
tions between the moderator and confounders in the pro-
pensity score model had little difference on the estimates 
of interaction between tinnitus and each of gender and 
current smoking status. interaction effect between tin-
nitus and White ethnicity increased in magnitude when 
moderator-confounder interactions were included in the 
propensity score model. Upon further inspection, none 
of the interactions between White ethnicity and the con-
founders were of notable size or were statistically signifi-
cant, however, the combined effect of their inclusion still 

had an impact on the overall interaction effect between 
White ethnicity and tinnitus on mental well-being.

We did not aim to provide a robust answer to the 
clinical question posed as there are limitations regard-
ing unmeasured confounding and the dichotomisation 
of smoking status and ethnicity. However, this practi-
cal application shows that different point estimates 
of effect modification may be obtained in practice 
depending on whether interactions between the mod-
erator of interest and the confounders are included in 
the confounding adjustment. In many cases, the differ-
ences may be marginal and the overall conclusions will 
not change. In some cases however, the differences may 
lead to different conclusions being made.

Discussion
Summary of findings
Our findings confirm that failure to account for any inter-
actions present between the moderator and a confounder 
on treatment receipt introduced bias into subgroup-spe-
cific and TEM estimates when IPTW and PS matching 
was applied [8–11,  12]. Our simulations also indicated 
that the presence of moderator-confounder interactions 
on the outcome induced a small amount of bias into 
parameter estimates. Both adjusting for the relevant (or 
all possible) moderator-confounder interactions in the 
propensity score creation and estimating subgroup-spe-
cific PS models removed this bias.

Whilst it is not surprising, to our knowledge it has not 
been previously clarified that PS covariate adjustment 
is instead sensitive to failure to account for interactions 
between the moderator and a confounder on outcome. 
Hence, inclusion of confounder-moderator interactions 
in the PS model does not rectify this problem; only when 
subgroup-specific PS models were estimated did PS 
covariate adjustment produce accurate estimates. Simi-
larly, regression adjustment produced biased estimates 
where there existed a moderator-confounder interaction 
on outcome which was not accounted for.

The accuracy and precision of estimates (based on 
the empirical standard errors) obtained from regres-
sion adjustment were similar when only the one mod-
erator-confounder interaction was accounted for in the 
confounding model, when all possible moderator-con-
founder interactions were accounted for and when the 
stratified analysis was performed. For IPTW, the accu-
racy and precision was higher when all possible mod-
erator-confounder interactions were accounted for and 
when the stratified analysis was performed, compared to 
when just the one moderator-confounder interaction was 
accounted for. For PS matching, the accuracy and preci-
sion was highest in the stratified analysis. However, in the 
methods using propensity scores, particularly IPTW and 
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PS matching, the average model standard errors tended 
to overestimate the empirical standard errors which 
would lead to less precision of the subgroup and modera-
tor effect estimates in practice when these methods were 
used.

If the moderator itself is a confounder, by not account-
ing for any moderator-confounder interactions that exist 
on either treatment or outcome, one is essentially mis-
specifying the propensity score or outcome model. This 

should in theory induce bias into any estimates obtained 
from the outcome model and it is already recommended 
that confounder-confounder interactions be consid-
ered [20] although this is not always done. However, it 
seems plausible that when the interest is specifically in 
treatment effect modification, not accounting for exist-
ing moderator-confounder interactions will have a more 
serious impact on accuracy than not accounting for other 
confounder-confounder interactions. Furthermore, the 
magnitude of treatment effect modification is typically 
small relative to the magnitude of main effects, thus such 
estimates may be more sensitive to bias.

The applied example demonstrated the potential 
impact of accounting for moderator-confounder inter-
actions. In many cases, the difference in the estimates of 
treatment effect modification obtained when moderator-
confounder interactions were and were not accounted for 
was very small. However, a difference was observed for 
some.

Although we did not include these in our simulation 
studies, doubly robust estimators are an attractive way of 
estimating the effect of exposures on outcomes in obser-
vational studies [21]. Doubly robust estimators use both 
the outcome model and propensity score, giving an unbi-
ased effect estimate if at least one is correctly specified. 
Hence, if interactions exist between the moderator and 
one or more confounders on either treatment receipt or 
the outcome, but not both, and these are not accounted 
for, doubly robust estimation should still provide unbi-
ased estimates. However, it is still advisable to consider 
the presence of interactions between a potential modera-
tor and the confounders on both treatment receipt and 
the outcome, to avoid potential misspecification of both 
the outcome model and propensity score.

Limitations
In this study, we considered four different methods of 
adjusting for confounding. Other methods which could 
have been considered include stratification by the PS and 

Table 2  Average absolute bias 
∣∣∣β̂TM − βTM

∣∣∣ for the different 

confounding adjustment methods for confounding adjustment 
models (b)-(d)

Confounding models: (a) adjusting for no moderator-confounder interactions, 
(b) adjusting for the one moderator-confounder interaction, (c) adjusting for all 
possible moderator-confounder interactions, (d) subgroup-specific confounding 
adjustment

Confounding methods: (1) Regression adjustment, (2) Propensity score covariate 
adjustment, (3) IPTW, (4) Propensity score matching

Adjustment model

Adjustment 
method

(a) (b) (c) (d)

βTM = 0.3

Prev.M = 0.5

(1) 0.066664 0.000773 0.000791 0.000791

(2) 0.082535 0.059600 0.058446 0.000765

(3) 0.063750 0.005581 0.001400 0.001400

(4) 0.055594 0.008806 0.004108 0.004226

βTM = 0.3

Prev.M = 0.1

(1) 0.075085 0.001873 0.001715 0.001715

(2) 0.093259 0.062743 0.322948 0.001586

(3) 0.083261 0.017981 0.011239 0.011239

(4) 0.096792 0.038555 0.043617 0.038939

βTM = 0.6

Prev.M = 0.5

(1) 0.066454 0.000816 0.000749 0.000749

(2) 0.081596 0.059213 0.056933 0.000941

(3) 0.060059 0.003119 0.002269 0.002269

(4) 0.052857 0.006547 0.007896 0.005279

βTM = 0.6

Prev.M = 0.1

(1) 0.073871 0.000848 0.000925 0.000925

(2) 0.092722 0.056906 0.319295 0.00106

(3) 0.074819 0.013062 0.012955 0.012955

(4) 0.079721 0.036695 0.046072 0.041207

Table 3  The interaction effect estimates between tinnitus and several additional variables. Confounding was adjusted for via both 
regression adjustment and IPTW, firstly when no moderator-confounder interactions were accounted for in the adjustment model and 
secondly when all possible moderator-confounder interactions were accounted for in the adjustment model

Regression adjustment IPTW

No M × X  interactions All M × X  interactions No M × X  interactions All M × X  interactions

Estimate
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Gender, female 2.56 (-0.80, 5.92) 2.86 (-0.52, 6.23) 2.60 (-0.84, 6.04) 2.37 (-1.07, 5.82)

White ethnicity -0.92 (-10.13, 8.28) -2.84 (-12.10, 6.43) -2.84 (-12.97, 7.29) -4.24 (-15.06, 6.57)

Current smoking -3.72 (-7.95, 0.50) -3.93 (-8.17, 0.31) -3.62 (-7.86, 0.62) -3.48 (-7.70, 0.74)
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other versions of PS matching. The aim of this analysis 
was not however to compare the different methods in 
terms of accuracy and precision, but to explore the bias 
within each method. We suspect that, in general, meth-
ods based on the PS will always be prone to bias when 
there are interactions between the moderator and con-
founder on treatment assignment (the exception being 
PS covariate adjustment).

In the simulations, we only considered situations in 
which there was a linear interaction between the mod-
erator and confounder when either was continuous. In 
practice, there may be more complex non-linear interac-
tions between the moderator and confounder which may 
be insufficiently accounted for with a linear interaction 
term in the confounding adjustment. If this is the case, 
this should be incorporated into the confounding adjust-
ment if possible.

Additionally, we only considered scenarios with a con-
tinuous outcome and a binary moderator. We expect 
similar patterns of bias to be seen with other outcome 
and moderator types, but the relative accuracy and pre-
cision of the confounding adjustment models within 
each method may not be the same. We also only simu-
lated data where there were six confounders and only 
one moderator of interest, but in practice there may be 
many more confounders and moderators of interest. It 
may be that a moderator interacts with multiple con-
founders and, if the bias introduced by each moderator-
confounder pair were in the same direction, the overall 
amount of bias on the estimation of treatment effect 
modification could be substantial. Alternatively, the dif-
ferent biases could cancel each other out if they acted in 
different directions.

It has been recommended that a propensity score 
model include not only confounders, but also variables 
associated with the outcome as this increases precision 
[22]. It seems intuitive that interactions between the 
moderator(s) and variables only associated with the out-
come do not need to be considered in a propensity score 
model, as the moderator cannot influence the effect of 
such variables on treatment receipt if the variable does 
not have an effect on treatment receipt.

Here, we consider a simplistic, although common, 
approach to assessing treatment effect modification as 
only one moderator is considered at a time in a paramet-
ric model. More sophisticated and flexible approaches 
exist which allow researchers to assess treatment het-
erogeneity more generally. Bayesian additive regression 
trees (BART), for example, avoid the strong parametric 
assumptions required for the standard linear and logis-
tic regression models and automates the detection of 
interactions [23]. Additionally, the Bayesian causal for-
est model works particularly well when there is strong 

confounding [24]. Many of these methods are readily 
available in R. For example, the EffectLiteR package in R 
enables the estimation of average and conditional effects 
whilst taking into account any number of continuous and 
categorical covariates, can estimate multiple interaction 
effects simultaneously [25].

Conclusion
In conclusion, we recommend that the presence of 
moderator-confounder interactions are considered and 
accounted for when estimating treatment effect medica-
tion whilst adjusting for additional variables. Account-
ing for moderator-confounder interactions that did not 
exist did not have a negative impact in our simulation 
study, hence we suggest that researchers include interac-
tions terms if they are undecided about their presence. 
However, this approach may be unattractive when using 
regression adjustment with a smaller sample size. We also 
recommend that subgroup-specific propensity scores are 
created and used in a stratified analysis when using pro-
pensity score covariate adjustment to assess treatment 
effect modification by a binary variable.

Abbreviations
TEM: Treatment effect modification; PS: Propensity score; IPTW: Inverse prob-
ability of treatment weighting.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12874-​022-​01519-7.

Additional file 1.  

Acknowledgements
Not applicable.

Authors’ contributions
AM: conceptualisation, methodology, formal analysis, writing of the original 
draft. WD: methodology, reviewing and editing. GD: methodology, reviewing 
and editing. RE: methodology, reviewing and editing. The author(s) read and 
approved the final manuscript.

Funding
AM conducted this work as part of a Ph.D. at The University of Manchester 
funded by a National Institute for Health Research Musculoskeletal Biomedical 
Research Unit Ph.D. studentship (UK). The views expressed in this publication 
are those of the authors and not necessarily those of the NHS, the National 
Institute for Health Research or the Department of Health.

Availability of data and materials
Stata code and the simulated data will be shared upon request via Antonia 
Marsden.

Declarations

Ethics approval and consent to participate
Ethical approval was not sought for the simulation study as this was not 
deemed necessary. The applied example used secondary data from the CPRD. 

https://doi.org/10.1186/s12874-022-01519-7
https://doi.org/10.1186/s12874-022-01519-7


Page 11 of 11Marsden et al. BMC Medical Research Methodology           (2022) 22:88 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

The study protocol for the original study was approved by the CPRD’s Inde-
pendent Scientific Advisory Committee (approval no. 11_113R).

Consent for publication
Not applicable.

Competing interests
WGD has received consultancy fees from Bayer, Abbvie and Google, unrelated 
to this work.
AM, GD and RE declare no conflicts of interest.

Author details
1 Centre for Biostatistics, School of Health Sciences, The University of Manches-
ter, Manchester Academic Health Science Centre, Jean McFarlane Building, 
Oxford Road, Manchester M13 9PL, UK. 2 Centre for Epidemiology Versus 
Arthritis, Manchester Academic Health Science Centre, University of Manches-
ter, Manchester, UK. 3 Institute of Psychiatry, King’s College London, Psychology 
& Neuroscience, London, UK. 

Received: 15 April 2021   Accepted: 11 January 2022

References
	1.	 Kyle SD, Hurry MED, Emsley R, Luik AI, Omlin X, Spiegelhalder K, et al. 

Effects of digital Cognitive Behavioural Therapy for Insomnia on cogni-
tive function: study protocol for a randomised controlled trial. Trials. 
2017;18(1):281.

	2.	 VanderWeele TJ. On the Distinction Between Interaction and Effect Modi-
fication. Epidemiology. 2009;20(6):863–71.

	3.	 McNamee R. Confounding and confounders. Occup Environ Med. 
2003;60(3):227–34 quiz 164, 234.

	4.	 Austin PC. An Introduction to Propensity Score Methods for Reducing the 
Effects of Confounding in Observational Studies. Multivariate Behav Res. 
2011;46(3):399–424.

	5.	 Liu AH, Abrahamowicz M, Siemiatycki J. Conditions for confounding of 
interactions. Pharmacoepidemiol Drug Saf. 2016;25(3):287–96.

	6.	 Drake C. Effects of misspecification of the propensity score on estimators 
of treatment effect. Biometrics. 1993;49(4):1231–6.

	7.	 Greifer N, Stuart EA. Matching Methods for Confounder Adjustment: An 
Addition to the Epidemiologist’s Toolbox. Epidemiol Rev. 2022;43(1):118–
29. https://​doi.​org/​10.​1093/​epirev/​mxab0​03.

	8.	 Kreif N, Grieve R, Radice R, Sadique Z, Ramsahai R, Sekhon JS. Methods 
for estimating subgroup effects in cost-effectiveness analyses that use 
observational data. Med Decis Making. 2012;32(6):750–63.

	9.	 Radice R, Ramsahai R, Grieve R, Kreif N, Sadique Z, Sekhon JS. Evaluating 
treatment effectiveness in patient subgroups: a comparison of propen-
sity score methods with an automated matching approach. Int J Biostat. 
2012;8(1):25.

	10.	 Green KM, Stuart EA. Examining moderation analyses in propensity score 
methods: application to depression and substance use. J Consult Clin 
Psychol. 2014;82(5):773–83.

	11.	 Wang SV, Jin Y, Fireman B, Gruber S, He M, Wyss R, et al. Relative Perfor-
mance of Propensity Score Matching Strategies for Subgroup Analyses. 
Am J Epidemiol. 2018;187(8):1799–807.

	12.	 Rassen JA, Glynn RJ, Rothman KJ, Setoguchi S, Schneeweiss S. Applying 
propensity scores estimated in a full cohort to adjust for confounding in 
subgroup analyses. Pharmacoepidemiol Drug Saf. 2012;21(7):697–709.

	13.	 Wodtke GT, Zhou X. Effect Decomposition in the Presence of Treatment-
induced Confounding: A Regression-with-residuals Approach. Epidemiol-
ogy. 2020;31(3):369–75.

	14.	 Burton A, Altman DG, Royston P, Holder RL. The design of simulation 
studies in medical statistics. Stat Med. 2006;25(24):4279–92.

	15.	 Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate 
statistical methods. Stat Med. 2019;38(11):2074–102.

	16.	 Welsh Government, Office for National Statistics. National Survey for 
Wales, 2018-2019. [data collection]. UK Data Service. SN: 8591. 2020. 
https://​doi.​org/​10.​5255/​UKDA-​SN-​8591-1.

	17.	 StataCorp. Stata statistical software: release 14. College Station, TX: 
StataCorp LP; 2015. https://​www.​stata.​com/​suppo​rt/​faqs/​resou​rces/​
citing-​softw​are-​docum​entat​ion-​faqs/. 

	18.	 Austin PC. Type I error rates, coverage of confidence intervals, and 
variance estimation in propensity-score matched analyses. Int J Biostat. 
2009;5(1):Article 13. https://​doi.​org/​10.​2202/​1557-​4679.​1146.

	19.	 Xu S, Ross C, Raebel MA, Shetterly S, Blanchette C, Smith D. Use of stabi-
lized inverse propensity scores as weights to directly estimate relative risk 
and its confidence intervals. Value Health. 2010;13(2):273–7.

	20.	 D’Agostino RB Jr. Propensity score methods for bias reduction in the 
comparison of a treatment to a non-randomized control group. Stat Med. 
1998;17(19):2265–81.

	21.	 Funk MJ, Westreich D, Wiesen C, Sturmer T, Brookhart MA, David-
ian M. Doubly robust estimation of causal effects. Am J Epidemiol. 
2011;173(7):761–7.

	22.	 Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Sturmer 
T. Variable selection for propensity score models. Am J Epidemiol. 
2006;163(12):1149–56.

	23	 Green DP, Kern HL. Modeling Heterogeneous Treatment Effects in Survey 
Experiments with Bayesian Additive Regression Trees. Public Opinion 
Quarterly. 2012;76(3):491–511.

	24.	 Hahn PR, Murray JS, Carvalho C. Bayesian regression tree models for 
causal inference: regularization, confounding, and heterogeneous effects. 
Bayesian Anal. 2020;15(3):965–1056.

	25.	 Mayer A, Dietzfelbinger L, Rosseel Y, Steyer R. The EffectLiteR Approach 
for Analyzing Average and Conditional Effects. Multivariate Behav Res. 
2016;51(2–3):374–91.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/epirev/mxab003
https://doi.org/10.5255/UKDA-SN-8591-1
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/
https://doi.org/10.2202/1557-4679.1146

	The impact of moderator by confounder interactions in the assessment of treatment effect modification: a simulation study
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Simulation study
	Data generation
	Confounding adjustment methods
	Parameter estimation

	Applied example
	Software

	Results
	Simulation study
	Applied example

	Discussion
	Summary of findings
	Limitations

	Conclusion
	Acknowledgements
	References


