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Abstract

Background: Stepped wedge trials are an appealing and potentially powerful cluster randomized trial design.
However, they are frequently implemented with a small number of clusters. Standard analysis methods for these trials
such as a linear mixed model with estimation via maximum likelihood or restricted maximum likelihood (REML) rely
on asymptotic properties and have been shown to yield inflated type | error when applied to studies with a small
number of clusters. Small-sample methods such as the Kenward-Roger approximation in combination with REML can
potentially improve estimation of the fixed effects such as the treatment effect. A Bayesian approach may also be
promising for such multilevel models but has not yet seen much application in cluster randomized trials.

Methods: We conducted a simulation study comparing the performance of REML with and without a
Kenward-Roger approximation to a Bayesian approach using weakly informative prior distributions on the intracluster
correlation parameters. We considered a continuous outcome and a range of stepped wedge trial configurations with
between 4 and 40 clusters. To assess method performance we calculated bias and mean squared error for the
treatment effect and correlation parameters and the coverage of 95% confidence/credible intervals and relative
percent error in model-based standard error for the treatment effect.

Results: Both REML with a Kenward-Roger standard error and degrees of freedom correction and the Bayesian
method performed similarly well for the estimation of the treatment effect, while intracluster correlation parameter
estimates obtained via the Bayesian method were less variable than REML estimates with different relative levels of bias.

Conclusions: The use of REML with a Kenward-Roger approximation may be sufficient for the analysis of stepped
wedge cluster randomized trials with a small number of clusters. However, a Bayesian approach with weakly
informative prior distributions on the intracluster correlation parameters offers a viable alternative, particularly when
there is interest in the probability-based inferences permitted within this paradigm.
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Background

Stepped wedge (SW) trials are cluster randomized
trial (CRT) designs where clusters are randomized to
sequences of intervention and control conditions. All
clusters initially implement the control condition for one
or more time periods and then switch to the intervention
condition for one or more periods. Collectively, clusters
roll over from implementing the control condition to the
intervention in a stepped manner over the defined time
periods of the trial, until all clusters implement the inter-
vention by the final period; an example is displayed in
Fig. 1. As with all CRTs, subjects within a cluster are likely
to be more similar to each other than to subjects in other
clusters, and it is important to account for this similarity
in the statistical model we use for the design and analysis
of the trial. This similarity is encoded by the correlation
between a pair of subjects’ outcomes belonging to the
same cluster and is called the intracluster correlation.

SW designs have become increasingly popular in recent
years [1] (there were 330 SW trials registered on clinical-
trials.gov as of August 17, 2021) and may offer a number of
advantages over some alternative CRT designs. For exam-
ple, a SW design tends to have improved power over
simpler designs such as the parallel design, when the intr-
acluster correlation or the cluster size is large [2]. The
design also allows for all clusters to receive the interven-
tion by the end of the trial (the most common reason for
use in a 2017 review of 123 planned or completed SW tri-
als) [1] and offers a pragmatic option for settings in which
intervention rollout is necessarily extended over time [3]
(the most common reason in a 2015 review of 37 SW
trials) [4].

SW CRTs often recruit relatively small numbers of clus-
ters: a review of 102 SW trials found that the median
number of clusters was 12, with 45% having fewer than 10
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Fig. 1 Schematic of a stepped wedge design, with N=8 clusters
(rows), T=5 periods (columns), and S=2 clusters per treatment
sequence (number of times each unique row is repeated)
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clusters [5]. Warnings abound in the CRT literature about
the validity of sample size calculations and subsequent
data analysis using standard methods for trials with a
“small” number of clusters [3, 5, 6]. However, there is little
consensus as to what constitutes “small” Standard meth-
ods of analysis such as linear mixed models (LMMs) with
estimation via maximum likelihood (ML) or restricted
maximum likelihood (REML) rely on their large-sample,
asymptotic properties for inference about intervention
effects. Use of these methods in small-sample settings,
although commonplace [5], has been shown under some
scenarios to yield underestimated standard errors for
fixed effects such as the intervention effect, resulting in
inflated type I error rates [7, 8].

REML with the addition of a small-sample correction
has shown promise. For example, REML with a Kenward-
Roger (KR) approximation has been shown to help main-
tain the type I error rate for parallel CRTs with small
numbers of clusters [9-11]. And a study on type I error
control when testing the intervention effect in parallel
CRTs found that a likelihood ratio test with ML gave
inflated type I error rates under many scenarios while a
Wald test with REML and additional degrees of freedom
corrections performed better [12]. The KR approxima-
tion is a small-sample correction that produces adjusted
standard errors for fixed effects in LMMs and adjusted
denominator degrees of freedom for regression coeffi-
cients [13, 14]. The adjusted standard errors are obtained
using an approximate small sample estimator for the
covariance matrix for the fixed effects that better accounts
for the uncertainty in estimation of the random effects
variance components. This adjustment is widely imple-
mented in software and has become a common approach
for computation of standard errors of regression param-
eters in multilevel models in small-sample contexts. A
potentially large limitation of this approach in a CRT con-
text, however, is that it does not provide any adjustment
to inference about the variance components and therefore
the estimated intracluster correlation, a function of the
variance components [15].

An alternative approach to estimation can be imple-
mented using Bayesian methods, although this has seen
relatively little uptake so far for CRTs. It was first
described in the context of CRTs in 2001 by Spiegelhal-
ter [16] and Turner et al. [17] for continuous and binary
outcomes, respectively. However, in a recent review, Jones
et al. [18] identified only 11 papers reporting the use of
Bayesian methods to analyze parallel CRTs to the year
2018, with severe deficiencies in their reporting and justi-
fication. We are aware of only one SW trial analyzed with
a Bayesian method [19], and one simulation study includ-
ing Bayesian estimation in the context of SW trials which
focused on the impact of using weakly informative priors
for time effects on sample size calculations [20].
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Bayesian inference uses probability distributions to
characterize (directly) the uncertainty about unknown
parameters [21]. We assign the parameters a (joint) prior
distribution, which represents the assumptions we are
willing to make about the magnitude of the parame-
ters, and then specify the model for the data given the
parameters, as for a frequentist analysis, in the form of a
likelihood function. The product of the prior density and
likelihood function then yields the joint posterior den-
sity, up to a normalizing constant. Direct calculation is
impossible with realistic models so we obtain inference
about the parameters of interest by using an approximate
method such as sampling from the joint posterior distri-
bution using Markov Chain Monte Carlo (MCMC) which
yields sets of draws from the marginal posterior distribu-
tions of the parameters. These sets of draws represent the
likely range of values for each parameter of interest, condi-
tioning on the observed data. The inference is richer than
what can be obtained from frequentist approaches such as
REML estimation, which yields a point estimate for each
parameter and estimated standard errors and interval esti-
mates based on the repeated-sampling properties of the
estimators.

The choice of prior distributions for a given analysis
can be very important and warrants careful consideration,
particularly for hierarchical/multilevel models with little
replication at higher levels, such as few clusters in SW
CRTs [21, 22]. Most Bayesian multilevel models specify
diffuse prior distributions for the random effects vari-
ance components [23]. However, models for CRTs must
account for the similarity between subjects in a cluster
through one or more intracluster correlation components,
which are simply functions of the variance components,
and CRTs now commonly report these estimates [24, 25].
We can therefore typically obtain a plausible range of
values for the intracluster correlation parameters, either
based on related studies [26] or from past experience. For
CRTs with a small number of clusters in particular, there
will be little information in the data to inform the intr-
acluster correlation parameter estimates and so utilizing
weakly informative priors can assist in estimation. Diffuse
priors may be more appropriate for the other parameters
in the model such as the treatment effect and time effects.
We may prefer not to impose any assumptions about their
magnitude, and we expect the data to contain sufficient
information to inform their estimation.

In this paper we describe an approach for Bayesian esti-
mation of the treatment effect and intracluster correlation
parameters in LMMs appropriate for SW designs, and use
a simulation study to compare their repeated-sampling
performance with the commonly used REML estimators,
with and without the KR correction. In the next section we
will set out the simulation study framework and describe
the estimation methods and implementation details. Then
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we will present the simulation study results and provide
some concluding remarks.

Methods

Simulation study framework

Simulation study aim

Our primary aim was to assess the frequentist (i.e.,
repeated-sampling) properties of estimators for the treat-
ment effect and the intracluster correlation parameters for
two approaches to analyzing SW CRTs when the num-
ber of clusters is small. Both approaches use an LMM but
differ in their method of estimation. One is a frequen-
tist approach using REML estimation with and without a
KR small-sample correction, and the other is a Bayesian
approach using MCMC estimation with weakly infor-
mative prior distributions for the intracluster correlation
parameters.

Trial design

We considered standard SW trial designs, where all peri-
ods are of equal duration, the first and last periods involve
only the control and intervention, respectively, and where
an equal number of clusters are allocated to each treat-
ment sequence. Then for a trial with T periods there are
T — 1 unique treatment sequences and we take the num-
ber of clusters N to be N = S(T — 1) where S is the
number of clusters assigned to each treatment sequence.
We also assume that an equal number of new subjects
are recruited at each time period and each subject is
measured just once.

Linear mixed model: block-exchangeable correlation
structure

We let Yjjx be the continuous measured outcome of sub-
ject k (k = 1,...,m) measured in periodj j = 1,...,T)
and belonging to clusteri i = 1,...,N):

Yije = wij + eijis. ek ~ N (O, 662 )
wij = Bj + Xif + Ci + (CP)yj, (1)
Ci ~N(0,03), (CP);~ N (0,08)

where e;j is the (random) subject-level error, ; is the cat-
egorical time period (fixed) effect for period j, Xj; is a
treatment indicator (1 if cluster i implements the treat-
ment in period j, 0 otherwise), 0 is the treatment (fixed)
effect, C; is the (random) effect for cluster i, and (CP);
is the (random) effect for cluster-period (i, ). We assume
that e, Ci, and (CP); are all mutually independent.

This model induces a constant between-period corre-
lation structure within a cluster, often referred to as the
block-exchangeable model, whereby it is assumed that
subjects’ outcomes have one of two magnitudes of corre-
lation [27, 28]. Subjects’ outcomes measured in the same
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cluster and same time period are assumed to have a cor-

2 2

. . _ oC +o'cp . .
relation given by p; = P A which we will refer
to as the within-period intracluster correlation, and sub-
jects’ outcomes measured in the same cluster but different

time periods are assumed to have a (lower) between-

period intracluster correlation given by po = pir =
2
ac 3 — ac
P where we will refer to r = st toc? 38 the

cluster autocorrelation.

Linear mixed model: exchangeable correlation structure
When the cluster autocorrelation » = 1, model (1) reduces
to the exchangeable correlation model [3]:

2
Yk = wij + e e ~ N (0,07)

, @
wij=p+X0+C, Ci~N (0, O’C)

The model no longer includes a cluster-period effect and
there is just one correlation component, the intracluster

correlation, p; = 7%‘22%2.

Generating trial data

We generated trial data for SW designs with § = 1,
2 and 5 clusters per treatment sequence, T = 5 and
9 periods and m = 10 and 100 subjects measured
in each cluster-period. The SW designs we considered
had T — 1 unique treatment sequences with number
of clusters N = S(T — 1), as in Fig. 1. The range
of designs with N clusters and 7 periods was then
(N, T) € {(4,5),(8,5),(20,5),(8,9),(16,9), (40,9)}. This
yielded cluster sizes ranging from 50 to 900 and a total
number of subjects of between 200 and 36,000. We chose
ranges of trial design parameters that were broadly aligned
with several reviews that reported summary measures of
design characteristics for completed and planned SW tri-
als. These reviews reported an interquartile range (IQR)
for number of clusters randomized per sequence of 1 to
8 with a median of 3 clusters [29], median numbers of
steps (periods - 1) of 4 steps [5, 29] and 9 steps [1], and
total numbers of clusters as low as 2 clusters [1, 5] and
4 clusters [4] with a median ranging from 12 clusters [5]
to 20.5 clusters [1]. While cluster size and total number
of subjects were not as frequently reported, Martin et al.
[29] reported an IQR for cluster size of 24 to 326 and
Grayling et al. [1] reported total numbers of subjects from
completed studies ranging from 123 to 26,456.

In our data generating model, we included a linear
time period effect with ; = j/T,j = 1,...,T and
held the subject error variance fixed at 62 = 1. We set
the true value of the treatment effect to &6 = 0, con-
sistent with a null hypothesis of no treatment effect in
a frequentist framework. Then for each of the consid-
ered designs, we simulated data under models (1) and (2);
that is, under two within-cluster correlation structures.
For each, two within-period intracluster correlations were
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used: 0.05 and 0.1. For data generated under the block-
exchangeable model (model (1)), we simulated data using
a cluster autocorrelation of 0.8. Such correlation values
largely align with those typically seen in longitudinal CRTs
[30]. Table 1 gives the range of values for each trial con-
figuration parameter and correlation parameter that we
varied in the simulation study.

Note that we only considered analyses based on cor-
rectly specified models in this simulation study; that is,
we fit model (1) with the block-exchangeable correla-
tion structure to the datasets arising from configurations
with » = 0.8 and we fit model (2) with the exchange-
able correlation structure to datasets where r = 1 (and
we therefore did not estimate r for these configurations).
Analyses involving model misspecification, while valu-
able, are beyond the scope of this paper.

Estimands

We were primarily interested in inference for the treat-
ment effect, 6, as this is the target of a trial analysis, and
the intracluster correlation parameters, p; and r (for con-
figurations where r # 1), which can be used to inform
sample size and power calculations for future trials.

Estimation methods and implementation

Frequentist REML estimation

We used the 1me4 [31] (v1.1-26) package in R [32] 4.0.0
to fit the LMM with estimation via REML. For all but the
largest configuration, we also applied the KR approxima-
tion with the pbkrtest [33] (v0.5-0.1) package to obtain
adjusted standard errors and adjusted degrees of freedom
for the treatment effect. We used these adjusted values
to construct adjusted 95% confidence intervals for the
treatment effect, taking the test statistic to be the 97,5t
percentile of a ¢ distribution with the adjusted degrees of
freedom. Note that the KR approximation for the largest
configuration (T = 9,m = 100,S = 5) frequently
failed due to large memory requirements; however, since
the configuration involved a relatively large number of
clusters (40), for all replicates of this configuration we
instead obtained the equivalent adjusted degrees of free-
dom using the Satterthwaite approximation [34] with the

Table 1 Range of trial configuration and correlation parameter
values varied in simulation study

Parameter Meaning Values
S Number of clusters per sequence 1,2,5
T Number of periods 5,9

m Number of subjects per cluster-period 10, 100
p1 Within-period intracluster correlation 0.05,0.1
r Cluster autocorrelation 08,1
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parameters [35] (v0.11.0) and 1merTest [36] (v3.1-3)
packages and retained the unadjusted standard error.

Bayesian MCMC estimation

For the Bayesian approach, we specified diffuse prior dis-
tributions for the treatment effect, period effects, and
subject-level error variance. We do not tend to have much
prior information about these parameters, and we expect
that the data will provide adequate information for their
estimation. We specified normal prior distributions of
N(0,10%) for the treatment effect, 6, and period effects,
Bj» and a half-Cauchy(0, 1) prior for the subject-level
error variance, 52. The half-Cauchy prior has been recom-
mended for variance components in hierarchical models,
though more attention has been paid to the cluster vari-
ance than to the error variance [10, 37]. The intracluster
correlation parameters can take values in the range 0
to 1, and CRTs in health settings tend to see estimated
within-period intracluster correlations ranging from 0.01
to 0.2 with values around 0.05 being most common [30].
We therefore selected a Beta(1.5,10.5) prior distribu-
tion which has a mode of 0.05 and is right-skewed with
low probability mass for values greater than 0.2. CRTs
that assume a block-exchangeable correlation structure
as in model (1) tend to estimate a cluster autocorre-
lation of between 0.5 and 1, with values in the upper
end of this range being more likely [30, 38]. A Beta(5,2)
prior captured this range of values well, being left-skewed
over smaller values and having the most probability mass
around 0.8. We considered these prior distributions for
the intracluster correlation parameters to be weakly infor-
mative, as they were intended to be applicable to CRTs
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more generally and were not tailored to a particular trial
or outcome measure. Figure 2 shows each of these prior
distributions along with the parameter values used to
simulate the data.

Note that the prior distributions for the within-period
intracluster correlation, p;, cluster autocorrelation, r, and
error variance, o2, imply distributions for the cluster vari-
ance, oé, and cluster-period variance, aép (see Section A
in Additional file 1 for the associated formulae and plots of
these distributions). Also note that for trial configurations
where r = 1, we do not estimate r as we are essentially
specifying a very strong prior distribution (where P(r =
1) = 1); we specified the same Beta(1.5,10.5) prior for
p1 and the same prior distributions for the reduced set of
parameters as above.

We used Stan in R via the rstan [39] (v2.21.2) package
to fit the LMM using a Bayesian approach with estimation
via MCMC. The MCMC algorithm was the no-U-turn
sampler (NUTS), a variant of Hamiltonian Monte Carlo,
and we set the target average acceptance probability (the
adapt_delta parameter in Stan) to 0.95 (increased
from the default of 0.8 to yield a smaller step size dur-
ing sampling with an aim to reducing the occurrence of
divergent transitions after warmup) [40]. For each model
fit, we ran four chains, each for 1000 warmup iterations
followed by 5000 post-warmup iterations. We found this
to be a sufficient number of iterations in pilot analyses to
yield adequate diagnostics.

We assessed convergence with the potential scale reduc-
tion factor split-R, concluding adequate mixing of chains
if split—ﬁ < 1.01 for all parameters [41]. We also included
checks that the rank-normalized Bulk Effective Sample

6 ~ N(0, 10%) B; ~ N(O, 10%) cZ ~ Hali-Cauchy(0, 1)
0.004 : 0.004 0.6 :
0.003 ! 0.003 )
1 0.41)
0.002 ! 0.002 {
!
0.001 : 0.001 0.21
1
0.000 : 00000 —~ S~ 00y
-400-200 0 200 400 -400 -200 O 200 400 0 10 20 30 40 50
4] Bj Oc
p1 ~ Beta(1.5, 10.5) r ~ Beta(5, 2)
, 2.5 :
1
1 1
A i 2.0 :
! 15 !
1 1
ol |1 1.0 I
1 1
1 0.5 !
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0111 I T T ! 0.0 1
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Fig. 2 Prior distributions for the Bayesian method. Dashed vertical lines indicate the location of the true parameter values chosen for the simulation
study (note that the true values for B, j = 1,..., T depend on the number of periods and so are not shown here)
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Size (ESS) and Tail ESS for all parameters exceeded a
lower threshold of 400 to ensure stable estimates of the
uncertainty in the marginal posterior distributions.

Performance measures
To assess method performance we computed bias and
mean squared error (MSE) for the treatment effect and
correlation parameters, as well as the coverage of 95%
confidence/credible intervals and relative percent error
in model-based standard error for the treatment effect.
Note that we could not obtain 95% confidence intervals or
relative percent error in model-based standard error for
the correlation parameters as the REML method in 1me4
does not produce standard errors or confidence intervals
for the variance components. As the KR approximation
does not affect the treatment effect estimate, bias and
MSE for the treatment effect are shown just for REML
and the Bayesian approach, while interval coverage and
relative percent error in model-based standard error are
shown for REML, REML (KR), and the Bayesian method.
For the Bayesian method, we summarized the marginal
posterior distribution for each parameter with the pos-
terior median, which was then used for calculating the
bias and MSE. While we expected the marginal posterior
distributions for the treatment effect to be fairly symmet-
ric, we supposed that those for the correlation parameters
would likely be skewed given the boundaries at 0 and
1 and therefore chose to summarize the distributions
with the median rather than the mean which would have
been more sensitive to skewness. We used the 2.5 and
97.5t™ percentiles of the marginal posterior distributions
to define the 95% credible interval.

For each combination of trial configuration parameters
we generated ngy, = 1000 datasets and applied both
estimation methods to each dataset. Our choice of ngm
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was largely motivated by computation time, as both the
MCMC sampling and the KR approximation could be
time-consuming for larger configurations and we were
subject to maximum computation time constraints on the
computing cluster we used. We also calculated the asso-
ciated Monte Carlo standard errors (MCSEs) for each
performance measure to estimate simulation uncertainty,
which we include in the results tables in Section B in Addi-
tional file 1. Table 2 gives the definitions and expressions
for the performance measures and associated MCSEs, cal-
culated according to Morris et al. [42]. Note that we would
expect the MCSE associated with 95% interval coverage to
be £0.7%.

Computation

We ran the simulation study on the Monash MASSIVE
high performance computing cluster [43]. To reduce total
computation time, we parallelized computation across the
48 trial configurations as well as across batches of repli-
cates for some of the larger and more time-intensive
configurations for a total of 156 jobs, using one CPU core
per job. We used R version 4.0.0, 1me4 version 1.1-26 and
rstan version 2.21.2. For session information and pack-
age dependencies for 1me4 and rstan, see Section C in
Additional file 1. Project source code is available at https://
github.com/klgrantham/bayesian-SW.

Results

Performance measures for the treatment effect

Figure 3 displays estimated bias for the treatment effect
estimator, 6, across all trial configurations. Each quadrant
corresponds to a different combination of true correlation
parameter values, each of the four plots within a quadrant
corresponds to a different combination of number of peri-
ods and subjects per cluster-period, and the dots within

Table 2 Definitions and expressions for calculating performance measure estimates and associated Monte Carlo standard errors

(MCSEs)
Performance Measure Definition Estimate? MCSE of Estimate
Bias ) Loy g o i XL 6 - 6y
5 2 1 Nsim (4 2 2 [(é’_y)z_ﬁ]z

MSE E[ (0 - 9) ] Nsim Z/‘:W (61 - 6) Nsim (Nsim —1)
Coverage P(é‘OW <0< éupp) njm ZET ](é\ow,/’ <0< éupp,/) \ W
Average ModSEb< JELVar@)) LS Vard) _VarlVar®))

sim 4nsim x ModSE

Nar(d 1 Nsm (b _ 5 EmpSE
EmpSE® Var(9) e Y6 —6)? Wt
e . b ModSE _ ) ModSE ModSE Var[Var(6)] 1 d

Relative % error in ModSE 100 (EmDSE 1 100 (m 1) 100 <m> o T 20D

Source: Morris et al. [42]

@ is the parameter of interest, 6 is the parameter estimate for replicate j,  is the mean estimate across all replicates, and nsin, is the total number of replicates

®ModSE is the model-based standard error

“MCSEs are approximate for Average ModSE and Relative % error in ModSE
WarlVar@)] = 7= 7 (Var(d) — 7= Y7 Var@))?

CEmpSE is the empirical standard error
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Fig. 3 Estimated bias for 6 across all trial configurations. See also Table B1, Additional file 1

each plot correspond to a different value of § € {1,2,5},
the number of clusters per unique treatment sequence
(recall that configurations with T = 5 periods have N =
S(T — 1) € {4, 8,20} clusters, and those with 7" = 9 have
N € {8,16,40} clusters). Both the Bayesian and REML
methods yield similar bias with the exception of slight dif-
ferences for the smallest configurations with one or two
clusters per sequence, for which neither method consis-
tently outperforms the other. Figure 4 displays estimated
MSE for 6. Both estimation methods yield nearly identical
MSE. The Bayesian method appears to yield slightly lower
MSE for the smallest configurations with just one clus-
ter per treatment sequence and the smaller cluster-period
size of 10, however this could simply reflect simulation
uncertainty as the values are only about one MCSE apart
(Table B2, Additional file 1). The magnitude of the MSE
for both methods decreases with the inclusion of more
clusters per sequence and therefore more total subjects in
the trial.

Figures 5 and 6 display 95% confidence/credible inter-
val coverage and the relative percent error in model-based
standard error, for the Bayesian method and for REML
with and without the KR approximation. The Bayesian
method and REML with the KR approximation achieve
coverage close to 95% for all configurations; the Bayesian
method is the only method to achieve coverage within
1.4% (within 2*MCSE) of the nominal 95% level, while
REML with the KR approximation is overly conservative
for some of the smallest configurations with just one clus-
ter per sequence, 5 periods, and 10 subjects per cluster-
period. REML estimation without the KR approximation
does not tend to achieve 95% coverage for configurations
with few clusters (1 or 2 clusters per sequence). This
low coverage would be consistent with an inflated type
I error rate were we to conduct a hypothesis test for a
non-null treatment effect, as the trial data were generated
under a null treatment effect. We see a similar relation-
ship between the methods in Fig. 6 as in Fig. 5, where
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having a higher relative percent error in model-based
standard error tends to correspond to a higher inter-
val coverage. Confidence/credible interval widths vary
slightly across methods for configurations with just one
cluster per sequence, but neither the Bayesian method nor
REML with the KR approximation gives clearly narrower
intervals (Fig. 7).

Performance measures for the correlation parameters
Figures 8 and 9 display estimated bias and MSE for the
estimated within-period intracluster correlation, p;. The
Bayesian method gives higher bias but lower MSE than
REML estimation for most configurations. For each com-
bination of true correlation parameter values and num-
bers of periods and subjects per cluster-period, absolute
bias and MSE decrease toward zero with increasing num-
bers of clusters per treatment sequence.

Figures 10 and 11 display estimated bias and MSE for
the estimated cluster autocorrelation, 7, for configurations

with an underlying block-exchangeable correlation struc-
ture (r = 0.8). Absolute bias tends to be greater for REML
than for the Bayesian method for smaller configurations
but the two methods yield similar bias for larger configu-
rations. The estimation methods differ more markedly in
their performance according to MSE. REML gives higher
MSE for nearly all configurations except the largest few,
for which the MSE under both methods is near zero, while
the Bayesian method gives very low MSE for all configu-
rations. The observed high MSE under REML can likely
be attributed, at least in part, to poor estimation of the
variance components for some simulation replicates: we
found that REML estimation may incorrectly estimate one
or both of the cluster and cluster-period variances as zero.

, this would result in extreme estimates

. A 02
Since 7 = =
oc+oép . -

of 7 = 0 and 1 when aé = 0 and aép = 0, respectively.
Note that we excluded any replicates for which both of
these variances were estimated as 0 as this would yield an
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invalid estimate of r; we provide more detail in the next
subsection.

Invalid simulation replicates

Some simulation replicates yielded invalid results and
were therefore excluded from calculation of the partic-
ular method’s performance measures. For the Bayesian
method, we dropped replicates which yielded any diver-
gent transitions or failed to meet the diagnostic criteria
described previously in the Estimation methods and
implementation subsection. In Stan, divergent transi-
tions during MCMC sampling are indicative of a rough
optimization surface which the algorithm struggled to
navigate, suggesting that inference from a model fit which
yields divergent transitions may be invalid [40]. For REML
estimation, we dropped replicates from the calculation
of performance measures for the cluster autocorrelation
which estimated both the cluster and the cluster-period
variances as zero, as this gives an invalid estimate of the

cluster autocorrelation. We retained all replicates for the
calculation of performance measures for the other param-
eters. Table 3 gives the percentage of retained replicates
for each trial configuration by method, with the REML
columns showing the percentage of retained replicates for
the calculations pertaining to the cluster autocorrelation.
No replicates were excluded for any of the configurations
with § = 5 clusters per sequence, for either method. Small
proportions of replicates were invalid for both methods
for configurations with r = 0.8 and S = 1 cluster per
sequence, and REML estimation also yielded a smaller
proportion of invalid replicates for some configurations
with § = 2. For configurations with » = 1.0, note that
REML estimation could not yield invalid estimates under
our definition of invalid as the cluster-period term, and
therefore the cluster autocorrelation, do not appear in the
model. MCMC estimation gave moderate proportions
of invalid replicates for three of the four configurations
with § = 1 and m = 100 and small proportions of invalid
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Fig. 6 Estimated relative percent error in model-based standard error for § across all trial configurations. See also Table B4, Additional file 1

replicates for some of the remaining configurations with
S=1or2.

For a brief exploration of results from the configuration
with the largest proportion of invalid Bayesian replicates
(S=1,T = 5 m = 100 with p; = 0.05 and r = 1),
we compared the parameter estimates from the 442 valid
replicates with those from the 558 invalid replicates, not-
ing that the latter set of replicates were all deemed invalid
for yielding divergent transitions. While the posterior
medians for the treatment effect estimates were similar
between the two sets of replicates, the posterior medi-
ans for the within-period intracluster correlation from the
set of invalid replicates tended to be smaller and closer
to the boundary at 0 (Section D, Additional file 1). Based
on this clear difference in the magnitude of estimates,
we can speculate that many of these divergent transi-
tions occurred when the algorithm had difficulty explor-
ing very small correlation parameter values, as has also
been shown to occur for the group variance parameter in
similar hierarchical models [44].

lllustrative example

While the primary aim of this paper was to evaluate the
repeated-sampling performance of the methods, we also
give an example of the inference obtained from the meth-
ods for a single simulated dataset. We randomly selected
one simulated dataset from the trial configuration with
§S=1,T =5 m =10, p; = 0.1, under the exchangeable
correlation model (» = 1). Table 4 displays point estimates
and 95% confidence/credible intervals for the treatment
effect, 6, and the within-period intracluster correlation,
p1, for REML with the KR approximation, REML without
the KR approximation, and the Bayesian method, where
the same prior distributions and implementation settings
were used as in the simulation study. For ease of compar-
ison across methods, we have summarized the posterior
probability distributions from the Bayesian method by the
medians and 95% credible intervals. The marginal pos-
terior distributions for these parameters are shown in
full in Fig. 12 with the prior distributions overlaid for
reference.
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Had we analyzed this dataset using any of these meth-
ods, we would have drawn very similar conclusions about
the treatment effect but obtained slightly different infer-
ence for the within-period intracluster correlation. The
point estimate for the treatment effect obtained using
REML is virtually identical to the median of the Bayesian
marginal posterior distribution. All three 95% intervals
include 0, the treatment effect value used in generating
the dataset; REML with the KR approximation gives the
widest interval, while the Bayesian credible interval is
slightly wider than REML without the KR approximation.
Note also in Fig. 12 that the marginal posterior distribu-
tion for the treatment effect is much more sharply peaked
around zero than the diffuse N(0, 10%) prior distribution
we specified. For the within-period intracluster correla-
tion, REML gives an estimate of g3 = 0.071 while the
median of the Bayesian marginal posterior distribution
for p; is 0.094, closer to the true value of 0.1. Richer
inference is possible with the Bayesian method than with

REML: the marginal posterior distribution for the treat-
ment effect could be used to address research questions
such as the probability that the treatment effect is greater
than a particular value, while the marginal posterior distri-
bution for the within-period intracluster correlation could
better inform the sample size and power calculations for
future related trials than a point estimate alone as can be
obtained from REML.

Discussion

In this paper we have performed a simulation study of
the repeated-sampling properties of Bayesian estimation
in SW trials, and compared their performance to those
of REML estimators from LMMs. We found that both
estimation methods provided similar inference for the
treatment effect but differed in their ability to estimate
the intracluster correlation parameters. For estimation of
the treatment effect: there was little bias for both meth-
ods, even for a small number of clusters, and the MSEs
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Fig. 8 Estimated bias for p7 across all trial configurations. See also Table B6, Additional file 1

were virtually identical; and credible interval coverage was
appropriate for the Bayesian method and for confidence
interval coverage for REML with the KR adjustment,
with both methods having similar interval widths. For
estimation of the within-period intracluster correlation,
we found slightly greater bias for the Bayesian method
but far lower MSE. However, for the cluster autocorrela-
tion, the Bayesian method had lower bias and MSE than
REML estimation for most configurations. Differences in
performance were more pronounced for configurations
with smaller numbers of clusters and a smaller cluster-
period size, and tended to reduce toward very similar
performance for the configurations with larger numbers
of clusters and a larger cluster-period size.

Our results for REML estimation are consistent with
several studies for parallel CRTs where a KR approxima-
tion or similar degrees of freedom correction were found
to better maintain the type I error rate [9, 11, 12]. Nugent
and Kleinman [12] found adequate control of the type I

error rate for intervention effect estimates when the Wald
test was used with a ¢ distribution with a degrees of free-
dom correction (either between-within or Satterthwaite)
which accords with our adequate 95% confidence inter-
val coverage with REML estimation and a KR correction.
Our findings are also fairly consistent with several other
studies comparing a Bayesian approach with MCMC esti-
mation to a frequentist approach with REML estimation
for multilevel and related models: similar performance in
estimating regression coefficients such as the treatment
effect, but differential performance for variance compo-
nents [10, 15, 23]. Specifically, the studies that included
a measure of variability of the estimates found that a
Bayesian method tended to yield lower variability (e.g.
MSE, root MSE) but higher bias than alternative frequen-
tist approaches for variance component estimates. While
Baldwin and Fellingham [15] acknowledge and accept this
bias-efficiency tradeoff, Smid et al. [23] conclude that the
higher bias from a Bayesian approach is a limitation and
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suggest that thoughtful choices of prior distributions for
all parameters are needed to help overcome this draw-
back. An alternative perspective is that bias should not
necessarily be the most important criterion when sample
sizes are small and that less variability may be preferable
in practice [15, 45]. Indeed, the use of a weakly informa-
tive prior is likely to yield some bias and so slightly biased
estimates may not necessarily be a sign of poor perfor-
mance with this approach. McNeish and Stapleton [10]
also found that REML and Bayesian methods gave sim-
ilar bias for the treatment effect (except in the case of
four clusters, where REML was more biased) but less sim-
ilar results for variance component estimates. The bias
for the cluster variance from the Bayesian method var-
ied across the three choices of prior distributions and the
magnitude of bias from REML fell above and below the
Bayesian method for different numbers of clusters and
cluster sizes. We note that the McNeish and Stapleton
[10] study considered smaller cluster sizes more appro-
priate for psychological studies and so the greater impact
from a small number of clusters that they observed is not
surprising.

In our simulation study to compare these methods,
we performed a frequentist evaluation of a Bayesian
approach, meaning that we employed the notion of
repeated sampling and the concept of true parameter val-
ues as well as the associated performance measures. We
collapsed marginal posterior distributions for the param-
eters of interest to analogues of frequentist summary
measures like the posterior median and 95% credible
interval. A fully Bayesian analysis would take advantage of
the richer inference available in these marginal posterior

distributions and allow us to address more sophisticated
research questions (such as the probability that the treat-
ment effect is above a certain value without the need for a
dichotomous decision rule as in hypothesis testing) as well
as capture more of the uncertainty surrounding the likely
range of values for all parameters.

We parameterized the Bayesian model in terms of the
intracluster correlation rather than the cluster and cluster-
period variances so that we could incorporate our knowl-
edge about the likely range of correlation values into the
prior distribution. In our experience, trialists usually have
far more information about values of correlation param-
eters than they do about variance components, largely
because correlations are invariant to the scale of the par-
ticular outcome measure, unlike variance components.
Particularly in situations where the number of clusters is
small, the data alone will not provide much information
about the parameters, and so it is important to make use
of any additional information we may have through weakly
informative prior distributions. Had we instead used a
more common parameterization in terms of variance
components, we would have struggled to find suitable
distributions such that the implied correlation assumed
realistic values. For example, inverse gamma prior distri-
butions on both variance components is a common choice
[10, 23] but implies an unrealistic U-shaped prior dis-
tribution for the intracluster correlation with most mass
around the extreme values of 0 and 1 [16]. One advantage
of this parameterization, however, is that more is known
about its behavior: for instance, that inference can be par-
ticularly sensitive to the choice of prior distribution for
the group variance when the number of groups is small
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Table 3 Percentage of valid simulation replicates across

nsim = 1000 replicates. Bayesian replicates were excluded if they
yielded any divergent transitions, effective sample sizes were too
low (below 400), or split—f\’ values were too large (above 1.01).
REML replicates were excluded from calculations for 7 if both
cluster and cluster-period variances were estimated as 0, yielding
an invalid estimate of r

r

0.8 1
1 T m S Bayesian REML Bayesian = REML
005 5 10 1 99.5 885 94.6 100.0
2 1000 974 99.8 100.0
5 100.0 100.0 100.0 100.0
100 1 90.1 99.8 44.2 100.0
2 100.0 100.0 94.6 100.0
5 100.0 100.0 100.0 100.0
9 10 1 100.0 99.6 99.1 100.0
2 1000 99.9 1000 100.0
5 1000 100.0 1000 100.0
100 1 99.8 100.0 86.9 100.0
2 100.0 100.0 100.0 100.0
5 100.0 100.0 100.0 100.0
0.1 5 10 1 99.8 952 97.0 100.0
2 100.0 99.9 100.0 100.0
5 100.0 100.0 100.0 100.0
100 1 98.0 100.0 67.8 100.0
2 1000 100.0 99.0 100.0
5 1000 100.0 1000 100.0
9 10 1 100.0 100.0 99.6 100.0
2 100.0 100.0 100.0 100.0
5 100.0 100.0 100.0 100.0
100 1 100.0 100.0 96.8 100.0
2 100.0 100.0 100.0 100.0
5 1000 100.0 1000 100.0

Table 4 Inference for the treatment effect, 6, and the
within-period intracluster correlation, p1, for a randomly-selected
simulated dataset fora SW design withS=1,T =5,m = 10,
true treatment effect & = 0, and intracluster correlation
parameters p; = 0.1 and r = 1. Estimate and 95% Cl correspond
to point estimates and 95% confidence intervals for the REML
methods and medians of posterior draws and 95% credible
intervals for the Bayesian method. Note that standard errors for
p1 are not provided in 1me4 to permit 95% confidence intervals
for the REML methods

0 P1
Method Estimate  95%Cl Estimate  95%CI
REML (KR) ~ -0.033 (-0.568,0.503)  0.071
REML -0.033 (-0.525,0460)  0.071
Bayesian -0.034 (-0.533,0463)  0.094 (0.020, 0.285)
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[37]. The parameterization we have used in terms of the
intracluster correlation is also likely to be sensitive to the
choice of prior distribution. Although we have not for-
mally assessed the sensitivity in this paper, we performed
limited simulations specifying a flat prior for the within-
period intracluster correlation under the exchangeable
correlation model and under this scenario we encoun-
tered higher proportions of replicates with divergent tran-
sitions. In addition, we observed higher MSE for the
Bayesian method than for REML in estimating the within-
period intracluster correlation, negating the advantage
of the Bayesian method. It is also worth noting that if
we are deriving a prior distribution for the intracluster
correlation based on reported correlation estimates from
past studies with a small number of clusters where inap-
propriate methods were used or when these estimates
were made with great uncertainty, then this derived prior
distribution may be problematic.

On a technical note, we found that an alternative coding
of the model in Stan, well suited for Bayesian estimation
of hierarchical models, helped to improve the sampling
efficiency and reduce the occurrence of invalid replicates
and we subsequently employed it throughout. Specifically,
implementing a non-centered parameterization where
hyperparameters are coded as derived quantities rather
than drawn from the hyperprior distribution directly as
in a centered parameterization yielded lower autocorre-
lation among parameter draws, higher effective sample
sizes, and fewer divergent transitions for most configu-
rations [44]. This parameterization can yield a simpler
geometry that allows the algorithm to better explore the
range of posterior parameter values, particularly when
Hamiltonian Monte Carlo is used [22, 41, 46]. Note that
we still encountered divergent transitions after warmup
for some configurations but we excluded these replicates
from calculation of the performance measures.

Of course, our paper has a number of limitations and
more work is needed to establish whether these find-
ings hold with deviations from our particular choices
and under a wider range of scenarios. For instance, we
considered one set of prior distributions, assumed rel-
atively simple within-cluster correlation structures, and
assumed that the analysis models were correctly speci-
fied (in particular, that the analysis model assumed the
same within-cluster correlation structure that the data
was generated with). We also acknowledge that we gener-
ated trial data with a treatment effect of zero and specified
a prior distribution for the treatment effect with most
mass around zero. However, we expected the same or
very similar results with non-null treatment effect val-
ues. The treatment effect is simply a location shift in the
LMM and should not affect REML estimation, and the
prior distribution for the treatment effect was so diffuse
that it would be unlikely to influence the Bayesian infer-
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Fig. 12 Posterior distributions (solid lines) for the treatment effect and within-period intracluster correlation, obtained from the analysis of a
randomly-selected simulated dataset for a SW design with S =1, T = 5, m = 10, true treatment effect & = 0, and intracluster correlation
parameters p; = 0.1,and r = 1. Prior distributions (dashed lines) are overlaid for reference. Note that the prior for the treatment effect is N(0, 10%)

ence. Indeed, from a limited assessment where we gen-
erated data with non-null treatment effects, we obtained
identical results with REML and very similar results (to
within Monte Carlo error) for the Bayesian method (See
Section E, Additional file 1). Future work is needed to
assess sensitivity to the choice of alternative prior dis-
tributions, investigate the implications of more complex
within-cluster correlation structures such as discrete-time
[47] and continuous-time correlation decay [48], and eval-
uate method performance when the model is misspecified
(for instance, by specifying an overly simplistic within-
cluster correlation structure when the correlation struc-
ture in the data is more complex, or by assuming an
inappropriate form for the time trend). Related work is
also needed to assess these methods under other scenar-
ios such as those involving unequal cluster-period sizes,
outcome types requiring nonlinear mixed models such as
a binary or count outcome, and other CRT designs such
as the cluster randomized crossover design.

Conclusions

Based on the initial investigation in this paper, neither
the Bayesian method nor REML with the KR approxi-
mation clearly outperformed the other. Rather, they both
appear to be viable methods of analysis for SW trials with
a continuous outcome and a small number of clusters,
with different strengths and weaknesses. The standard
REML method together with the KR approximation per-
formed well even with a very small number of clusters
in these simulations, although confidence interval cov-
erage was slightly too conservative in some cases. This
approach is simpler to implement than a Bayesian analysis,
but the inference is not as rich. The Bayesian method

incorporates prior information on the parameters, which
can aid parameter estimation when the data are limited.
However, given the similar performance of the meth-
ods, the added complexity of a fully Bayesian analysis
may not be warranted, unless the other advantages of
Bayesian inference are desired such as the ability to pro-
vide probability-based inferences for any parameter of
interest.
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