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Abstract 

Background:  The classical linear model is widely used in the analysis of clinical trials with continuous outcomes. 
However, required model assumptions are frequently not met, resulting in estimates of treatment effect that can be 
inefficient and biased. In addition, traditional models assess treatment effect only on the mean response, and not on 
other aspects of the response, such as the variance. Distributional regression modelling overcomes these limitations. 
The purpose of this paper is to demonstrate its usefulness for the analysis of clinical trials, and superior performance 
to that of traditional models.

Methods:  Distributional regression models are demonstrated, and contrasted with normal linear models, on data 
from the LIPID randomized controlled trial, which compared the effects of pravastatin with placebo in patients with 
coronary heart disease. Systolic blood pressure (SBP) and the biomarker midregional pro-adrenomedullin (MR-
proADM) were analysed. Treatment effect was estimated in models that used response distributions more appropri-
ate than the normal (Box-Cox-t and Johnson’s Su for MR-proADM and SBP, respectively), applied censoring below the 
detection limit of MR-proADM, estimated treatment effect on distributional parameters other than the mean, and 
included random effects for longitudinal observations. A simulation study was conducted to compare the perfor-
mance of distributional regression models with normal linear regression, under conditions mimicking the LIPID study. 
The R package gamlss (Generalized Additive Models for Location, Scale and Shape), which implements maximum 
likelihood estimation for distributional regression modelling, was used throughout.

Results:  In all cases the distributional regression models fit the data well, in contrast to poor fits obtained for tradi-
tional models; for MR-proADM a small but significant treatment effect on the mean was detected by the distributional 
regression model and not the normal model; and for SBP a beneficial treatment effect on the variance was dem-
onstrated. In the simulation study distributional models strongly outperformed normal models when the response 
variable was non-normal and heterogeneous; and there was no disadvantage introduced by the use of distributional 
regression modelling when the response satisfied the normal linear model assumptions.

Conclusions:  Distributional regression models are a rich framework, largely untapped in the clinical trials world. We 
have demonstrated a sample of the capabilities of these models for the analysis of trials. If interest lies in accurate 
estimation of treatment effect on the mean, or other distributional features such as variance, the use of distributional 
regression modelling will yield superior estimates to traditional normal models, and is strongly recommended.
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Background
The classical linear model is widely used in the analysis of 
clinical trials with continuous outcomes. However when 
the required model assumptions are not met, estimates 
of treatment effect can be inefficient and biased. Since 
Nelder and Wedderburn’s [1] seminal paper introduc-
ing generalized linear models (GLMs), there has been a 
revolution in the development of regression methodol-
ogy, enabled by an accompanying exponential increase 
in computing power over the same period. The current 
state-of-the-art “distributional regression” framework, 
first proposed by [2] as Generalized Additive Models for 
Location, Scale and Shape (GAMLSS), accommodates 
any computable parametric response distribution; the 
facility for modelling any distributional parameter (not 
just the mean), smooth terms for continuous covariates; 
and random effects for modelling clustered (e.g. longi-
tudinal) observations. Within this rich environment, the 
analyst has the ability to model trials outcomes using 
appropriate assumptions, resulting in estimates of treat-
ment effect which should be efficient and asymptotically 
unbiased.

The use of distributional regression in clinical trials has 
broader motivations than efficient and unbiased statisti-
cal modelling. The mean of a biomarker may not be the 
only feature of the biomarker distribution that governs 
prognosis, and the beneficial effects of treatment may be 
mediated through other distributional characteristics. An 
example is blood pressure variability. Studies have shown 
that blood pressure variability is prognostic for cardio-
vascular outcomes and clinical trials assessing interven-
tions that decrease blood pressure variability have been 
recommended [3]. Such trials would assess the effect of 
treatment on the variance of a biomarker distribution, for 
which distributional regression is well suited.

Development of regression modelling
In the case of a two-armed trial with continuous outcome 
y, the classical linear model specifies

where ti is an indicator variable for treatment, βt is the 
treatment effect and xi = (xi1, …, xip)⊤ is a covariate vec-
tor whose elements may be continuous or binary. While 
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taking logarithms or other transformations of y and/or 
some of the covariates is sometimes helpful for satisfying 
the normality and linearity assumptions, the restrictive 
model assumptions of (conditional) normality, homosce-
dasticity and linearity are in practice frequently not met. 
Nevertheless this model remains popular for analysis.

Relaxation of the classical linear model assumptions 
started with the GLM: “Theoretical and applied statis-
tics were both convulsed by the publication of the GLM 
paper by Nelder & Wedderburn (1972).” [4]. The revo-
lutionary aspects of the GLM were the extension of the 
choice of response distribution to any member of the 
exponential family of distributions, which includes the 
normal, Poisson, binomial, Gamma, inverse Gaussian 
and Tweedie distributions; inclusion of a link function 
g(·) in the model specification for μi:

where g(·) is any monotonic differentiable function; and 
an algorithm for the computation of the maximum like-
lihood estimates which was computationally feasible 
within computing constraints at the time. Since then 
development of the regression framework has included 
broadening the linear predictor to include smooth terms 
(defined below); the extension of allowed response dis-
tributions to any parametric distribution which is twice 
differentiable and computable; and the ability to spec-
ify model equations similar to (1) for any distribution 
parameter, not just the mean. For example, a normal lin-
ear model which displays variance which is dependent on 
the treatment and/or covariate(s) (i.e. heteroscedasticity) 
is accommodated:

The superscripts on the β’s denote the parameter to 
which the coefficient corresponds. So, for example, βµ

t  
is the treament effect on μ, while βσ

t  is the treatment 
effect on σ2. The logarithmic link for σ2 guarantees pos-
itivity of parameter estimates σ̂ 2

i  ; other link functions 
may also be used [5]. Note that not all of x1, …, xp and t 
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Trial registration:  The LIPID trial was retrospectively registered on ANZCTR on 27/04/2016, registration number 
ACTRN​12616​00053​5471.
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need be present in the model equations for both μ and 
σ2.

GAMLSS modelling is implemented in the R package 
gamlss [6, 7], in which over one hundred response distri-
butions are currently available. These enable modelling of 
the following types of outcome variable, without the need 
for data transformation:

•	 continuous outcomes (positive or negative);
•	 continuous, non-negative outcomes;
•	 counts (bounded or unbounded);
•	 proportions (continuous, on the interval zero to one);
•	 any of the above with inflated probabilities at zero, 

and/or one in the case of proportions.

Parameter estimation in gamlss is performed using the 
method of maximum likelihood, resulting in the coeffi-
cient estimates having the usual asymptotic properties of 
maximum likelihood estimates, viz. normality, unbiased-
ness, consistency and efficiency. Bayesian estimation for 
GAMLSS models, which we do not cover in this paper, is 
available in the R package bamlss [8].

In this paper we focus on the modelling of continuous 
outcomes.

Model terms
The model equations given above are of the following 
(linear) form, for generic parameter θ, and which we 
denote as ηθi :

Should the effect of a covariate xj on ηθi  be nonlinear, we 
can, in order of preference:

•	 find a nonlinear transformation of xj that captures 
the relationship; or

•	 use a “smooth function” of xj, discussed below; or
•	 categorize xj and enter it into the model as a factor.

A nonlinear transformation, if justified by the data 
(and possibly the underlying science), is arguably the 
best approach to a nonlinear relationship. However, 
should an appropriate transformation not be obvious (as 
is frequently the case), smooth functions are an excellent 
alternative. They were introduced into regression model-
ling as spline terms in Generalized Additive Models, by 
[9]. (A good recent reference is [10].) The linear predictor 
becomes

where the sθj
(

xij
)

 can be linear terms ( βθ
j xij ) or smooth 

functions. There are a few alternatives available for 

g(θi) = ηθi = βθ
0 + βθ

t ti + βθ
1 xi1 + · · · + βθ

pxip

ηθi = βθ
0 + βθ

t ti + sθ1(xi1)+ · · · + sθp
(

xip
)

smooth functions, most notably splines, lowess and frac-
tional polynomials. Mathematically and computationally, 
spline terms are fairly easily handled as they are com-
posed of a series of linear terms (or basis functions), so 
the model retains its linear structure. There is a tradeoff 
between complexity (curve “too wiggly,” too sensitive to 
local variations) and simplicity (curve “too smooth,” not 
sensitive to important variations), which is resolved in 
model estimation by using penalties for curve complexity.

Random effects
Clinical trials often involve dependence structures 
induced by design features such as clustered randomi-
zation, longitudinal and repeated measurement on indi-
viduals, multiple endpoints, crossover of treatments 
and many others. Distributional regression using the 
GAMLSS model has the capacity to introduce ran-
dom effects into the linear predictor for any or all of the 
parameters being modelled. Such random effects models 
can capture the effect of these dependence structures on 
parameters other than the mean, using mixed GAMLSS 
models that are analogous to standard mixed models for 
correlated data. The software and computational tools 
described below have the capacity to incorporate these 
random effects in a straightforward manner, making the 
flexible distributional regression framework available in 
contexts where dependence must be incorporated into 
the model.

The GAMLSS model
The full GAMLSS model for a two-armed trial is

where D(· ) is a parametric distribution with comput-
able first and second derivatives and having up to four 
parameters μ, σ, ν and τ; gk(·) is the link function for the 
kth parameter, which is monotonic and differentiable; 
and the functions sj(·) represent a variety of different 
effects: linear or nonlinear effects of continuous covari-
ates, smooth terms (usually implemented mathematically 
as splines), spatial effects, or random effects.

(2)
yi ∼ D(µi, σi, νi, τi) independently, for i = 1, . . . , n
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Note that the response distribution D may have one, 
two, three or four distribution parameters; of these, not 
all need to be modelled with covariates; and the sets of 
covariates in the models for distribution parameters may 
be the same, disjoint or overlapping.

Methods
Software
Estimation of GAMLSS models is implemented using 
penalized maximum likelihood, or Bayesian estimation, 
in the R packages gamlss [7] and bamlss [8] respectively. 
We have used gamlss for estimation throughout.

LIPID trial
The Long-Term Intervention with Pravastatin in Ischae-
mic Disease (LIPID) trial is a double-blind, randomized 
controlled trial of patients with stable coronary heart 
disease and a broad range of cholesterol levels. The trial 
compared the effects of pravastatin with those of placebo 
in 9014 patients over a mean follow-up of 6.1 years. Both 
treatment arms received advice on a cholesterol-lowering 
diet. The primary outcome of the trial was mortality from 
coronary heart disease, and they found a relative risk 
reduction of 24% (95% CI, 12–35, p < 0.001). The trial also 
found lower overall mortality and lower incidence of all 
cardiovascular outcomes in patients treated with pravas-
tatin [11].

Description of biomarker MR‑proADM
The LIPID trial has also published data on the long term 
effects of treatment with pravastatin [12] and the analysis 

of eight biomarkers used in coronary heart disease [13]. 
One of the eight biomarkers measured in the LIPID 
study is plasma midregional pro-adrenomedullin (MR-
proADM), which is a surrogate marker for adrenomedul-
lin release. Adrenomedullin acts as a vasodilator and has 
important roles in microcirculation and endothelial dys-
function. Lower baseline and reductions in the change of 
MR-proADM have been associated with decreased risk 
of major clinical events, even after adjustment for other 
important biomarkers such as B-type natriuretic peptide 
(BNP).

Results
MR‑proADM
The detection limit of MR-proADM is 0.05 nmol/L, so 
it is assumed to be left-censored at this point. Figure  1 
shows density plots of MR-proADM at 12 months; there 
appears to be a small beneficial treatment effect.

GAMLSS analysis
GAMLSS has the functionality for the creation of cen-
sored versions of any of its distributions; in this case, 
we found the Box-Cox t (BCT) distribution [14], left-
censored at 0.05, to provide the best fit, according to the 
AIC criterion. (This was found using the gamlss func-
tion fitDist, which performs a search of all appropriate 
distributions (in this case, continuous distributions on 
the positive real line), and ranks them in order of Akaike 
information criterion (AIC)). The BCT is a four-param-
eter, non-negative continuous distribution, with μ being 

Fig. 1  Density plots of MR-proADM at month 12, treatment and control groups. The densities are kernel density estimates, computed using the R 
package ggplot2
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the median (approximately), σ the (approximate) coeffi-
cient of variation, ν a skewness parameter and τ a kurto-
sis parameter.

We contrast the left-censored normal and left-cen-
sored BCT regression models. For comparability with 
the normal model, we initially only fit the treatment and 
covariate effects to the parameter μ of the BCT (“reduced 
model”).

1.	 Reduced left-censored normal model:

2.	 Reduced left-censored BCT model:

where yi is the level of MR-proADM activity at month 
12 and, for both models, the last argument (0.05) signifies 
the left-censoring cutoff. The model equation for μ is

where ti is an indicator for treatment and xi is base-
line MR-proADM activity. The logarithmic link for μ 
ensures non-negativity; the assumption of proportional-
ity implicit in (3) is shown to be satisfied in scatterplots of 
the logarithms of month 12 and baseline biomarker activ-
ity, which are strongly linear (Supplementary material).

We use the AIC as criterion for selection of the covar-
iates in the “extended models” for both distributions. 
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∣

∣
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2, 0.05
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yi|ti , xi ∼ BCT (µi, σ , v, τ , 0.05)

(3)log (µi) = β
µ
0 + β

µ
t ti + β

µ
1 log (xi),

Covariates available for analysis were sex and baseline 
MR-proADM activity. Parameter estimates for the four 
models are shown in Table  1, and a plot of the treat-
ment effect on the parameter μ as estimated in the 
reduced models, with 95% confidence intervals, in 
Fig.  2. (Because of the log link, we display exp

(

β̂
µ
t

)

 , 
with the value 1 being consistent with no treatment 
effect.) Note that the BCT model concludes a signifi-
cant beneficial treatment effect on the median, whereas 
the normal model does not. The extended models both 
include sex as a predictor for σ, and the BCT extended 
model also includes a treatment effect for σ and ν, and 
baseline MR-proADM in the models for σ, ν and τ.

Quantile-quantile plots of the normalized quantile 
residuals are given in Fig.  3; the BCT models provide 
good fits, whereas the normal model fits are poor. A 
comparison of the four models using the AIC is given 
in Table 2. Both BCT models are preferred to the nor-
mal models, and of these the extended BCT model is 
preferred.

Table 1  Parameter estimates under left-censored reduced and extended BCT and normal models

Reduced model Extended model

BCT NO BCT NO

Parameter Coefficient Estimate SE p Estimate SE p Estimate SE p Estimate SE p

μ (Intercept) −0.129 0.007 < 0.001 0.668 0.005 < 0.001 − 0.088 0.006 < 0.001 0.745 0.008 < 0.001

μ baseline 0.813 0.009 < 0.001 0.236 0.004 < 0.001 0.879 0.008 < 0.001 0.319 0.008 < 0.001

μ sex −0.017 0.006 0.003

μ treatment −0.014 0.005 0.004 −0.005 0.004 0.224 −0.018 0.005 < 0.001 −0.005 0.004 0.166

σ (Intercept) −1.959 0.019 < 0.001 − 1.818 0.009 < 0.001 −2.796 0.050 < 0.001 −1.890 0.025 < 0.001

σ baseline −1.426 0.039 < 0.001 −0.230 0.017 < 0.001

σ sex −0.158 0.037 < 0.001 −0.154 0.024 < 0.001

σ treatment 0.073 0.030 0.014

ν (Intercept) 0.426 0.069 < 0.001 1.109 0.105 < 0.001

ν baseline 0.153 0.045 0.001

ν treatment 0.124 0.076 0.101

τ (Intercept) 0.287 0.007 < 0.001 −0.029 0.006 < 0.001

τ baseline −1.184 0.008 < 0.001

Fig. 2  Estimated treatment effect and 95% confidence intervals on μ, 
reduced BCT and normal models for MR-proADM
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Figure  4 shows fitted probability density functions 
(PDFs) of the reduced normal and extended BCT mod-
els, with baseline MR-proADM activity at its median 
and male gender, superimposed on the histogram of the 
response data in the neighbourhood of the median of 
baseline MR-proADM and male gender. It can be seen 
that the BCT model successfully captures the sharp 
peak in the observed data, whereas the normal model 
is unable to model this feature and compensates with 
greater variance than is observed.

Systolic blood pressure
SBP is the pressure in arteries during the contraction of 
the heart muscle, and is a major risk factor for cardio-
vascular disease in people over 50 years old. SBP gener-
ally increases with age, as blood vessels stiffen and plaque 
builds up over time. SBP was measured 12-monthly 
from baseline in the LIPID trial. We initially analyse 
change from baseline at 72 months, and subsequently 
change from baseline at 48 and 72 months, as a longitu-
dinal model. Density plots of SBP at 72 months and SBP 
change from baseline at 72 months, by treatment group, 
are shown in Fig. 5.

Models for change in SBP at 72 months
The Johnson’s Su (JSU) distribution [14] was found to 
provide the best fit to change in SBP at 72 months. The 
JSU is a four-parameter continuous distribution, with 
parameters μ (the mean), σ (the standard deviation), ν 
(skewness parameter) and τ (kurtosis parameter). The 
JSU looks somewhat similar to the normal distribution 

Fig. 3  Normal plots of the normalized quantile residuals, reduced BCT and normal models for MR-proADM

Table 2  Comparison of models for MR-proADM using the AIC

Model df AIC

extended BCT 12 − 8352

reduced BCT 6 − 7147

extended normal 7 − 4869

reduced normal 4 − 4648
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when ν = 0, but is capable of skewness and more kurtosis 
(‘more peaked’) than the normal. Plots of the JSU pdf are 
shown in the Supplementary Material.

Model selection using the AIC, with the JSU as 
response distribution, resulted in the extended JSU 
model given in Table 3. Reduced JSU and normal models, 
and the extended normal model, are also shown.

In the extended JSU model, the treatment effect on 
the mean μ is non-significant (p = 0.952). However 
treatment is significant for the standard deviation σ 
(p = 0.030), in the direction of reduced variability for 

the active treatment. The extended normal model also 
finds a significant treatment effect on σ, and no sig-
nificant treatment effect on μ. Parameter estimates for 
μ and σ are similar for the extended JSU and normal 
models; however, for the reduced models they are quite 
different.

Normal plots of the normalized quantile residuals of 
the four models are shown in Fig. 6. As for the previous 
example, the normal models display a lack of fit, par-
ticularly in the upper tail, whereas the JSU models fit 
particularly well.

Fig. 4  Fitted PDFs of the reduced normal and extended BCT models, with baseline MR-proADM at its median and male gender, superimposed on 
the histogram of the response data in the neighbourhood of the median of baseline MR-proADM and male gender

Fig. 5  Density plots of SBP at 72 months (left) and SBP change from baseline at 72 months (right), by treatment group. The densities are kernel 
density estimates, computed using the R package ggplot2
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Longitudinal analysis of change in SBP at months 48 
and 72
It may be of interest to model SBP trajectories over 
the follow-up period. In this case we are dealing with 

longitudinal observations, in which each participant has 
repeated observations which are assumed to be corre-
lated. Modelling of correlated outcomes is achieved using 
one of two approaches: random effects, or generalized 

Table 3  Parameter estimates under reduced and extended JSU and normal models

Reduced model Extended model

JSU NO JSU NO

Parameter Coefficient Estimate SE p Estimate SE p Estimate SE p Estimate SE p

μ (Intercept) 82.142 2.456 < 0.001 80.322 2.550 < 0.001 79.722 2.576 < 0.001 79.889 2.560 < 0.001

μ baseline −0.609 0.018 < 0.001 −0.594 0.019 < 0.001 − 0.589 0.019 < 0.001 − 0.590 0.019 < 0.001

μ treatment 0.514 0.676 0.447 0.101 0.706 0.886 0.042 0.694 0.952 0.041 0.704 0.954

σ (Intercept) 2.867 0.017 < 0.001 2.868 0.014 < 0.001 2.473 0.125 < 0.001 2.519 0.100 < 0.001

σ baseline 0.003 0.001 < 0.001 0.003 0.001 < 0.001

σ treatment −0.067 0.031 0.030 −0.073 0.028 0.011

ν (Intercept) 1.259 0.353 < 0.001 4.018 2.178 0.065

ν baseline −0.018 0.014 0.195

τ (Intercept) 1.057 2.456 < 0.001 1.160 2.576 < 0.001

Fig. 6  Normal plots of the normalized quantile residuals, reduced and extended JSU and normal models for change in SBP at 72 months
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estimating equations (GEE). In the distributional regres-
sion framework, random effects methodology is well 
developed and we illustrate their application in this 
example. (Although in principle GEE models could also 
be incorporated in the distributional regression frame-
work, this methodology does not appear to have been 
developed.)

To facilitate comparison with the extended JSU model 
for change in SBP at 72 months, we have implemented 
a random effects model for change in SBP at 48 and 
72 months, using the same set of covariates as the former 
model as well as an effect for month (72 vs 48) for μ and 
σ. A random intercept for subject, for the parameter μ, 
has been included in order to model within-subject cor-
relation. Estimates are given in Table 4: as for the model 
for month 72, there is a significant treatment effect for σ 
(p = 0.001) but not for μ (p = 0.381). The estimated multi-
plicative effect of treatment on σ is exp(− 0.048) = 0.953, 
i.e. a decrease in standard deviation of 4.7%. There is 
also a significant effect of month (72 vs 48) on both μ 
(p = 0.006) and σ (p = 0.012), in the direction of increased 
μ and σ at month 72 compared with month 48.

The normal plot of the normalized quantile residuals of 
the longitudinal model (Fig. 7) shows a well-fitting model.

Simulation study
We have demonstrated the usefulness of distributional 
regression in the analysis of clinical trials. In order to 
provide evidence that it delivers reliable estimates of 
treatment effect that are superior to those based on the 
normal linear model, we have conducted a simulation 
study, based on the MR-proADM biomarker in the LIPID 
study. The simulation used the treatment allocations and 
baseline MR-proADM of the n = 6, 539 participants who 
had no missing values for MR-proADM at month 12. 

Baseline MR-proADM was included in all models for μ, 
and in models for σ in the case of extended models.

In the first simulation, we used the extended normal 
model for 12-month MR-proADM (see Table 1) as gen-
erating model. Using fitted means µ̂i and variances σ̂ 2

i  , 
we simulated 500 samples with normally distributed 
responses from N

(

µ̂i, σ̂
2
i

)

 , for i = 1, …, n. For each sam-
ple (j = 1, …, 500), we

•	 chose the best distribution using the AIC as selection 
criterion. We chose from the following distributions: 
normal, JSU, BCT and skew normal;

•	 using the chosen distribution and a treatment effect 
specified on the mean only in the case of the nor-
mal (i.e. the reduced normal model), and μ and σ for 
distributions other than the normal,  estimated the 
treatment effect on μ and its standard error.

In the second simulation, we used the extended BCT 
model for 12-month MR-proADM (see Table 1) as gen-
erating model. Using fitted values µ̂i , σ̂i , ν̂ and τ̂ , we simu-
lated 500 samples with responses from BCT

(

µ̂i, σ̂i, ν̂, τ̂
)

 , 
for i = 1, …, n. For each sample (j = 1, …, 500), we

•	 chose the best distribution as above,
•	 using the chosen distribution and a treatment effect 

specified on μ and σ,  estimated the treatment effect 
on μ and its standard error, and

•	 compared the estimates with those obtained from a 
reduced normal model.

Table 4  Parameter estimates for longitudinal JSU model for 
change in SBP at 48 and 72 months

Parameter Coefficient Estimate SE p value

μ (Intercept) 79.238 0.830 < 0.001

μ baseline SBP −0.592 0.006 < 0.001

μ month 72 0.747 0.271 0.006

μ treatment 0.200 0.229 0.381

μ random effect 10.712 0.116 < 0.001

σ (Intercept) 1.862 0.051 < 0.001

σ baseline SBP 0.005 0.000 < 0.001

σ month 72 0.042 0.016 0.012

σ treatment −0.048 0.014 0.001

ν (Intercept) 5.354 0.617 < 0.001

ν baseline SBP −0.026 0.004 < 0.001

τ (Intercept) 0.950 0.020 < 0.001

Fig. 7  Normal plot of the normalized quantile residuals, longitudinal 
JSU model for change in SBP at 48 and 72 months
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Table  5 shows the results of the response distribution 
selection for both simulations. In the case of the normal 
generating model, the normal was chosen in 86% of sam-
ples, and the JSU in the remaining 14%. For the BCT gen-
erating model, the BCT was chosen in 100% of samples.

Table  6 shows the results of the first simulation, in 
which the generating model is the normal and the chosen 
distributions were the normal and JSU. As the parameter 
μ is the mean for both the normal and JSU distributions, 
parameter estimates for the model for μ are comparable. 
For the samples for which the JSU distribution was cho-
sen, all of the 95% confidence intervals for the treatment 
effect on the mean included the true (simulated) effect. 
For the samples for which the normal distribution was 
chosen, 96% of the 95% confidence intervals cover the 
true (simulated) effect. The average standard error of the 
treatment effect on the mean was, in both cases, 0.004.

These results are reassuring that, when the underlying 
model is normal, distributional regression does not intro-
duce any disadvantage. In the 14% of cases in which the 
normal was not the chosen distribution, the JSU was cho-
sen. This distribution is similar to the normal, with more 
flexibility provided by its four parameters. The coverage 
rate for βµ

t  under JSU estimation was better than the nor-
mal; and standard errors provided by the two estimating 
models were the same (to three decimal places).

Results of the second simulation, in which the gen-
erating model is the BCT, are shown in Table  7. In all 
cases the BCT was the chosen distribution; we compare 
this with estimation under the normal linear (reduced) 
model. The parameter μ is the mean in case of the normal 
estimating model, and the (approximate) median in the 

case of the BCT estimating model. While these are both 
location parameters, they are not the same and as a result 
their parameter estimates are not directly comparable. 
Instead we compare the rejection rates of the hypothesis 
of no treatment effect on μ:

for the normal and BCT estimating models, using the 
Wald test. Standard errors for coefficient estimates, based 
on the inverse of the observed information matrix, are avail-
able from gamlss output and were used to generate the Wald 
statistics. For the BCT estimating model we also tested the 
hypothesis of no overall treatment effect on μ and σ:

using the likelihood ratio test statistic with null distribu-
tion the chi-square with two degrees of freedom. Results 
are shown in Table 7.

While estimation under the extended BCT model pro-
duces acceptably high rejection rates, the rejection rate 
for βµ

t  of the reduced normal model is poor. This con-
firms the result observed in Table 1 and Fig. 2, in which 
treatment effect on the parameter μ of the BCT model 
was significant, but the corresponding estimate under the 
normal model failed to reach significance.

Discussion and conclusions
We have demonstrated some of the richness of the distribu-
tional regression modelling framework, and its capability of 
accurately modelling continuous outcomes with features dif-
ferent from the normal distribution.1 Since its first publication, 
GAMLSS has gained increasing popularity in a wide variety of 
fields of application [15]. Distributional regression offers not only 
a very wide choice of response distribution, but also the ability 
to model parameters other than the mean; random effects to 
accommodate clustered observations; smooth terms for model-
ling nonlinear effects; and zero inflation and censoring. Particu-
larly noteworthy in the context of clinical trials, is the ability to 

H01 : β
µ
t = 0

H02 :

(

β
µ
t

βσ
t

)

=

(

0
0

)

,

Table 5  Chosen distributions in Normal and BCT simulations

1 n (%)

Generating distribution

Normal1 BCT1

Chosen distribution
BCT 0 (0%) 500 (100%)

JSU 72 (14%) 0 (0%)

Normal 428 (86%) 0 (0%)

Skew normal 0 (0%) 0 (0%)

Table 6  Results of simulation: Normal generating distribution, 
treatment effect on the mean

1 n (%); Mean

JSU, N = 721 NO, N = 4281

Coverage rate of 95% CI for β 72 (100%) 409 (96%)

Average standard error 0.004 0.004

Table 7  Rejection rates for specified hypotheses, under the BCT 
generating model

Estimating model Hypothesis Rejection rate

Extended BCT H01 96.2%

Extended BCT H02 94.8%

Reduced normal H01 26.8%

1  Discrete outcomes may also be modelled in this framework; we have not 
discussed these in this paper.
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model a treatment effect on a feature of the response distribu-
tion other than the mean, for example the variance. Tradition-
ally the analysis of trials is focused on estimation of the treatment 
effect, implicitly assumed to be on the mean. In fact a treatment 
effect on the variance of the response may be of importance, for 
example for the outcome blood pressure, and conventional nor-
mal modelling does not have the capability to detect this. This 
points to a need for a rethink of the interpretation of the notion 
of “treatment effect” when treatment is included in distribution 
parameters other than the mean (or median).

In our two examples, under the normality assumption the 
lack of fit was not improved by the addition of a model for σ; 
however the use of more appropriate response distributions 
resulted in well-fitting models. Where the normal linear model 
is used in situations in which model assumptions are not met, 
estimates of treatment effect based on the misspecified model 
will be biased [16] show that, under fairly general conditions, a 
large class of regression models (Gaussian, binomial, Poisson) 
yield asymptotically correct Type I errors for hypotheses on 
treatment effect, even when the models are incorrectly speci-
fied. This robustness to violation of model assumptions sug-
gests that, if the hypothesis concerning treatment effect is their 
only goal, analysts need not be too concerned about lack of 
model fit as long as the conditions are met. This has not been 
our experience; we have found in our applications and via 
simulation, that use of the normal model when the underlying 
generating model is non-normal and heteroscedastic, can lead 
to poor power for the detection of a treatment effect. Conse-
quently if interest lies in accurate detection and estimation of 
treatment effect on the mean, or distributional features other 
than the mean, use of distributional regression modelling will 
yield superior estimates and is strongly recommended.
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