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Abstract 

Background:  The Bland-Altman plot with the limits of agreement has been widely used as an absolute index for 
assessing test-retest reliability or reproducibility between two measurements. We have observed that in the settings 
where the relative index such as concordance correlation coefficient (CCC) or intraclass correlation coefficient is 
employed, the limits of agreement approach may be inconsistent with the scaled index. Particularly, the broad width 
of the limits of agreement may indicate a lack of agreement when the two measurements are highly concordant but 
an acceptable difference is not known and the common variance of the data is large. This research aims to create a 
novel, CCC-based guidance for graphical evaluation of reproducibility or reliability.

Methods:  The concordance correlation coefficient is used to create a 100(1-α)% reference band from two measure‑
ments. Simulation studies and real examples, including the peak expiratory flow rate data in Bland and Altman’s paper 
and the test-retest reproducibility data of the Radiomics study, are implemented to assess the use of the reference 
band.

Results:  In the absence of an acceptable difference between measurements, we found that the limits of agreement 
may not be consistent with the concordance correlation coefficient. Our simulation study results and real data appli‑
cation show that the proposed method can provide practitioners with a novel graphical evaluation that is consistent 
with results from the concordance correlation coefficient.

Conclusions:  Our proposed novel scaled index-based guidance can be used for the graphical evaluation of repro‑
ducibility or reliability and may have advantages over the limits of agreement in settings where the concordance 
correlation coefficient is employed.

Keywords:  Agreement, Bland-Altman plot, Concordance correlation coefficient, Graphical evaluation, Limits of 
agreement, Reference band
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Background
In the process of the development of new predictors or 
features in clinical studies, it is essential to assess how 
reliable or reproducible they are. The reliability or repro-
ducibility of the features is evaluated by either unscaled 
summary indices based on absolute difference of meas-
urements, such as the limits of agreement (LoA) [1–3], 
the coverage probability (CP), the total deviation index 
(TDI) [4, 5] or scaled summary indices, such as the 

concordance correlation coefficient (CCC) by Lin [6] 
or the intraclass correlation coefficient (ICC). If the dif-
ference between measurements is interpretable and an 
acceptable difference has been established (e.g., blood 
pressure, peak expiratory flow rate in Bland and Altman 
[1], etc.), unscaled indices should be selected for assess-
ing reliability or reproducibility. However, in cases when 
the difference is not interpretable or an acceptable dif-
ference is not available, the CCC or the ICC have been 
widely used as scaled indices for two or more continuous 
measurements. For example, Balagurunathan et  al. [7] 
developed 219 quantitative 3D imaging features derived 
from computed tomographic (CT) images, which may be 
useful as prognostic biomarkers in non-small cell lung 
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cancer studies. These imaging features include texture 
features such as pixel histogram, run length, co-occur-
rence or 3D-Laws. The difference of these features can 
be hard to interpret clinically; thus, the acceptable dif-
ference for such a feature cannot be predetermined. The 
CCC was selected to evaluate the reproducibility or relia-
bility of imaging features. More details regarding the def-
inition of repeatability, reproducibility, validity, reliability, 
and agreement indices for continuous measurements 
are available in Barnhart et al. [8]. In this paper, we use 
agreement, reliability, and reproducibility interchangea-
bly since we seek to propose a novel visual tool for assess-
ing agreement between two measurements. The pros and 
cons of different agreement indices are well compared in 
Barnhart et al. [9].

The Bland-Altman (B-A) plot with the LoA has been 
widely used as an absolute index for assessing agreement 
due to its simplicity and intuitive appeal and it was 
reported as one of the top 100 most cited papers of all 
time (Van Noorden et  al. [10]). Suppose that n pairs of 
samples (X1i, X2i), i = 1, …, n are collected independently 
from a bivariate normal distribution X = (X1, X2)T with 
mean μ = (μ1, μ2)T and variance-covariance matrix 
(

σ 2
1

ρσ1σ2
ρσ1σ2 σ 2

2

)

 , |ρ| < 1. The CCC, ρc, is expressed as the 

product of two terms:
ρc = ρCb, 0 < Cb = 2

σ1
σ2

+ σ2
σ1

+ (µ1−µ2)
2

σ1σ2

≤ 1,where ρ is the 

correlation coefficient and the term Cb measures how far 
the best-fit line deviates from the perfect concordance 
line X1 = X2. Bland and Altman [1] proposed a residual 
type plot of the observed pairs of data for evaluation of 
agreement. The LoA is defined as

where di = X2i − X1i, d = 1
n

∑

di , S2d = 1
n−1

∑

(

di − d

)2

 , 
tn − 1,0.025 is 100 × (1-0.025) percentile of the t-distribution 
with n − 1 degrees of freedom. The LoA contains nearly 
95% of the observed differences, and inference is made by 
comparing the LoA with the predetermined acceptable 
difference. The approximate and exact 95% confidence 
intervals for the LoA were investigated by Bland and Alt-
man [2] and Carkeet [3], respectively. In biomarker stud-
ies, including Balagurunathan et al.’s Radiomics study, the 
reproducibility of the features was frequently evaluated 
by the CCC, but the B-A plot with the LoA was presented 
as a graphical illustration of reproducibility. Since the 
CCC is a scaled or relative index, the LoA in the Bland-
Altman plot (an unscaled or absolute index), may not be 
associated with the CCC values in some settings. Thus, a 
novel CCC-based guidance for graphical evaluation of 
agreement will be helpful for the CCC users.

d ± tn−1,0.025Sd ,

In this paper, we present a CCC-based visual tool for 
assessing agreement in cases where no acceptable differ-
ence is available, and a scaled index is used for evaluating 
the reliability or reproducibility. We believe that the pro-
posed method provides practitioners with not only guide-
lines for a descriptive graphical evaluation of agreement, 
but also with useful information such as recognition of 
patterns or identification of outliers in the data. The Meth-
ods section of this paper shows how a reference band (RB) 
as a descriptive visual tool is derived from the CCC. The 
comparisons with the LoA and the association between 
the proportion of outliers identified in the RB (i.e., % of 
outliers) and the CCC values are presented in the Results 
section. A peak expiratory flow rate study from Bland and 
Altman’s paper and the Radiomics features extracted from 
3D CT images in Balagurunathan et al. have been consid-
ered as examples to illustrate our approach.

Methods
Unlike the total deviation index (TDI) and the coverage 
probability (CP) by Lin [4], Lin et  al. [5], and Escaramis 
et  al. [11]; we assume that Cb = 1 (i.e., μ1 = μ2 and 
σ = σ1 = σ2). Then, 

√
n
(

X2 − X1

)

 is normally distributed 
with mean 0 and variance 2σ2(1 − ρ), and the estimator Sd2 
for 2σ2(1 − ρ) is distributed as 2σ 2(1− ρ)χ2

ν /ν with degrees 
of freedom ν = n − 1. For a given the correlation coefficient 
𝜌, the variable t =

√
n (X2−X1)

Sd
 is distributed as a central 

t-distribution with degrees of freedom ν. Thus, the proba-
bility over a band in 

(

X1,X2

)

 plane defined as.
{(

X1,X2

)

,−∞ < X1 < ∞,−ω ≤ √
n
(

X2 − X1

)

≤ ω

}

 , 
ω = tν, α/2Sd,is exactly 1 – 𝛼, assuming Cb = 1. The ω is the 
half-width of the LoA.

As a graphical tool for assessing agreement, we introduce 
a 100(1 - 𝛼)% “reference band (RB)” where half-width RB 
ωRB is defined as

given confidence level 1 - 𝛼 and degrees of freedom ν. 
Here, ρL is the lower bound of excellent concordance. 
As σ̂ = Sd/

√

2
(

1− ρ̂

)

 , the half-width of the RB can be 
written as

Note that the variance of X2i − X1i is the same as of √
n
(

X2 − X1

)

 and that ρ̂ > ρL iff ωRB > ω, ρ̂ < ρL iff 
ωRB < ω, and ρ̂ = ρL iff ωRB = ω. In other words, if the half-
width of the RB is narrower than that of the LoA, then 
the CCC value will be lower than ρL since ρC ≤ ρ < ρL. The two 
lines, X2 − X1 =  ± ωRB in 

(

X1+X2

2
,X2 − X1

)

 plane, are the 

ωRB = tν,α/2 Sd

√

1− ρL

1− ρ̂
,

ωRB = tν,α/2σ̂
√

2(1− ρL).
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boundary lines of the RB, as illustrated in Fig. 1. This differ-
ence vs. average plot would allow us to better investigate 
any possible relationship between discrepancies and aver-
age values (Bland and Altman [2]). If the absolute value of 
the difference |X2 − X1| exceeds the half-width ωRB, those 
data can then be viewed as outliers from the RB.

Practitioners may choose different values of the CCC 
for a lower bound of excellent concordance, depending 
on their practical interpretation of the CCC or clinical 
relevancy and historical CCC values. In this paper, we 
employ the lower bound of the CCC of 0.75 for excellent 
concordance, and this threshold has been well accepted 
in Nickerson [12] and Rosner [13]. Assuming Cb = 1, the 
half-width of the RB is

Excellent concordance would not be achieved if ρ is lower 
than 0.75 since 0 < Cb ≤ 1. Thus, nearly 100(1 - 𝛼)% of data 
should be located within the RB if the CCC is at least 0.75 
and Cb = 1. Note that random samples from a bivariate 
normal variable are distributed to the line

in (X1, X2) plane, and that the slope of the best-fit line 
would be negative for σ2 < σ1, positive for σ2 > σ1, and 0 for 
σ2 = σ1 in 

(

X1+X2

2
,X2 − X1

)

 plane. Thus, the vertical shift 

ωRB = 1√
2
tν,α/2σ̂.

X2 =
σ2

σ1
(X1 − µ1)+ µ2

of the mean difference from 0 and the slope of the best-fit 
line indicate the degree of heterogeneity of the two 
means and variances. We will investigate this in Results 
section.

Results
Simulation studies
We considered four different scenarios to illustrate the 
performance of our approach. Under each scenario, 
10,000 runs of simulation studies were conducted to esti-
mate the number of outliers from the RB. At each run, 
1000 bivariate normally distributed random samples with 
𝜌 were generated to have a more accurate estimate of the 
% of outliers by the method of Kim [14]. The RB in 
(

X1+X2

2
,X2 − X1

)

 plane is constructed by using α = 0.05 
and the CCC = 0.75 as the lower limit of excellent con-
cordance. Scenario I evaluates the number of outliers 
detected by the proposed method when ρc = 0.75 and 
Cb = 1. In scenarios II and III, the proposed method is 
compared with the LoA of the B-A plot when data are 
highly concordant (ρ = 0.85 and Cb = 1) and the common 
variance is either relatively small (σ1 = σ2 = 1), scenario II 
or large (σ1 = σ2 = 2), scenario III. The effect of heteroge-
neity of two variances and two means is investigated in 
Scenario IV. The graphical comparisons with the LoA are 
provided in Fig. 2, where the sample size is reduced to 100 
for better visual comparisons. The association between 
the CCC values and the % of outliers is presented in Fig. 3.

Fig. 1  Definition of the reference band (RB) in 
(

X1+X2

2
, X2 − X1

)

 plane
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Scenario I
(μ1 = μ2 = 1, σ1 = σ2 = 1; Cb = 1 and ρ = ρc = 0.75) The data 
are randomly distributed to the line X2 − X1 = 0 in 
(

X1+X2

2
,X2 − X1

)

 plane (panel A of Fig. 2). No pattern is 
detected and nearly 3% of data deviate from the RB, which 
implies that the CCC value is close to 0.75. Note that the 
half-width of the RB (ωRB= 1.48) is close to that of the 
LoA (ω = 1.41) since both the RB and the LoA is sup-
posed to contain 95% of data (Sd = 0.713 and ρ̂ = 0.773). 
The % of outliers were strongly associated with the CCC 
values as shown in panel A of Fig.  3. The median CCC 
value was 0.75 (range: 0.69 – 0.796) while the median % of 
outliers was 5% (range: 2.3 – 8.7%). Particularly, there 
were 5335 runs with the CCC values of 0.74 to 0.76 with 
median % of outliers at 4.9% (range: 3.2 – 6.8%).

Scenario II
(μ1 = μ2 = 1, σ1 = σ2 = 1; Cb = 1 and ρ = ρc = 0.85) As in sce-
nario I, no pattern is detected, which indicates that the bias 

correction factor, Cb, would be close to 1. Compared to 
scenario I, no data is deviated from the RB, while approxi-
mately 95% of data is located within the LoA as depicted 
in panel B of Fig.  2. Based on the proposed approach, it 
is apparent that the agreement of the data is considerably 
higher than 0.75 since all data are clustered near 0 within 
the RB, and the slope of the best-fit line seems to be near 0. 
The % of outliers significantly decreases with the CCC val-
ues’ increase (Fig. 3B) and would not exceed 3% as all CCC 
values were greater than 0.75. Indeed, the median CCC 
value was 0.85 (range: 0.816 – 0.878) while the median % 
of outliers was 1.1% (range: 0 – 2.8%).

Scenario III
(μ1 = μ2 = 1, σ1 = σ2 = 2; Cb = 1 and ρ = ρc = 0.85) Com-
pared to scenario II, the only difference is that both σ1 
and σ2 are increased to 2, and the RB and the LoA are 
almost two-folds of the scenario II (panel C, Fig.  2). It 
appears less concordant than scenario II based on the 

Fig. 2  Comparisons with the limits of agreement for 4 different scenarios: scenario I (panel A, μ1 = μ2 = 1, σ1 = σ2 = 1; Cb = 1, and ρ = ρc = 0.75), 
scenario II (panel B, μ1 = μ2 = 1, σ1 = σ2 = 1; Cb = 1, and ρ = ρc = 0.85), scenario III (panel C, μ1 = μ2 = 1, σ1 = σ2 = 2; Cb = 1, and ρ = ρc = 0.85) and 
scenario IV (panel D, μ1 = 1,  μ2 = 1.5, σ1 = 1,  σ2 = 1.2; Cb = 0.8922, ρ = 0.6725; ρc = 0.6). The CCC of 0.75 is selected as a lower bound of excellent 
concordance. The sample size is 100
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half-width of the LoA, despite of the fact that the CCC of 
scenario III is the same as scenario II. Indeed, it appears 
that the degree of concordance of scenario III is the same 
as that of scenario II. The proposed RB method correctly 
reflects its concordance level with no deviates of the data 
points from the RB. These can be identified in panel C of 
Fig. 2 and panel C of Fig. 3. The median and range of the 
CCC values and the median and range of the % of outli-
ers are analog to those of scenario II.

Scenario IV
(μ1 = 1,  μ2 = 1.5, σ1 = 1,  σ2 = 1.2; Cb = 0.8922, 
ρ = 0.6725; ρc = 0.6) In 

(

X1+X2

2
,X2 − X1

)

 plane, the data 

are vertically shifted (panel D, Fig. 2), and the slope of 
the best-fit line is slightly positive, showing σ1 < σ2. 
Thus, it is anticipated that the bias correction factor, 
Cb, is smaller than 1. Nearly 10% of data deviates from 
the RB, which implies that the CCC value seems to be 
lower than 0.75. However, the centerline of the LoA 
moves up by the mean of the differences, d , while about 
95% of the data remains within the LoA. The half-width 
of the LoA (half-width = 1.646) is slightly larger than 
that of the proposed method (ωRB= 1.566). In panel D 
of Fig. 3, the median CCC value is 0.601 (range: 0.522 – 
0.671) while the median % of outliers is 13.4% (range: 
9.1 – 18.2%). Thus, the proposed method is more 

Fig. 3  Association between the CCC values and the % of outliers for 4 different scenarios: scenario I (panel A, μ1 = μ2 = 1, σ1 = σ2 = 1; Cb = 1, 
and ρ = ρc = 0.75), scenario II (panel B, μ1 = μ2 = 1, σ1 = σ2 = 1; Cb = 1, and ρ = ρc = 0.85), scenario III (panel C, μ1 = μ2 = 1, σ1 = σ2 = 2; Cb = 1, and 
ρ = ρc = 0.85), and scenario IV (panel D, μ1 = 1,  μ2 = 1.5, σ1 = 1,  σ2 = 1.2; Cb = 0.8922, ρ = 0.6725; ρc = 0.6). The CCC of 0.75 is selected as a lower 
bound of excellent concordance. Under each scenario, 10,000 runs of simulation are conducted, and the sample size is 1000 to have a more 
accurate estimate of the % of outliers
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consistent with the CCC and provides a better visual 
tool for evaluating the agreement in comparison with 
the LoA.

In summary, nearly 95% of the data lie in the LoA for 
all scenarios, and the visual evaluation on agreement 
depends on the half-width of the LoA and the prede-
termined acceptable difference. If the same acceptable 
difference is applied to all scenarios, scenario II is the 
most concordant, scenario II is the most concordant, 
scenario I is next, and III and IV are least from the LoA 
approach while scenarios II and III are most concord-
ant, scenario I is next, and IV is least based upon the 
proposed method. These rankings are based on % of 
outliers with 13.4 and 5% of the median % outliers for 
scenarios IV and I, respectively. We observe that the 
proposed method is consistent with the CCC values 
and is robust to the magnitude of the between-subject 
variability.

Graphical comparisons with the LoA approach are 
presented in Supplementary Fig. 1 when X1 and X2 are 
generated from uniform distribution and their corre-
lation coefficients are 0.65, 0.75, 0.85, and 0.9, respec-
tively. The sample size is 100. The random numbers 
are generated by the Demirtas method [15]. The % of 
outliers are 10, 7, 5, and 3%, when the CCC values are 
0.639, 0.75, 0.853, 0.909, respectively. The half-width 
of the RB is not dependent on correlation ρ while the 
half-width of the LoA is inversely associated with ρ (the 
half-width of the LoA = 0.508, 0.409, 0.297, and 0.242, 
respectively). The association between the CCC values 
and the % of outliers are presented in Supplementary 
Fig.  2. Under each scenario, 10,000 runs of simulation 
(n = 1000 per run) were conducted: 𝜌 = 0.65 in panel A, 
𝜌 = 0.75 in panel B, 𝜌 = 0.85 in panel C, and 𝜌 = 0.9 in 
panel D. The median CCC value and % of outliers were 
0.65 (range: 0.548 – 0.732) and 11.9% (range: 8 – 16.4%) 
for 𝜌 = 0.65, 0.75 (range: 0.661 – 0.819) and 8.4% (range: 
5.1 – 12.6%) for 𝜌 = 0.75, 0.85 (range: 0.766 – 0.914) 
and 5% (range: 2.4 – 8.9%) for 𝜌 = 0.85, and 0.9 (range: 
0.839 – 0.947) and 3.3% (range: 1.1 – 5.7%) for 𝜌 = 0.9, 
respectively. Thus, slightly more outliers are observed 
than those of bivariate normal data if data are uniformly 
distributed.

Applications to real data
A peak expiratory flow rate (PEFR) study data in Bland 
and Altman’s paper [1] and the Radiomics features 
extracted from 3D CT images in Balagurunathan et al. [7] 
are investigated as real examples below.

Example 1 (PEFR data)
The PEFR was measured using two different types of 
equipment: a large Wright peak flow meter and a mini 

Wright peak flow meter. There were two measurements 
for each meter, as shown in Supplementary Table 1. Only 
the first measurement by each meter is used for the com-
parison of our proposed method with the LoA, which is 
obtained as.
d ± t16,0.025Sd = −2.12± 82.18 (l/ min ).The boundary 

lines of the RB are.
ωRB = ± 1√

2
t16,0.025σ̂ = ±172.53 (l/ min ),in 

(

X1+X2

2
,X2 − X1

)

 plane. As depicted in Fig.  4, the half-
width of the LoA is approximately two-folds of the RB. 
All data are clustered in the RB, implying that the CCC 
value would be considerably greater than 0.75 and that 
the two meters have an excellent concordance from the 
scaled index perspective. Note that estimates of the 
CCC, the Pearson correlation coefficient, and the bias 
correction factor are 0.943, 0.943, and 0.999, respec-
tively, due to the large between-subject variability. How-
ever, the mini meter is unacceptable for clinical 
purposes because the half-width of the LoA (±82.18) is 
too wide to be considered as evidence of the lack of 
reproducibility.

Example 2 (Radiomics data)
In Balagurunathan et  al. study [7], authors developed 
and identified a set of features extracted from CT 
images that can be converted into quantifiable and 
minable data as a potential prognostic and predictive 
biomarker of clinical outcomes. The unenhanced tho-
racic CT images for 32 patients in test-retest settings 
were acquired within 15 min of each other, using the 
same CT scanner. All patients had a primary pulmo-
nary tumor of 1 cm or larger. A total of 64 lesions (2 
per patient) were segmented, and a total of 219 3D fea-
tures were extracted from CT scans. Two segmentation 
methods, manual and automatic single-click ensemble 
segmentation developed by Balagurunathan et al., were 
used to get the correct segmentation boundaries of 
tumors. These 219 features can be broadly divided into 
two classes: non-texture and texture features. Non-
texture features include tumor size, shape, and location 
description, while texture features include pixel histo-
gram, run length, co-occurrence, Laws, and wavelet-
based features (see details in Balagurunathan et al. [7]). 
The first step of the process is to screen out less repro-
ducible features. Unlike the PEFR study, it is impracti-
cal to determine the acceptable difference for assessing 
the agreement between two observations. Thus, the 
scaled index such as CCC would be a reasonable meas-
ure for assessing agreement.

This paper considers two non-texture features, 
shortest × longest diameter and volume, out of 219 
features for each segmentation method (manual and 
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ensemble segmentation). The log-transformation is 
taken to improve the normality. The estimated CCC 
values, ρ̂c , of two features obtained by two segmen-
tation methods are very close to 1 (Table  1), and the 
graphical evaluation of agreement is presented in 
Fig. 5. The CCC value of 0.75 is selected as the lower 
limit of excellent concordance. As shown in Fig. 5, all 
data are clustered near 0 within the RB, all CCC values 
are considerably larger than 0.75, and it is anticipated 
from the visual evaluation that the agreement of vol-
ume by manual segmentation (panel C) is the highest 
while shortest × longest diameter by ensemble seg-
mentation (panel B) is the lowest among them, which 
is consistent with the CCC values, ρ̂c (Table 1).

Discussion and conclusions
The Bland-Altman (B-A) plot with the limits of agree-
ment (LoA) has been widely used as not only an unscaled 
agreement index but also as a visual tool for assessing 
agreement. The agreement is evaluated by comparing the 
acceptable difference with the LoA, an unscaled index. 
If an acceptable difference cannot be determined or the 
difference between measurements may not be interpret-
able, the scaled indices such as CCC or ICC may be used 
to assess the agreement. Despite its popularity, the LoA 
in the B-A plot may not be associated with the scaled 
indices, particularly when the common variance is large 
but two measurements are highly concordant (scenario 
III vs scenario II). To our knowledge, there is no visual 

Fig. 4  Peak Expiratory Flow Rate (PEFR) data analysis: the comparison of the reference band (RB) with the limits of agreement. A lower bound of 
excellent concordance is set up at 0.75

Table 1  Radiomics Data Analysis; agreement of the features obtained from manual and ensemble segmentation. Data are all log-
transformed

Features Manual Ensemble

ρ̂c ρ̂ Ĉb
ρ̂c ρ̂ Ĉb

Short Axis × Longest Diameter 
[mm2]

0.9895 0.9902 0.9992 0.9818 0.9835 0.9983

Volume [cm3] 0.9977 0.9981 0.9997 0.9933 0.9934 0.9999
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tool available in practice that is associated with the CCC 
value. This paper proposes a novel, CCC-based reference 
band (RB) as a visual tool for assessing agreement. The 
simulation studies show that our visual tool is consist-
ent with the CCC value. If data are uniformly distributed, 
slightly more outliers of the RB are detected than those of 
bivariate normal data. Note that the RB is derived from 
the assumption that σ = σ1 = σ2. If this assumption does 
not hold, the width of the RB may not be reliable, and the 
number of outliers may not be consistent with the CCC 
value. Thus, the test for the homogeneity of two variances 
is recommended prior to applying this method in prac-
tice. However, the test for the homogeneity of two means 
is not necessary since the difference of two means does 
not affect the validity of the half-width of the RB. We also 
hope that the proposed method can provide practitioners 
with additional useful information such as recognition of 
patterns and identification of outliers in data.
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