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Abstract 

Background:  There are currently no methodological studies on the performance of the statistical models for esti‑
mating intervention effects based on the time-to-recurrent-event (TTRE) in stepped wedge cluster randomised trial 
(SWCRT) using an open cohort design. This study aims to address this by evaluating the performance of these statisti‑
cal models using an open cohort design with the Monte Carlo simulation in various settings and their application 
using an actual example.

Methods:  Using Monte Carlo simulations, we evaluated the performance of the existing extended Cox proportional 
hazard models, i.e., the Andersen-Gill (AG), Prentice-Williams-Peterson Total-Time (PWP-TT), and Prentice-Williams-
Peterson Gap-time (PWP-GT) models, using the settings of several event generation models and true intervention 
effects, with and without stratification by clusters. Unidirectional switching in SWCRT was represented using time-
dependent covariates.

Results:  Using Monte Carlo simulations with the various described settings, in situations where inter-individual 
variability do not exist, the PWP-GT model with stratification by clusters showed the best performance in most set‑
tings and reasonable performance in the others. The only situation in which the performance of the PWP-TT model 
with stratification by clusters was not inferior to that of the PWP-GT model with stratification by clusters was when 
there was a certain amount of follow-up period, and the timing of the trial entry was random within the trial period, 
including the follow-up period. In situations where inter-individual variability existed, the PWP-GT model consist‑
ently underperformed compared to the PWP-TT model. The AG model performed well only in a specific setting. By 
analysing actual examples, it was found that almost all the statistical models suggested that the risk of events during 
the intervention condition may be somewhat higher than in the control, although the difference was not statistically 
significant.

Conclusions:  When estimating the TTRE-based intervention effects of SWCRT in various settings using an open 
cohort design, the PWP-GT model with stratification by clusters performed most reasonably in situations where 
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Background
A cluster randomised trial (CRT) is a randomised trial 
design in which a cluster of regions or sites is used when 
it is not possible or appropriate to assign an intervention 
to an individual patient, like a randomised controlled trial 
(RCT) [1, 2]. The stepped wedge CRT (SWCRT) is a type 
of CRT, in which multiple randomization procedures 
are enforced temporally to switch into intervention, and 
all clusters are sequentially transferred (unidirectional 
switch) from the control condition to the intervention 
condition [3, 4]. For the sake of simplicity, it is assumed 
that the intervention effect will persist from the time the 
control condition is switched to the intervention condi-
tion until the end of the trial.

There are three main types of SWCRT design: (i) con-
tinuous recruitment short exposure, (ii) closed cohort, 
and (iii) open cohort [5]. In the open cohort design, each 
subject is assessed repeatedly at a series of measure-
ment points or at a subject-specific time point, such as 
the occurrence of an event. In this design, subjects may 
get enrolled or censored the trial at any time during the 
trial period based on pre-specified eligibility criteria. 
Thus, some subjects are exposed to both control and 

intervention conditions during the trial, while others are 
only exposed to one.

The INSPIRED trial, which is the actual example used 
in this study, was a multi-centre SWCRT that examines 
whether a model of care that provides specialist pallia-
tive care interventions in residential care homes (i.e. the 
intervention condition) leads to fewer (acute care) hos-
pitalisations and shorter lengths of stay in hospital for 
care home residents, when compared to usual care (i.e. 
the control condition) [6]. A schematic representation of 
actual example is presented in Fig. 1. It is an open cohort 
design as all the residents in each facility at the start of 
the trial and all-new enrolments to the facility after the 
start of the trial were included. Many residents were 
exposed to both the control and intervention conditions, 
as they remained in their residences continuously unless 
they died or were discharged from the care home. The 
primary outcome was the length of the hospital stays, 
and the secondary outcomes were the number of hospi-
talisations and the cost.

Some residents never experienced hospitalisation, 
while others were repeatedly hospitalised in the actual 
example. The same event repeatedly occurs over time to 

inter-individual variability was not present. However, if inter-individual variability was present, the PWP-TT model with 
stratification by clusters performed best.
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model, Time-dependent covariate, Simulation, Comparison

Fig. 1  Schematic representation of the actual example. White cells correspond to the periods during which the residents received the 
standard-of-care (control condition), and grey cells correspond to periods during which the residents received new interventions (intervention 
condition). Each cluster C1 to C5 contains two or three facilities, and one cluster moves from the control condition to the intervention condition in 
Steps 1 to 5. The duration for one Step (between one Step and the next) is two months, and the time period T0 to T8 is also every two months. The 
duration between T8 and T8.5 is one month. The start of the trial is T0 , and after T6 , which is the end of the last step period, there is a follow-up period 
for 5 months until T8.5 (equivalent to 2.5 Steps)
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the same individual, such as the hospitalisation in the 
actual example, is called a recurrent event [7]. A com-
mon way to analyse recurrent event is the recurrence rate 
(average number of recurrences per unit time), which 
corresponds to the number of hospitalisations per facil-
ity-month as a secondary outcome in the actual example. 
This analysis requires the assumption that the incidence 
of hospitalisation is always constant in the interval per 
facility-month which is generally a strong assumption. In 
addition, even if the number of hospitalisations per facil-
ity-month are the same, there may be differences in the 
time it takes for each hospitalization to occur, and this is 
called the time to hospital admission (TTHA) and may 
represent the effects of the intervention. Since admission 
and discharge data are collected for each hospitalisation 
in the actual example, that is, the TTHA is measured 
repeatedly, it may be useful to evaluate hospitalisations as 
recurrent events within the framework of a time-to-event 
(TTE) analysis.

When assessing the impact of a covariate on the TTE 
with a hazard ratio (HR), the Cox proportional hazard 
(CoxPH) model is most often used [8], and it assumes that 
the event is a one-time terminal event. When the CoxPH 
model is applied to recurrent events, only time-to-first-
event (TTFE) can be included in the analysis. Against this 
background, the extension of the CoxPH model to recur-
rent events has been actively pursued, especially in the 
1980s [9–11], and it has mainly been used to evaluate the 
time-to-recurrent-event (TTRE) in RCTs.

Methods to analyse TTE in SWCRT are currently unclear 
[12]. SWCRT using an open cohort design, by its nature, 
must deal with subjects who are exposed to both the con-
trol and intervention conditions (observed across the unidi-
rectional switch). When estimating the intervention effects 
based on the TTFE, if the change in the time-dependent 
covariate is independent of TTE, then the unidirectional 
switch in the CoxPH model can be explained using the 
time-dependent covariate [13, 14], and methodologi-
cal studies on the performance in the context of SWCRT 
have previously been conducted [15]. In TTRE, the existing 
extended CoxPH model with time-dependent covariates 
possibly apply to SWCRT with unidirectional switching 
[16–18]. In addition, CRT is known to have a problem with 
cluster effects when the outcomes of individuals in the 
same cluster become similar for various reasons. In other 
words, it means that there will be an increase in the vari-
ability of regression coefficients among clusters, which is 
also a concern in SWCRT. When estimating intervention 
effects based on TTFE, the cluster effect in SWCRT can be 
treated using the CoxPH model stratified by clusters [15], 
as it assumes that each cluster’s baseline hazard function is 
different. For TTRE, the existing extended CoxPH model 
stratified by clusters possibly be used.

To our knowledge, there are currently no methodologi-
cal studies on the performance of the statistical models 
for estimating intervention effects based on TTRE in 
SWCRT with an open cohort design, or examples of its 
application to actual studies. Investigating the perfor-
mance of the statistical models used to estimate inter-
vention effects based on TTRE in SWCRT using an open 
cohort design in various settings, may contribute to the 
selection of statistical models for the actual planning and 
analysis of SWCRT.

The purpose of this study was to evaluate “which sta-
tistical models resulted in better performance estimating 
intervention effects using TTRE in SWCRT with an open 
cohort design” with the Monte Carlo simulation (hereaf-
ter, simulation) in various settings. We also applied each 
statistical model to hospital admission data to test the 
actual example and interpreted the results based on the 
simulation results.

Methods
Actual example
Details of the trial design, interventions, resident 
background information, and efficacy results of the 
INSPIRED trial have been published previously [6]. The 
trial included 1700 residents from 12 care homes in Aus-
tralia, of which 1089 (64.1%) were residents at the start 
of the trial, and the remaining 611 (35.9%) became resi-
dents after the start of the trial. There were 1149 hospi-
talisations during the trial, of which 943 hospitalizations 
of more than 24  h (> 24  h) were used for the primary 
outcome, length of stay in hospital. Of the residents, 
377 had only one hospitalization of > 24 h, while 211 had 
multiple hospitalizations of > 24  h (137 had two, 45 had 
three, 11 had four, and 18 had four or more). The num-
ber of residents who died during the trial period was 534 
(31.4%). The secondary outcome, number of hospitaliza-
tions > 24 h per facility-month, was 5.6 in the control con-
dition and 4.3 in the intervention condition, a decrease of 
approximately 23% (no adjustment by covariates or com-
parison by estimation/statistical testing was performed).

Basic notation
The timing of the unidirectional switch (henceforth, 
switch) in each cluster of the SWCRT is called a step, and 
here, we consider SWCRT with m clusters and s steps. 
For simplicity, we assume that the number of clusters to 
be switched from the control condition to the interven-
tion condition in one step is one ( s = m ). In the i th clus-
ter ( i = 1, . . . , m ), ni is the number of subjects observed 
during the entire trial duration.

Assuming that the start of the test is tS and the end of the 
last step period is tE , the timing of the switch in each cluster 
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is calculated as follows:  Wi = tS + i ∗ (tE − tS)/(m+ 1) , 
and the distance between switches is calculated as follows: 
Wd = Wi+1 −Wi = Wi −Wi−1 = (tE − tS)/(m+ 1) . Let 
dij be the time point at which the j th subject ( j = 1, . . . , ni ) 
in the i th cluster entered the trial. The distance wij to the 
switch for each subject from the trial entry is defined as 
follows:

Suppose the starting point of the second and subse-
quent TTREs is the time of the previous event, and the 
actual TTRE used in the analysis based on the kth recur-
rence is Tijk . Considering the starting point of each recur-
rence, the distance wijk to the switch for each subject is 
defined as follows:

where hijk(t) is the hazard function of the k th recurrence 
of the j th subject in the i th cluster at time t , and h0ik(t) is 
the baseline hazard function of the k th recurrence of the i 
th cluster at time t . No specific distribution is assumed for 
the baseline hazard function. Yijk(t) is the indicator variable 
for the k th recurrence of the j th subject in the i th cluster 
at time t , and this is 1 if the subject is at risk of recurrence 
and under observation, and 0 if not. Xijk is a vector of time-
independent covariates for the k th recurrence of the j th 
subject in the i th cluster, and βik is a vector of fixed param-
eters for the time-independent covariates of the k th recur-
rence of the i th cluster. Zijk(t) is the intervention indicator 
as a time-dependent covariate for the k th recurrence of the 
j th subject in the i th cluster, which is 0 for t < wij or wijk

, 
and 1 for t ≥ wij or wijk

 (changes before and after the 
switch). βtik is the parameter for the intervention effect for 
the k th recurrence of the i th cluster. The subscript i is 
omitted if it is assumed that each cluster has a common 
effect. The subscript k is omitted if it is assumed that each 
recurrence has a common effect.

Statistical models
The first model considered was the CoxPH model [8, 14]. 
The hazard of the j th subject in the i th cluster at time t is 
expressed as follows:.

As was previously mentioned, applying the CoxPH 
model to recurrent events would result in a loss of infor-
mation because only the TTFE of each subject can be 
included in the analysis, and the second and subsequent 

{

wij = Wi − dij Wi ≥ dij
wij = 0 Wi < dij

⎧
⎪
⎨
⎪
⎩

wijk = Wi − dij Wi ≥ dij (k = 1)

wijk = Wi − Tijk−1 Wi ≥ Tijk−1 (k ≥ 2)

wijk = 0 Wi < dij (k = 1), Wi ≥ Tijk−1 (k ≥ 2)

hij(t) = h0i(t)exp(βtiZij(t)+ β
′

iXij)

events are ignored. Taking recurrent events into account 
should theoretically improve the efficiency of estimat-
ing the effects of interventions [19]. Since the purpose of 
this study is to evaluate the performance of the statistical 
model in estimating the intervention effect using TTRE, 
no performance evaluation on the CoxPH model will 
be conducted. In the following, we present an extended 
CoxPH model that allows for the inclusion of TTRE in 
the analysis.

The Andersen and Gill (AG) model assumes a com-
mon baseline hazard function for all events, independent 
of the number of previous recurrences, and it is consid-
ered beneficial when investigating the overall interven-
tion effect on the occurrence of recurrent events [9]. The 
hazard for the j th subject in the i th cluster at time t is 
expressed as follows:

In the usual CoxPH model, a subject who has expe-
rienced one event is no longer at risk for that event. In 
contrast, the AG model assumes that subjects who have 
experienced at least one event remain at risk unless they 
drop out of the trial. In the AG model, multiple events 
that occur within the same subject are considered to be 
independent. However, because they may not be inde-
pendent in reality, it is advised that robust variance is 
used to handle the correlation within the subject when 
inferring the parameter vector [20, 21].

The Prentice-Williams-Peterson (PWP) model assumes 
a different baseline hazard function for each recurrence 
and accounts for correlation by stratifying by the number 
of prior recurrences. Therefore, it is considered benefi-
cial when the risk of repeat events differs between recur-
rences [17]. The hazard hijk(t) for the k th recurrence is 
defined by the history of the covariates and the number 
of recurrences up to time t . Conditionally, it is assumed 
that the ( k − 1)th recurrence is independent of the k th 
recurrence. Furthermore, it assumes that the subject 
is not at risk for the k th recurrence until the ( k − 1)th 
recurrence, so that Yijk(t) is 0 until the ( k − 1)th recur-
rence and 1 after that.

The PWP model can be broadly divided into two mod-
els depending on the treatment of the time points. First, 
the PWP total-time (PWP-TT) model uses the time from 
the start of the follow-up to each recurrence. The hazard 
of the k th recurrence of the j th subject in the i th cluster 
at time t is expressed as follows:

The second is the PWP gap-time (PWP-GT) model, 
which uses the time from the occurrence of the previ-
ous recurrence to each recurrence. The hazard of the k th 

hij(t) = Yij(t)h0i(t)exp(βtiZijk(t)+ β
′

iXijk)

hijk(t) = Yijk(t)h0ik(t)exp(βtikZijk(t)+ β
′

ikXijk)
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recurrence for the j th subject in the i th cluster at time t 
is expressed as:

As the number of recurrences increases in the PWP 
model, the number of subjects at risk becomes relatively 
small. This would make the estimates unstable, so limit-
ing the data to a specific number of recurrences is usu-
ally necessary [22]. Due to these characteristics, the PWP 
model is helpful in situations where the number of recur-
rences per subject is small [17]. Our study assumes that 
each recurrence has a common effect when estimating 
parameters using the PWP model.

For each of the statistical models described so far, there 
are two analysis policies: (i) with stratification by clusters, 
which assumes that the baseline hazard function is differ-
ent for each cluster, and (ii) without stratification by clus-
ters, which assumes that the baseline hazard function is 
the same for each cluster.

The performance of each statistical model in the simu-
lation was evaluated in terms of bias, mean square error 
(MSE), and coverage probability (CP). Bias is the mean 
difference across simulated replicates of the parameters 
of the intervention effect based on each statistical model 
and the true intervention effect βt , where a positive value 
indicates underestimation and a negative value indicates 
overestimation; MSE is the sum of bias squared and vari-
ance of the estimated intervention effect based on each 
statistical model, with smaller values indicating bet-
ter performance. CP is the proportion of the 95% confi-
dence interval (CI) for the HR obtained by each statistical 
model that includes the HR based on the true interven-
tion effect βt . The closer the CI is to 0.95, the better the 
performance.

Data generation process
For the time point dij of the j th subject in the i th clus-
ter to enter in the trial, we use tS at the beginning of the 
trial and tE at the end of the last step period already men-
tioned, and generate them randomly within the interval 
of tS + ((tE − tS) ∗ e)/E or tS + ((tF − tS) ∗ e)/E . From 
this point, the TTFE at least, always occurs starting from 
dij . Here, e is a pseudo-random number generated from a 
uniform distribution, e ∼ U(0, 1).
tF  indicates the end of the trial and is expressed as 

tF = tE + (Wd ∗ F) using the distance Wd between tE 
and the switch at the end of the last step period, as 
described above. F  is a coefficient that specifies the 
follow-up period that may be set after the end of the 
last step period. When F = 0 , there is no follow-up 
period, and tF = tE . If F = X(> 1) , there is a follow-up 
period of X step after the end of the last step period. 
In the actual example, as shown in Fig.  1, each step is 

hijk (t) = Yijk (t)h0ik
(
t − tk−1

)
exp(�tikZijk (t) + �

�

ik
Xijk )

set every two months, and there is a follow-up period 
of 5 months (= 2.5 steps) after the end of the last step 
period. Based on the purpose and setting of the trial, 
other SWCRT have adopted a similar design [23–25].

In the actual simulation, three policies 
are considered: (i) no follow-up period and 
dij = tS + ((tE − tS) ∗ e)/E ; (ii) there is a follow-up 
period and dij = tS + ((tF − tS) ∗ e)/E (allow trial 
entry until the end of the follow-up period; illus-
trated in Fig.  2a); (iii) there is a follow-up period but 
dij = tS + ((tE − tS) ∗ e)/E (terminate trial entry at the 
end of the last step period; illustrated in Fig. 2b).

In addition, E is a coefficient that specifies the timing 
of the trial entry. If E = 1 , the subject enters the trial 
randomly between tS and tE or tF , which reflects the open 
cohort design in that the subject may enter in the trial 
at any time. If E is greater than 1, it reflects a situation 
where the entry of the trial is concentrated at an ear-
lier stage of the trial (illustrated in Fig. 2c). In the actual 
example, 64.1% of the residents entered at the start of the 
trial. Depending on the purpose and setting of the trial, 
other SWCRT show similar situations [26, 27].

In the actual simulation, policies (i) to (iii) above 
regarding the follow-up period and the time of trial entry 
can be taken for E = 1 and E > 1 , respectively. Our study 
adopts only policy (iii) instead of (ii) at E > 1 (illustrated 
in Fig. 2d).

To compare our results with the secondary outcome 
of the actual example, number of hospitalisations > 24  h 
per facility-month, we decided to treat only hospitali-
zations > 24  h as a TTE in this study. It was previously 
published [6] that the number of residents repeatedly 
hospitalised more than four times was very small. There-
fore, in our study, the maximum number of recurrent 
events generated in the simulation was three.

The relative performance of the statistical models used 
in TTRE, which are based on bias and variability, depend 
on the event generation model used in the simulation, 
and it is thus recommended that simulations based on 
multiple event generation models be considered [28]. 
Therefore, in this study, three types of event generation 
model were used.

The first is the Poisson process, which generates TTEs 
based on exponential distributions independent of each 
other, not only between subjects but also within sub-
jects. The exponential distribution consists only of scale 
parameter. The starting point of all TTEs is dij at the time 
of trial entry, and the hazard of a TTE is always constant, 
regardless of the time and number of recurrences (illus-
trated in Fig. 3a).

The second model uses the same Poisson process as 
the first one, but adopts the exponential distribution with 
different scale parameters between the subjects using 
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random effect (i.e., inter-individual variability exists). It is 
referred to as the Mixed-Poisson process.

The third is the Weibull model, where the starting point 
of the first TTE is dij , as in the Poisson process, but the 
starting point of the second and subsequent TTEs is the 
time of the previous event (illustrated in Fig. 3b). Then, a 
Weibull distribution was assumed for the time between 

events within each subject. In addition to a scale param-
eter similar to an exponential distribution, the Weibull 
distribution contains the shape parameter. The Weibull 
distribution allows the hazard to vary with time depend-
ing on the setting of the shape parameter. As this model 
adopts a Weibull distribution with a common parameter 
from the first to the third TTE (i.e. the way the hazard 

Fig. 2  Schematic diagram of the simulation considering the follow-up period and the timing of trial entry. White cells correspond to the control 
condition and grey cells to the intervention condition. Cross marks show examples of the time points when the five subjects in each cluster entered 
the trial. F is a coefficient that specifies the follow-up period that may be set after the end of the last step period. When F = 0 , there is no follow-up 
period, and tF = tE . If F = X(> 1) , there is a follow-up period of X  step after the end of the last step period. E is a coefficient that specifies the timing 
of the trial entry. If E = 1 , the subject enters the trial randomly between tS and tE or tF , which reflects the open cohort design in that the subject 
may enter in the trial at any time. If E is greater than 1, it reflects a situation where the entry of the trial is concentrated at an earlier stage of the 
trial. a Example of a case where F = 3, E = 1 , and trial entry is allowed until the follow-up period. b Example of setting F = 3, E = 1 and trial entry is 
terminated in the final step period. c Example of setting F = 0, E = 2 . d Example of setting F = 3, E = 2

Fig. 3  Visualization of the event generation models. White cells correspond to the control condition and grey cells to the intervention condition. 
Cross marks indicate when a subject enters the trial, filled black circles indicate relapse, and filled white circles indicate censoring. a Example of the 
Poisson process and the Mixed-Poisson process: all three time-to-events occur at the time of trial entry. b Example of the Weibull model: the first 
time-to-event occurs at the time of trial entry, and the second and subsequent time-to-events occur at the time of the previous event
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changes are common from the first to the third TTE), we 
refer to it as the Weibull model (constant).

The fourth model uses the same Weibull model as the 
second one, but adopts the Weibull distribution with dif-
ferent parameters between the “first TTE” and the “sec-
ond and third TTE” (i.e., the way the hazard changes is 
different between the first and second and third TTEs), 
and so it is referred to as the Weibull model (change).

In a simple RCT situation where an intervention effect 
exists, previous studies with time-independent covariates 
have shown that both the AG and PWP-TT models per-
form well for the Poisson process. On the other hand, it 
has been shown that only the PWP-TT model performs 
well for the Weibull model (constant), and only the AG 
model performs well for the Mixed-Poisson process [28].

To generate TTREs that can account for unidirectional 
switching, which is assumed to be estimating interven-
tion effects using the CoxPH model and several extended 
CoxPH models, we use a data generation process for the 
CoxPH model with time-dependent covariates, based on 
the three event generation models previously described 
[29]. If the generated TTRE exceeds tE or tF , it is treated 
as right-censored at tE or tF.

In the generation of TTRE in the Poisson process 
and the Mixed-Poisson process, three pseudo-random 
numbers were generated independently from the uni-
form distribution U(0, 1) and sorted in increasing order, 
u1, u2, u3 in turn ( uk , k = 1, 2, 3 ). If the scale parameter 
of the exponential distribution is � , the baseline hazard 
function is � , which is always constant regardless of the 
time or number of recurrences. The k th TTRE of the j th 
subject in the i th cluster, when the starting point is not 
considered, is as follows:

where τi and τj is the random effect on the variations 
between clusters and between subjects, τi ∼ N

(

0, σ 2
)

 
and τj ∼ N (0, σ 2

s ) . σ 2
s  is 0 for the Poisson process and > 0 

for the Mixed-Poisson process.
As already mentioned, βtik is the parameter of the 

intervention effect on the k th recurrence of the i th clus-
ter, and wij is the distance to switch for each subject from 
the trial entry. For simplicity, we omitted the β ′

x for the 
time-independent covariates in the simulation. The 
TTRE, which is used in the analysis considering the start-
ing point, is represented by Tijk = dij + T ∗

ijk.
In the generation of TTRE in the Weibull model, three 

pseudorandom numbers were generated independently 

T ∗

ijk
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−log(uk )

𝜆exp(𝛽�x+𝜏i+𝜏j )

if − log(uk ) < 𝜆exp
�
𝛽�x + 𝜏i + 𝜏j

�
wij ,

[−log(uk)−𝜆exp(𝛽�x+𝜏i+𝜏j)wij+𝜆exp(𝛽
�x+𝛽tik+𝜏i+𝜏j )wij ]

𝜆exp(𝛽�x+𝛽tik+𝜏i+𝜏j )

if − log(uk ) ≥ 𝜆exp
�
𝛽�x + 𝜏i + 𝜏j

�
wij

,

from the uniform distribution U(0, 1) , u1, u2, u3 in the 
order in which they are generated ( uk , k = 1, 2, 3 ). Let 
the scale parameter of the Weibull distribution for each 
recurrence be �k , and the shape parameter be νk . The 
baseline hazard function is �kνk tνk−1 and it is allowed 
to vary with time. The k th TTRE of the j th subject in 
the i th cluster, when the starting point is not consid-
ered, is as follows:

τi , βtik , wijk , and β ′

x were explained in the previous 
sentence. The TTRE that is actually used for the analy-
sis considering the starting point is:

The parameters are �1 = �2 = �3, ν1 = ν2 = ν3 for the 
Weibull model (constant), and �1  = �2 = �3, ν1  = ν2 = ν3 
for the Weibull model (change).

In the actual example, 31.4% of the residents died 
during the trial period. Therefore, in our simulation, we 
considered the time-to-terminal-event (TTTE) as inde-
pendent of the distance to switch and TTRE. If the gen-
erated TTTE does not exceed tE or tF  and it is before 
the third TTRE, it is treated as mid-trial right-side 
censoring at the occurrence of the terminal event. The 
scale parameter of the Weibull distribution for the ter-
minal event is �c , and the shape parameter is νc . With-
out considering the starting point, the TTTE of the j th 
subject in the i h cluster, C∗

ij , can be expressed using the 
probability density function as follows:

The TTTE used in the actual analysis considering the 
starting point is expressed as Cij = dij + C∗

ij.

Parameter settings
The scale parameter for the exponential distribution in 
the generation of the TTRE by the Poisson process was 
set to � = 0.003281 . This parameter was estimated based 
on the TTHA up to the third of the actual example, with 
all starting points set to zero. In addition, the inter-indi-
vidual variability of the scale parameter in the generation 
of the TTRE by the Mixed-Poisson process was set to 
σ 2
s = 0.3455 . For this parameter, we used an estimate of 

T ∗

ijk
=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

�
−log(uk )

𝜆k exp(𝛽
�x+𝜏i )

�1∕𝜈k

if − log
�
uk

�
< 𝜆kexp

�
𝛽�x + 𝜏i

�
wijk

vk

�
[−log(uk )−𝜆k exp(𝛽�x+𝜏i)wijk

𝜈k +𝜆k exp(𝛽tik )exp(𝛽�x+𝜏i)wijk

𝜈k ]

𝜆k exp(𝛽tik )exp(𝛽�x+𝜏i)

�1∕𝜈k

if − log
�
uk

�
≥ 𝜆kexp

�
𝛽

�

x + 𝜏i
�
wijk

vk

.

{

Tijk = dij + T ∗
ijk k = 1

Tijk = Tijk−1 + T ∗
ijk k = 2, 3

f (x) =
νc

�
νc
c
xνc−1exp

{

−

(

x

�c

)νc
}

, x > 0



Page 8 of 18Oyamada et al. BMC Medical Research Methodology          (2022) 22:123 

the standard deviation of the normal distribution for the 
scale parameter based on the TTHA.

The scale and shape parameters of the Weibull 
distribution in the generation of TTRE using the 
Weibull model (constant) were set to �1 = �2 = �3 =

0.004703, �1 = �2 = �3 = 1.1219 . These parameters were 
estimated based on the TTHA, up to the third of the actual 
example. The starting point of the second and subsequent 
TTHA was the time of the previous hospitalisation.

The scale and shape parameters of the Weibull dis-
tribution in the generation of the TTRE using the 
Weibull model (change) were set to �1 = 0.003599,

�2 = �3 = 0.009910, �1 = 1.5122, �2 = �3 = 0.9108 . These 
parameters were estimated based on the “first TTHA” 
and the “second and third TTHA” of the actual example, 
respectively. The starting point of the second and subse-
quent TTHAs was the time of the occurrence of the previ-
ous hospitalisation.

The scale and shape parameters of the Weibull distri-
bution in the generation of TTTE as mid-trial right-side 
censoring were set to �c = 0.003674 and νc = 1.7191 . 
These parameters were estimated based on the time to 
death in the actual example.

Two parameters were set for the true intervention 
effect. The first is βtik = βt = −0.264 , which was calcu-
lated as ln(4.3/5.6) based on the secondary outcome of 
the actual example, number of hospitalisations per facil-
ity month. The second is βtik = βt = 0 , a setting used in 
previous studies on event generation models: HR = 1, 
which indicates that there is no difference in the risk of 
event occurrence between the control and intervention 
conditions. In a simple RCT situation where there is no 
intervention effect, both the AG and PWP-TT models 
have been shown to perform well, regardless of the type 
of event generation model [28].

Simulation set‑up
For all simulations, we fixed tS = 0 at the beginning of the 
trial, tE = 360 at the end of the last step period, and the 
total sample size per simulation (total number of subjects 
per trial) N = 2000 . These settings were based on the fact 
that the actual example lasts for 12 months from the start 
of the trial to the end of the final step period; if one month 
is considered to be approximately 30 days, the trial period 
can be calculated as 12 × 30 = approximately 360 days, and 
the total number of subjects was 1700. Unless otherwise 
noted, the basic settings for each simulation scenario are 
as follows: the number of simulations is 1000, the event 
generation model consists of three types (Poisson process, 
Weibull model (constant), Weibull model (change)), the 
parameters of the true intervention effect are two ways 
( −0.264, 0 ), and s(= m) = 5, ni = n = N∕m = 400,

Wd = (tE − tS)∕(m + 1) = 60, �2 = 0, E = 1, F = 0 . The 

setting of s = m = 5 is in reference to the fact that the 
number of steps in the actual example is five (Fig. 1).

Each simulation scenario is listed below. Scenario II 
applied two policies for each statistical model: (i) with strati-
fication by clusters and (ii) without stratification by clusters. 
In all scenarios, except for scenario II, only (i) was applied.

In Scenario I, the number of steps (clusters) var-
ied as s(= m) = 2, 4, 5, 8, 10, 20 to investigate how 
the performance of each statistical model changed 
as the number of steps (clusters) increased. As the 
number of steps changes, it becomes n = N∕m =

1000, 500, 400, 250, 200, 100, Wd = 120, 72, 60, 40, 33, 17  . 
The results based on s(= m) = 5, n = 400, Wd = 60 in 
this scenario were used as a reference throughout the 
simulations in our study.

In Scenario II, we varied the variance with respect to 
the random effect τi , which represents the variation 
among clusters, as σ 2 = 0.25, 0.5, 1 , and investigated 
how the performance of each statistical model changed 
as the variation between clusters increased.

In Scenario III, the follow-up period varied as fol-
lows, F = 1, 2, 3, 4 to investigate how the performance 
of each statistical model changed as the follow-up 
period increased. The setting of F  is based on the follow-
up period of 2.5 steps in the actual example (Fig.  1). In 
this scenario, the time point of the trial entry point was 
dij = tS + ((tF − tS) ∗ e)/E , and the subject was allowed 
to enter until the end of the follow-up period.

In Scenario IV, the follow-up period was changed 
to F = 1, 2, 3, 4 to investigate how the performance of 
each statistical model changed as the follow-up period 
increased. In this scenario, the time point of the trial 
entry point was dij = tS + ((tE − tS) ∗ e)/E , and entry 
was terminated at the end of the final step period.

In Scenario V, we varied the timing of the trial entry 
as follows, E = 1.5, 2, 4, 6 to investigate how the per-
formance of each statistical model changed as trial entry 
was concentrated at an earlier stage of the trial.

In Scenario VI, the time of trial entry varied as fol-
lows, E = 1.5, 2, 4, 6 , and the follow-up period was 
changed to F = 1, 2, 3, 4 , to investigate how the per-
formance of each statistical model changed in a 
situation where trial entry was concentrated in an 
earlier stage of the trial, and there was a follow-up 
period. In this scenario, for convenience, we used 
dij = tS + ((tE − tS) ∗ e)/E as the time point for trial 
entry.

Analysis of an actual example
The time-independent covariates employed in the 
model analysis for the primary outcome in the actual 
example (age, sex, medical power of attorney, health 
directive, advance care plan/statement of choices, 
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primary diagnosis, age-adjusted Charlson comorbid-
ity index, and fidelity) were used for adjustment, when 
analysing hospitalization > 24  h repeatedly occurred 
with the TTRE in the actual example using each statis-
tical model.

Two policies were applied to each statistical model: 
(i) with stratification by clusters and (ii) without strati-
fication by clusters. Fidelity is a per-cluster variable and 
was employed only with policy (ii), as it is not available 
for adjustment in (i). The unidirectional switch from 
the control condition to the intervention condition in 
each cluster was expressed using the intervention indi-
cator as a time-dependent covariate.

In the usual TTRE analysis, continuous risk intervals 
were employed. However, in reality, they are not exposed 
to the risk of further hospitalisation during their hospital 
stay. Therefore, in this study, we adopted a discrete risk 
interval [30]. Thus, for example, if a resident was hospi-
talised, subsequent exposure to the risk of new hospitali-
sation would be from the day of discharge.

The results of the analysis were evaluated using HR 
and its 95% CI and p-value. In addition, parameter esti-
mates and standard error (SE) were evaluated for the 
intervention effects.

Software and code
All statistical analyses, including simulations, were per-
formed using SAS, version 9.4 (SAS Institute, Cary, NC, 
USA). The PROC PHREG of SAS was used to analyse 
the TTRE. For the generation of pseudo-random num-
bers by SAS, the RANUNI function was used to gener-
ate the time point of trial entry and TTRE, the RANNOR 
function was used to generate the cluster effect, and the 
RAND function was used to generate the TTTE. For 
information on simulation codes, see Availability of data 
and materials.

Results 
Simulation
The reference results for Scenario I with s (= m) = 5,

n = 400, Wd = 60 are shown in Table 1. These results were 
used as a reference for all the other simulations assessed in 
this study, as the setting s(= m) = 5 references the fact that 
the number of steps in the actual example is five (Fig. 1).

From the reference results for βt = −0.264 , the MSE 
under the Poisson process and the Mixed-Poisson pro-
cess was smaller for the AG and PWP-TT models, and 
slightly larger for the PWP-GT model; the CP perfor-
mances of the AG and PWP-TT models were similar, 
but the bias was much smaller for the PWP-TT model. 
The PWP-GT model performed very well in both the 
Weibull model (constant) and Weibull model (change) 
but showed much lower performance in the Mixed-
Poisson process. Under the Weibull model (change), 
the performance of the AG model was found to be very 
poor. In reference to the results for βt = 0 , the overall 
performance was higher than that of βt = −0.264 . The 
AG model under the Weibull model (change) tended 
to overestimate CP. In all event generation models, 
the PWP-TT and PWP-GT models showed simi-
lar results, but the bias of the PWP-GT model in the 
Mixed-Poisson process was slightly larger than all other 
combinations.

The results for Scenario I when the parameter for the 
true intervention effect is βt = −0.264 are shown in 
Table 2, and the results when βt = 0 are shown in Addi-
tional File (S.1). Regardless of the setting for βt , the overall 
MSE increased slightly as the number of steps (clusters) 
increased, but this did not substantially impact on the 
performance comparison between the statistical models.

The results for Scenario II when the parameter for 
the true intervention effect is βt = −0.264 are shown 
in Table  3, and the results when βt = 0 are shown in 
Additional File (S.2). Regardless of the setting of βt , 

Table 1  Performance for the reference results throughout the simulations

Settings: s(= m) = 5, n = 400, Wd = 60, σ 2
= 0, E = 1, F = 0  

True 
Intervention 
effect (βt)

Event Generation model

AG model PWP-TT model PWP-GT model

Bias MSE CP Bias MSE CP Bias MSE CP

-0.264 Poisson 0.0266 0.0040 0.933 0.0021 0.0040 0.940 0.0380 0.0054 0.899

Mixed-Poisson 0.0290 0.0041 0.927 0.0106 0.0039 0.938 0.0543 0.0067 0.844

Weibull (constant) 0.0567 0.0067 0.858 0.0529 0.0065 0.864 0.0032 0.0037 0.949

Weibull (change) 0.1247 0.0168 0.162 0.0328 0.0033 0.896 -0.0004 0.0022 0.955

0 Poisson 0.0023 0.0030 0.955 0.0024 0.0036 0.939 0.0021 0.0034 0.933

Mixed-Poisson 0.0017 0.0028 0.958 0.0020 0.0034 0.941 0.0107 0.0033 0.936

Weibull (constant) 0.0025 0.0032 0.948 0.0025 0.0034 0.948 0.0019 0.0031 0.944

Weibull (change) 0.0011 0.0011 0.991 -0.0005 0.0020 0.961 -0.0011 0.0020 0.950
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the performance of policy (ii) without stratification by 
clusters decreased as inter-cluster variation increased. 
At σ 2 = 0.25 , the lowest variance in the setting, the 
decrease in performance was already apparent, espe-
cially for CP, as the performance was very poor. The 
reference results where policy (i) with stratification by 
clusters was performed in the absence of inter-clus-
ter variation were similar to the results when (i) with 
stratification by clusters was performed in this scenario 
where inter-cluster variation was present.

The results for Scenario III, when the parameter for 
the true intervention effect is βt = −0.264 are shown in 
Table 4, and the results when βt = 0 are shown in Addi-
tional File (S.3). When βt = −0.264 , the performance of 
the AG and PWP-TT models under the Weibull model 
(constant) and the PWP-TT model under the Weibull 
model (change) improved as the follow-up period 
increased, when the trial entry was allowed until the end of 
the follow-up period. In particular, for CP, the performance 
was comparable to that of the PWP-GT model under the 
respective event generation model. On the other hand, the 

performance of the Mixed-Poisson process tended to be 
less than or equal to that of the reference results.

The results for Scenario IV when the parameter for 
the true intervention effect was βt = −0.264 are shown 
in Table  5, and the results when βt = 0 are shown in 
Additional File (S.4). When βt = −0.264 , the per-
formance of the AG and PWP-TT models under the 
Weibull model (constant) and the PWP-TT model 
under the Weibull model (change), improved as the 
follow-up period increased, given the policy of termi-
nating trial entry at the end of the final step period. 
However, none of them reached the same level of per-
formance as the PWP-GT model in their respective 
event generation models. In contrast, the performance 
of the PWP-GT model under the Poisson process 
tended to decrease as the follow-up period increased. 
In addition, the performance of the Mixed-Poisson 
process tended to be less than or equal to that of the 
reference results.

The results for Scenario V when the parameter for the true 
intervention effect is βt = −0.264 are shown in Table 6, and 

Table 2  Performance for scenario I with true intervention effect of βt = −0.264

AG Andersen-Gill, PWP-TT Prentice-Williams-Peterson Total-Time, PWP-GT Prentice-Williams-Peterson Gap-Time, MSE Mean square error, CP Coverage probability

Event Generation model Number of 
steps (clusters)

AG model PWP-TT model PWP-GT model

Bias MSE CP Bias MSE CP Bias MSE CP

Poisson 2 0.0267 0.0034 0.937 0.0006 0.0032 0.959 0.0393 0.0047 0.868

4 0.0259 0.0036 0.941 0.0013 0.0036 0.948 0.0386 0.0051 0.894

5 0.0266 0.0040 0.933 0.0021 0.0040 0.940 0.0380 0.0054 0.899

8 0.0255 0.0041 0.943 0.0011 0.0041 0.938 0.0397 0.0056 0.896

10 0.0251 0.0042 0.936 0.0016 0.0042 0.943 0.0376 0.0057 0.897

20 0.0259 0.0042 0.938 0.0020 0.0042 0.949 0.0363 0.0057 0.912

Mixed-Poisson 2 0.0283 0.0035 0.930 0.0085 0.0032 0.947 0.0572 0.0065 0.785

4 0.0284 0.0039 0.923 0.0099 0.0037 0.936 0.0563 0.0068 0.826

5 0.0290 0.0041 0.927 0.0106 0.0039 0.938 0.0543 0.0067 0.844

8 0.0282 0.0043 0.932 0.0097 0.0041 0.943 0.0547 0.0070 0.846

10 0.0254 0.0042 0.937 0.0075 0.0042 0.947 0.0534 0.0071 0.845

20 0.0281 0.0046 0.920 0.0097 0.0045 0.938 0.0530 0.0073 0.856

Weibull (constant) 2 0.0462 0.0052 0.870 0.0424 0.0050 0.882 0.0016 0.0032 0.944

4 0.0546 0.0065 0.848 0.0509 0.0062 0.867 0.0003 0.0037 0.945

5 0.0567 0.0067 0.858 0.0529 0.0065 0.864 0.0032 0.0037 0.949

8 0.0563 0.0071 0.849 0.0522 0.0068 0.863 0.0016 0.0043 0.934

10 0.0566 0.0072 0.842 0.0522 0.0069 0.860 0.0019 0.0042 0.945

20 0.0553 0.0070 0.869 0.0496 0.0067 0.884 0.0004 0.0044 0.949

Weibull (change) 2 0.1229 0.0162 0.100 0.0253 0.0026 0.897 -0.0014 0.0019 0.950

4 0.1221 0.0162 0.157 0.0299 0.0032 0.892 -0.0019 0.0021 0.963

5 0.1247 0.0168 0.162 0.0328 0.0033 0.896 -0.0004 0.0022 0.955

8 0.1240 0.0167 0.171 0.0330 0.0035 0.902 -0.0014 0.0024 0.954

10 0.1250 0.0171 0.191 0.0348 0.0038 0.888 0.0010 0.0025 0.956

20 0.1237 0.0169 0.222 0.0334 0.0038 0.901 -0.0012 0.0026 0.949
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Table 3  Performance for scenario II with true intervention effect of βt = −0.264

Event Generation model

Dealing with clusters Statistical model

σ2 Bias MSE CP

With stratification by clusters Poisson process AG 0.25 0.0250 0.0036 0.943

0.5 0.0296 0.0040 0.933

1 0.0358 0.0043 0.899

PWP-TT 0.25 -0.0001 0.0037 0.957

0.5 0.0016 0.0037 0.947

1 0.0001 0.0036 0.951

PWP-GT 0.25 0.0367 0.0051 0.898

0.5 0.0387 0.0050 0.901

1 0.0358 0.0047 0.892

Mixed-Poisson process AG 0.25 0.0296 0.0040 0.923

0.5 0.0329 0.0043 0.917

1 0.0397 0.0047 0.870

PWP-TT 0.25 0.0105 0.0038 0.938

0.5 0.0121 0.0039 0.941

1 0.0143 0.0038 0.937

PWP-GT 0.25 0.0545 0.0067 0.844

0.5 0.0573 0.0071 0.820

1 0.0591 0.0070 0.796

Weibull model (parameter constant) AG 0.25 0.0572 0.0069 0.844

0.5 0.0556 0.0067 0.831

1 0.0510 0.0061 0.836

PWP-TT 0.25 0.0531 0.0066 0.852

0.5 0.0512 0.0064 0.857

1 0.0461 0.0058 0.861

PWP-GT 0.25 0.0041 0.0038 0.950

0.5 0.0015 0.0033 0.959

1 0.0008 0.0033 0.939

Weibull model (parameter change) AG 0.25 0.1237 0.0166 0.158

0.5 0.1196 0.0157 0.197

1 0.1087 0.0134 0.275

PWP-TT 0.25 0.0333 0.0034 0.892

0.5 0.0323 0.0034 0.889

1 0.0300 0.0033 0.886

PWP-GT 0.25 -0.0002 0.0022 0.952

0.5 -0.0006 0.0022 0.965

1 0.0005 0.0022 0.954
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AG Andersen-Gill, PWP-TT Prentice-Williams-Peterson Total-Time, PWP-GT Prentice-Williams-Peterson Gap-Time, MSE Mean square error, CP Coverage probability

Table 3  (continued)

Event Generation model

Dealing with clusters Statistical model

σ2 Bias MSE CP

Without stratification by clusters Poisson process AG 0.25 0.0362 0.0139 0.560

0.5 0.0451 0.0438 0.324

1 0.0666 0.1344 0.172

PWP-TT 0.25 0.0057 0.0179 0.521

0.5 0.0228 0.0537 0.289

1 0.0634 0.1262 0.180

PWP-GT 0.25 0.0361 0.0200 0.481

0.5 0.0552 0.0595 0.274

1 0.1067 0.1530 0.161

Mixed-Poisson process AG 0.25 0.0400 0.0139 0.556

0.5 0.0472 0.0430 0.319

1 0.0696 0.1286 0.179

PWP-TT 0.25 0.0177 0.0162 0.534

0.5 0.0318 0.0489 0.308

1 0.0708 0.1159 0.177

PWP-GT 0.25 0.0527 0.0196 0.477

0.5 0.0697 0.0566 0.290

1 0.1189 0.1440 0.166

Weibull model (parameter constant) AG 0.25 0.0417 0.0195 0.483

0.5 0.0486 0.0623 0.270

1 0.0720 0.1760 0.159

PWP-TT 0.25 0.0405 0.0194 0.482

0.5 0.0558 0.0567 0.286

1 0.0950 0.1295 0.182

PWP-GT 0.25 0.0085 0.0195 0.466

0.5 0.0264 0.0606 0.260

1 0.0828 0.1525 0.168

Weibull model (parameter change) AG 0.25 0.1227 0.0203 0.254

0.5 0.1216 0.0338 0.276

1 0.1227 0.0814 0.186

PWP-TT 0.25 0.0281 0.0156 0.438

0.5 0.0445 0.0456 0.258

1 0.0835 0.1011 0.179

PWP-GT 0.25 0.0068 0.0162 0.429

0.5 0.0274 0.0506 0.255

1 0.0845 0.1259 0.161
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the results when βt = 0 are shown in Additional File (S.5). 
Regardless of the setting of βt , there was a tendency for the 
overall MSE to increase as the trial entry was more concen-
trated at the beginning of the trial. When βt = −0.264 , for 
the PWP-GT model under the Poisson process, the AG and 

PWP-TT models under the Weibull model (constant), and 
the PWP-TT model under the Weibull model (change), CP 
always performed poorly when compared to the reference 
results, regardless of the value for E . On the other hand, in 
the Mixed-Poisson process, Bias tended to decrease in the 

Table 4  Performance for scenario III with true intervention effect of βt = −0.264

AG Andersen-Gill, PWP-TT Prentice-Williams-Peterson Total-Time, PWP-GT Prentice-Williams-Peterson Gap-Time, MSE Mean square error, CP Coverage probability

Event generation model

AG model PWP-TT model PWP-GT model

F Bias MSE CP Bias MSE CP Bias MSE CP

Poisson 1 0.0307 0.0037 0.931 0.0015 0.0034 0.947 0.0408 0.0050 0.895

2 0.0338 0.0038 0.936 0.0013 0.0034 0.947 0.0435 0.0051 0.878

3 0.0358 0.0039 0.928 0.0013 0.0034 0.949 0.0447 0.0051 0.863

4 0.0369 0.0041 0.929 0.0010 0.0036 0.952 0.0445 0.0052 0.873

Mixed-Poisson 1 0.0343 0.0041 0.919 0.0126 0.0036 0.945 0.0601 0.0070 0.804

2 0.0366 0.0041 0.907 0.0125 0.0036 0.940 0.0612 0.0069 0.785

3 0.0390 0.0044 0.911 0.0135 0.0037 0.940 0.0615 0.0070 0.790

4 0.0405 0.0045 0.909 0.0139 0.0037 0.938 0.0624 0.0070 0.803

Weibull (constant) 1 0.0453 0.0052 0.874 0.0406 0.0049 0.894 0.0028 0.0030 0.953

2 0.0377 0.0046 0.916 0.0326 0.0044 0.918 0.0011 0.0029 0.959

3 0.0320 0.0042 0.932 0.0264 0.0041 0.934 0.0016 0.0030 0.940

4 0.0280 0.0042 0.938 0.0219 0.0042 0.935 0.0022 0.0030 0.937

Weibull (change) 1 0.1227 0.0161 0.119 0.0235 0.0027 0.929 -0.0002 0.0020 0.951

2 0.1206 0.0156 0.130 0.0173 0.0024 0.939 -0.0008 0.0020 0.944

3 0.1203 0.0155 0.139 0.0148 0.0023 0.949 0.0001 0.0019 0.950

4 0.1202 0.0155 0.133 0.0129 0.0024 0.953 0.0006 0.0020 0.948

Table 5  Performance for scenario IV with true intervention effect of βt = −0.264

AG Andersen-Gill, PWP-TT Prentice-Williams-Peterson Total-Time, PWP-GT Prentice-Williams-Peterson Gap-Time, MSE Mean square error, CP Coverage probability

Event generation model

AG model PWP-TT model PWP-GT model

F Bias MSE CP Bias MSE CP Bias MSE CP

Poisson 1 0.0320 0.0037 0.919 0.0020 0.0033 0.948 0.0429 0.0050 0.876

2 0.0350 0.0036 0.911 0.0015 0.0031 0.944 0.0470 0.0052 0.840

3 0.0361 0.0037 0.910 0.0012 0.0031 0.943 0.0497 0.0054 0.825

4 0.0361 0.0037 0.909 0.0009 0.0031 0.944 0.0512 0.0055 0.810

Mixed-Poisson 1 0.0344 0.0038 0.921 0.0121 0.0033 0.941 0.0604 0.0066 0.799

2 0.0377 0.0038 0.919 0.0128 0.0031 0.945 0.0639 0.0068 0.763

3 0.0388 0.0038 0.911 0.0130 0.0030 0.945 0.0647 0.0068 0.754

4 0.0388 0.0038 0.910 0.0127 0.0030 0.943 0.0643 0.0067 0.745

Weibull (constant) 1 0.0475 0.0051 0.866 0.0429 0.0048 0.882 0.0028 0.0028 0.948

2 0.0418 0.0044 0.886 0.0367 0.0042 0.907 0.0024 0.0025 0.942

3 0.0391 0.0042 0.890 0.0339 0.0039 0.912 0.0026 0.0023 0.945

4 0.0381 0.0041 0.899 0.0329 0.0039 0.913 0.0022 0.0023 0.947

Weibull (change) 1 0.1282 0.0174 0.062 0.0264 0.0026 0.908 0.0001 0.0018 0.950

2 0.1264 0.0169 0.065 0.0233 0.0024 0.922 -0.0002 0.0017 0.946

3 0.1249 0.0165 0.068 0.0222 0.0023 0.930 -0.0004 0.0017 0.949

4 0.1246 0.0165 0.069 0.0219 0.0023 0.930 -0.0004 0.0017 0.949
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AG and PWP-TT models and increase in the PWP-GT 
model as the trial entry was more concentrated at the begin-
ning of the trial.

The results for Scenario VI, when the parameter for 
the true intervention effect is βt = −0.264 , are shown 
in Additional File (S.6), and the results when βt = 0 are 
shown in Additional File (S.7), respectively. The results 
are similar to those of Scenario V, regardless of the set-
ting of βt or the value of F .

Actual example
The results summarising only the intervention indica-
tors as time-dependent covariates are shown in Table 7. 
The overall results, including the time-independent 
covariates used for adjustment, are shown in Additional 
File S.8.

The HR for the intervention indicator shows the rela-
tive risk of the intervention condition when compared 
to the control. Except for the PWP-TT model under pol-
icy (i) with stratification by clusters, the overall HR was 
slightly above 1, suggesting that the risk of events in the 
intervention condition may be higher than in the control, 
although the difference was not statistically significant. 
Reviewing the results of the statistical model, under pol-
icy (ii) without stratification by clusters, the HR tended to 
be larger, and the range of the SE and 95% CI was smaller 
than under policy (i) with stratification by clusters.

The results of the covariates other than the interven-
tion indicator, showed that the primary diagnosis of 
“dementia and Parkinson’s disease”, and the age-adjusted 
Charlson comorbidity index were statistically significant 
for all statistical models. Residents with dementia and 
Parkinson’s disease had a lower risk of event occurrence 

Table 6  Performance for scenario V with true intervention effect of βt = −0.264

AG Andersen-Gill, PWP-TT Prentice-Williams-Peterson Total-Time, PWP-GT Prentice-Williams-Peterson Gap-Time, MSE Mean square error, CP Coverage probability

Event generation model

AG model PWP-TT model PWP-GT model

E Bias MSE CP Bias MSE CP Bias MSE CP

Poisson 1.5 0.0265 0.0040 0.937 0.0014 0.0041 0.937 0.0498 0.0064 0.848

2 0.0232 0.0045 0.943 0.0015 0.0046 0.938 0.0603 0.0084 0.842

4 0.0110 0.0088 0.944 -0.0012 0.0095 0.938 0.0786 0.0152 0.856

6 0.0066 0.0119 0.954 -0.0021 0.0128 0.948 0.0878 0.0212 0.870

Mixed-Poisson 1.5 0.0289 0.0039 0.930 0.0098 0.0036 0.948 0.0660 0.0079 0.796

2 0.0246 0.0045 0.944 0.0081 0.0045 0.945 0.0740 0.0096 0.809

4 0.0144 0.0086 0.939 0.0050 0.0092 0.928 0.0869 0.0169 0.840

6 0.0082 0.0119 0.947 0.0016 0.0124 0.945 0.0944 0.0218 0.863

Weibull (constant) 1.5 0.0721 0.0084 0.768 0.0689 0.0080 0.793 0.0002 0.0034 0.957

2 0.0876 0.0115 0.724 0.0855 0.0112 0.734 0.0013 0.0042 0.945

4 0.1148 0.0203 0.713 0.1139 0.0202 0.731 -0.0044 0.0080 0.944

6 0.1274 0.0264 0.757 0.1267 0.0264 0.766 -0.0019 0.0107 0.957

Weibull (change) 1.5 0.1363 0.0201 0.122 0.0497 0.0050 0.834 -0.0005 0.0025 0.937

2 0.1391 0.0214 0.213 0.0656 0.0073 0.780 0.0009 0.0031 0.954

4 0.1437 0.0251 0.521 0.0961 0.0149 0.769 -0.0016 0.0063 0.949

6 0.1447 0.0275 0.629 0.1061 0.0193 0.788 -0.0040 0.0089 0.952

Table 7  Analysis results of actual example (intervention indicator only)

AG Andersen-Gill, PWP-TT Prentice-Williams-Peterson Total-Time, PWP-GT Prentice-Williams-Peterson Gap-Time, HR Hazard ratio, CI Confidence interval

Dealing with clusters Statistical model Parameter 
Estimates

Standard Error
HR [95%CI] p-value

With stratification by clusters AG 0.033 0.122 1.034 [0.814, 1.314] 0.785

PWP-TT -0.061 0.123 0.941 [0.739, 1.198] 0.621

PWP-GT 0.054 0.117 1.056 [0.840, 1.327] 0.641

Without stratification by clusters AG 0.096 0.094 1.102 [0.915, 1.326] 0.306

PWP-TT 0.040 0.095 1.041 [0.863, 1.254] 0.676

PWP-GT 0.087 0.091 1.090 [0.912, 1.304] 0.360
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than those without dementia and Parkinson’s disease, 
suggesting that the risk of event occurrence may increase 
with the severity of comorbidities.

Discussion
In this study, we have conducted comparative simulations 
to identify the statistical model’s whose performance 
for estimating intervention effects based on TTRE in 
SWCRT using an open cohort design were superior and 
could effectively be applied to actual clinical trial data.

The results of the simulations show that the perfor-
mance under policy (ii) without stratification by clusters 
was worse when compared with policy (i) with stratifica-
tion by clusters, in both the statistical models and set-
tings. As SWCRT is implemented at the cluster level, it 
is necessary to consider that “cluster effects may exist” 
in any situation. Furthermore, even if there is no varia-
tion among the clusters, there is no difference in perfor-
mance with and without stratification by clusters, so (i) 
with stratification by clusters should always be adopted in 
the estimation of intervention effects based on TTRE in 
SWCRT when using an open cohort design.

The results of the simulations, in a situation where there 
is no follow-up period, and the timing of the trial entry 
tends to be random, showed that Poisson processes were 
similar to those of previous studies in settings that did not 
include time-dependent covariates [28]. We found that 
the performance of the PWP-TT model decreases for the 
Weibull model (constant) and increases for the Mixed-
Poisson process, which is somewhat different from pre-
vious studies. This is a tendency that is considered to be 
specific to SWCRT with an open cohort design.

In real-world SWCRT, there may be situations in which 
a follow-up period is established, or trial entry is concen-
trated in the early period, due to the nature of the study 
objectives and target clusters. The simulation results are 
important because they show that the performance of 
the statistical models against TTRE depends not only on 
the true intervention effects and event generation model, 
but also on the trial design of SWCRT (the presence of a 
follow-up period and the timing of trial entry).

The Mixed-Poisson process is an event-generating 
model that induces inter-individual variability in the 
Poisson process. Overall, in simulations in the presence 
of intervention effects, the bias in all statistical mod-
els was positively larger in the Mixed-Poisson process 
than the Poisson process; that is, it tended to underes-
timate the intervention effects. This is a similar result 
to simulations in previous studies [22]. In addition, the 
simulation as a whole tended to significantly degrade 
the performance of PWP-GT, especially in the Mixed-
Poisson process with inter-individual variability, com-
pared to the Poisson process and Weibull model without 

inter-individual variability. Since PWP-GT is the only 
one that is assumed to be “gap-time independent”, the 
result that the Mixed-Poisson process with no gap-time 
independence degrades performance is natural.

The event generation model used in our study was only 
a simulation assumption. The primary analysis methods in 
the clinical trials usually need to be specified in advance in 
the study protocol or statistical analysis plan. If the policy 
is to adopt a statistical model for the primary analysis, and 
it needs to determine a statistical model in the early phase 
of trial planning, it would be desirable to adopt one that 
shows reasonable performance in various settings, rather 
than one that performs well only in a particular event gen-
eration model. In our study, through simulations based on 
various settings, the PWP-GT model with stratification 
by clusters showed the best performance in most settings 
and reasonable performance in other settings, in  situa-
tions where inter-individual variability did not exist. On 
the other hand, the PWP-GT model with stratification by 
clusters consistently underperformed compared to the 
PWP-TT model with stratification by clusters, in  situa-
tions where inter-individual variability existed. Therefore, 
if the policy is to adopt a statistical model as the primary 
analysis, and this needs to be determined in the early 
phase of the trial planning, the PWP-TT model with strat-
ification by clusters should be adopted if the inter-individ-
ual variability is known to be high from previous studies, 
and the PWP-GT model with stratification by clusters 
should be adopted if it is not.

Under the Weibull model (change), the overall per-
formance of the AG model tended to be very low when 
intervention effects were present, and the CP of the 
AG model tended to be excessive when there were no 
intervention effects. The AG model assumes a common 
baseline hazard function for all events, independent 
of the number of previous recurrences. In contrast, in 
the Weibull model (change), the hazard clearly changes 
between the first event and the second and subsequent 
events. Therefore, it is to be expected that the perfor-
mance of the AG model degrades under the Weibull 
model (change), theoretically. However, we believe that 
further research is needed on the cause of the terrifi-
cally low performance of CP. Anyway, considering the 
possibility that the actual event generation model is a 
Weibull model (change), it is challenging to adopt the 
AG model during the early phase of trial planning.

Under conditions where inter-individual variabil-
ity does not exist, the only situation in which the per-
formance of the PWP-TT model with stratification by 
clusters is not inferior to that of the PWP-GT model 
with stratification by clusters is when there is a cer-
tain amount of follow-up period, and the timing of the 
trial entry tends to be random within the trial period, 
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including the follow-up period. Therefore, in this situa-
tion, it may be acceptable to adopt the PWP-TT model 
with stratification by clusters during the early phase of 
the trial planning, instead of the PWP-GT model with 
stratification by clusters. In our study, the performance 
of the PWP-TT model was particularly good when the 
follow-up period was more than three steps. In addition, 
considering that the original trial period consisted of six 
steps ( s = m = 5 ), it may be possible to think of it as a 
rough guide that “a certain amount of follow-up period” 
as “a follow-up period that is more than half the length 
of the original trial period”. The results presented in 
Additional File (S.9) indicate that it can be assumed that 
the same is true for different numbers of steps (clusters). 
The choice of which statistical model to use depends on 
the nature of the intervention, the characteristics of the 
subjects, and the clinical interpretability of the analy-
sis results. In our study, for the sake of comparability, 
we estimated only the overall effects based on the PWP 
model, assuming that each recurrence had a common 
effect. However, in an actual analysis, it is possible to 
estimate event-specific effects. The PWP-TT model is 
appropriate when one wants to know the effect of each 
recurrence since the start of the subject’s follow-up. 
On the other hand, the PWP-GT model is suitable for 
understanding the effect of recurrence, in relation to the 
previous occurrence.

A previous study on the CoxPH model in the context 
of SWCRT showed a tendency for the MSE to decrease 
as the number of steps (clusters) increased. However, the 
simulations in our study showed an opposite trend. This 
difference is not apparent, but it is thought to be due to 
the differences in the various settings during the simula-
tion. For example, in the previous study, the true inter-
vention effect was set to 1, whereas in our study, it was 
set to − 0.264 or 0.

The observed numbers of recurrence per subject and 
the censoring proportions will be different depending 
on the scenario. Also, a previous study that evaluated 
the performance of the CoxPH model in SWCRT men-
tioned that the control-to-intervention ratio (the ratio of 
the total time in the control condition to the total time 
in the intervention condition) is related to the estimation 
accuracy [15]. A summary of this information for each 
scenario is given in Additional file (S.10) when the true 
intervention effect parameter is βt = −0.264 , and a sum-
mary for βt = 0 is given in Additional file (S.11). It may 
be helpful to take this information into account to inter-
pret the simulations’ results for each scenario.

There is a follow-up period in the actual example, 
and trial entry is concentrated early in the trial period. 
Therefore, based on the results of the simulations, if 
the policy is to adopt a statistical model for estimating 

intervention effects based on TTRE against the actual 
example as the primary analysis, and this needs to be 
determined in the early phase of trial planning, the 
PWP-TT model with stratification by clusters should 
be adopted if the inter-individual variability is known 
to be high from previous studies, and the PWP-GT 
model with stratification by clusters should be adopted 
if it is not. However, considering that the parameter 
estimates are close to zero for any statistical models, if 
one model is adopted as the primary analysis, the other 
might be adopted as the exploratory analysis. The 
number of hospitalizations per facility-month, was 
evaluated as a secondary outcome in the actual exam-
ple and showed an obvious decrease in the interven-
tion condition when compared to the control, which is 
a substantial deviation from the results from the TTRE 
analysis of our study. One possible reason for this is 
that the analysis of the number of hospitalizations per 
facility-month ignores that residents are exposed to 
both the control and intervention conditions. The pur-
pose of our study was to provide a different perspec-
tive to the existing evaluations. Therefore, it does not 
negate the conclusions of the actual example, which 
have previously been published.

Our study had several limitations. First, all of the statis-
tical models employed treat a terminal event before the 
third TTRE as a mid-trial censoring event. However, if 
a death occurs, for instance, in actual example, the pos-
sibility of a subsequent hospitalisation is lost. An event 
such as a death in such a situation is called a competing 
risk [31], but in our study, we did not account for termi-
nal events as competing risks.

Second, we assumed non-informative censoring for the 
terminal event, which was treated as mid-trial censoring. 
This assumes that censoring occurs independently due to 
causes unrelated to the TTRE. However, if, for example, 
repeated hospitalisations occur in an actual example, the 
risk of death is likely to increase. In such situations, it is 
possible to use an approach that considers the terminal 
event as informative censoring and corrects for it, but 
this was not applied [32, 33].

Third, the simulation in our study employed continu-
ous risk intervals as it has been adopted in many previous 
studies [19, 22, 34]. However, we believe that simulations 
for discontinuous risk intervals (adopted in the analysis 
of the data from actual example) should be considered in 
the future.

Fourth, for simulation simplicity, we assumed that the 
number of clusters moving from the control condition to 
the intervention condition in one step was one ( s = m ). 
However, in actual example, two or three care homes 
are included in one cluster that transitions in one step. 
If the intervention effects can be assumed to be common 
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among multiple care homes within a cluster, this is not 
an issue. If they cannot, they should be considered in the 
analysis, but we were not able to do this in our study.

Fifth, we adopted only “stratification by clusters” to 
handle the cluster effect. In our study, we were more 
interested in the differences in performance due to the 
differences in the design of SWCRT itself rather than 
the differences in performance due to the way the clus-
ter effect is handled. In a previous study that evaluated 
the performance of the CoxPH model in SWCRT, both 
“stratified by cluster” and “frailty” were used for the clus-
ter effect, and no difference in performance was found 
[15]. Based on the results, the “frailty” method, which is 
computationally expensive and takes a lot of time, was 
not included in our study from the beginning. However, 
stratification does not allow us to infer the effects of clus-
ter-level variables (such as “fidelity” in actual example). 
Also, frailty is more appropriate when the clusters we are 
dealing with are considered to be drawn from a larger 
population of clusters. Therefore, examination using 
frailty is an issue that needs to be addressed in the future.

Conclusions
Our objective was to evaluate which of the AG, PWP-
TT, and PWP-GT models performed best in estimat-
ing the intervention effects using TTRE in SWCRT 
with an open cohort design. The performance was 
evaluated by Bias, MSE, and CP based on different 
event generation models and true intervention effects 
and several scenarios involving the SWCRT design 
itself. The simulation results showed that the PWP-
GT model with stratification by clusters showed the 
most reasonable performance in  situations where 
inter-individual variability was not present, especially 
when evaluated by CP, regardless of the presence of 
cluster effects. However, if inter-individual variability 
was present, the PWP-TT model with stratification by 
clusters performed best.

Abbreviations
RCT​: Randomized controlled trial; CRT​: Cluster randomized trial; SWCRT​: 
Stepped wedge cluster randomized trial; TTHA: Time-to-hospital admission; 
TTE: Time-to-event; TTFE: Time-to-first-event; TTRE: Time-to-recurrent-event; 
TTTE: Time-to-terminal-event; CoxPH: Cox proportional hazard; AG: Andersen-
gill; PWP-TT: Prentice-williams-peterson total-time; PWP-GT: Prentice-williams-
peterson gap-time; HR: Hazard ratio; MSE: Mean square error; CP: Coverage 
probability; CI: Confidence interval; SE: Standard error.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12874-​022-​01552-6. 

Additional file 1. 

Acknowledgements
We thank and acknowledge Liz Forbat (University of Stirling) and Wai-
Man Liu (Australian National University) for providing electronic data 
(anonymized) collected in an actual example and advice on the content of 
our study. We would like to thank Editage (www.​edita​ge.​com) for English 
language editing.

Authors’ contributions
SO, SC and TY participated in the design of the study. SO carried out the 
simulation study and the statistical analysis of an actual example data, and 
drafted the manuscript. SC and TY participated in a discussion about statistical 
aspects. All the authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Simulation codes supporting the conclusions of this article are available from 
a GitHub repository at https://​github.​com/s-​oyama​da/​TimeT​oRecu​rrent​Event​
InSte​ppedW​edge.

Declarations

Ethics approval and consent to participate
In the INSPIRED trial (actual example of our study), consent to run the 
trial was gained at the site, rather than individual resident, level given the 
impracticalities of gaining informed consent from a large population. This 
follows national guidelines for Australia from the National Health and Medi‑
cal Research Council (NHMRC). Since our study is only an analysis based on 
simulations and pre-collected data, we did not obtain additional consent 
from the individual resident. For the INSPIRED trial group to provide us 
with the electronic data (anonymized) collected in the INSPIRED trial, we 
obtained the approval of the Ethics Review Committee of the Tohoku Uni‑
versity Graduate School of Medicine for the study protocol. (Reception No.: 
2020–1-1180) Our study follows Ethical Guidelines for Medical and Biological 
Research Involving Human Subjects (Japanese).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Division of Biostatistics, Tohoku University Graduate School of Medicine, Sen‑
dai, Japan. 2 Departments of Biostatistics, JORTC Data Center, Tokyo, Japan. 

Received: 20 October 2021   Accepted: 23 February 2022

References
	1.	 Eldridge S, Kerry S. A practical guide to cluster randomised trials in health 

services research. 1st ed. US: John Wiley & Sons Inc; 2012.
	2.	 Meurer WJ, Lewis RJ. Cluster randomized trials: evaluating treatments 

applied to groups. JAMA. 2015;313(20):2068–9.
	3.	 Ellenberg SS. The stepped-wedge clinical trial: evaluation by rolling 

deployment. JAMA. 2018;319:607–8.
	4.	 Hemming K, Haines TP, Chilton PJ, Girling AJ, Lilford RJ. The stepped 

wedge cluster randomised trial: rationale, design, analysis and reporting. 
BMJ. 2015;350:h391.

	5.	 Copas AJ, Lewis JJ, Thompson JA, Davey C, Baio G, Hargreaves JR. Design‑
ing a stepped wedge trial: three main designs, carry-over effects and 
randomisation approaches. Trials. 2015;16:352.

	6.	 Forbat L, Liu WM, Koerner J, Lam L, Samara J, Chapman M, et al. Reducing 
time in acute hospitals: A stepped-wedge randomised control trial of 
a specialist palliative care intervention in residential care homes. Palliat 
Med. 2020;34:571–9.

https://doi.org/10.1186/s12874-022-01552-6
https://doi.org/10.1186/s12874-022-01552-6
http://www.editage.com
https://github.com/s-oyamada/TimeToRecurrentEventInSteppedWedge
https://github.com/s-oyamada/TimeToRecurrentEventInSteppedWedge


Page 18 of 18Oyamada et al. BMC Medical Research Methodology          (2022) 22:123 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	7.	 Cook RJ, Lawless JF. The Statistical Analysis of Recurrent Events. 2nd ed. 
NY: Springer; 2010.

	8.	 Cox DR. Regression Models and Life-Tables. J Royal Stat Soc B. 
1972;34(2):187–220.

	9.	 Andersen PK, Gill RD. Cox’s regression model for counting processes: a 
large sample study. Ann Stat. 1982;10:1100–20.

	10.	 Prentice RL, Williams BJ, Peterson AV. On the regression analysis of multi‑
variate failure time data. Biometrika. 1981;68:373–9.

	11.	 Wei LJ, Lin DY, Weissfeld L. Regression analysis of multivariate incomplete 
failure time data by modeling marginal distributions. J Am Stat Assoc. 
1989;84:1065–73.

	12.	 Zhan Z, de Bock GH, van den Heuvel ER. Statistical methods for unidi‑
rectional switch designs: past, present, and future. Stat Meth Med Res. 
2018;27:2872–82.

	13.	 Cox DR, Oakes D. Analysis of Survival Data, Monographs on statistics and 
applied probability. 1st ed. London: Chapman & Hall; 1990.

	14.	 Fisher LD, Lin DY. Time-dependent covariates in the cox proportional-
hazards regression model. Annu Rev Public Health. 1999;20:145–57.

	15.	 Zhan Z, de Bock GH, Wiggers T, van den Heuvel E. The analysis of terminal 
endpoint events in stepped wedge designs. Stat Med. 2016;35:4413–26.

	16.	 Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. 
2nd ed. New York: Wiley; 2002.

	17.	 Amorim LD, Cai J. Modelling recurrent events: a tutorial for analysis in 
epidemiology. Int J Epidemiol. 2015;44:324–33.

	18.	 Lemeshow S, May S, Hosmer SW. Applied Survival Analysis: Regression 
Modeling of Time-to-Event Data. 2nd ed. US: John Wiley & Sons Inc; 2008.

	19.	 Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox 
Model. New York: Springer-Verlag; 2010.

	20.	 Lin DY, Wei DJ. The robust inference for the Cox proportional hazards 
model. J Am Stat Assoc. 1989;84:1074–8.

	21.	 Therneau TM, Hamilton SA. RhDNase as an example of recurrent event 
analysis. Stat Med. 1997;16:2029–47.

	22.	 Kelly PJ, Lim LL-Y. Survival analysis for recurrent event data: an application 
to childhood infectious diseases. Stat Med. 2000;19:13–33.

	23.	 Bouwsma EVA, Huirne JAF, van de Ven PM, Noordegraaf AV, Schaafsma 
FG, Koops SES, et al. Effectiveness of an internet-based perioperative 
care programme to enhance postoperative recovery in gynaecological 
patients: Cluster controlled trial with randomised stepped-wedge imple‑
mentation. BMJ Open. 2018;8:e017781.

	24.	 Kerber KA, Damschroder L, McLaughlin T, Brown DL, Burke JF, Telian SA, 
et al. Implementation of evidence-based practice for benign paroxysmal 
positional vertigo in the emergency department: a stepped-wedge 
randomized trial. Ann Emerg Med. 2020;75(4):459–70.

	25.	 Freeman CR, Scott IA, Hemming K, Connelly LB, Kirkpatrick CM, Coombes 
I, et al. Reducing Medical Admissions and Presentations Into Hospital 
through Optimising Medicines (REMAIN HOME): a stepped wedge, 
cluster randomised controlled trial. Med J Aust. 2021;214(5):212–7.

	26.	 Leontjevas R, Gerritsen DL, Smalbrugge M, Teerenstra S, Vernooij-Dassen 
MJ, Koopmans RT. A structural multidisciplinary approach to depression 
management in nursing-home residents: a multicentre, stepped-wedge 
cluster-randomised trial. Lancet. 2013;381:2255–64.

	27.	 Halek M, Reuther S, Muller-Widmer R, Trutschel D, Holle D. Dealing with 
the behaviour of residents with dementia that challenges: A stepped-
wedge cluster randomized trial of two types of dementia-specific case 
conferences in nursing homes (FallDem). Int J Nurs Stud. 2020;104:103435.

	28.	 Metcalfe C, Thompson SG. The importance of varying the event genera‑
tion process in simulation studies of statistical methods for recurrent 
events. Stat Med. 2006;25:165–79.

	29	 Austin PC. Generating survival times to simulate Cox proportional haz‑
ards models with time-varying covariates. Stat Med. 2012;31(29):3946–58.

	30.	 Braga JR, Tu JV, Austin PC, Sutradhar R, Ross HJ, Lee DS. Recurrent events 
analysis for examination of hospitalizations in heart failure: insights from 
the Enhanced Feedback for Effective Cardiac Treatment (EFFECT) trial. Eur 
Heart J Qual Care Clin Outcomes. 2018;4:18–26.

	31.	 Austin PC, Lee DS, Fine JP. Introduction to the Analysis of Survival Data in 
the Presence of Competing Risks. Circulation. 2016;133:601–9.

	32.	 Wang MC, Qin J, Chiang CT. Analyzing recurrent event data with informa‑
tive censoring. J Am Stat Assoc. 2001;96(455):1057–65.

	33.	 Liu L, Wolfe RA, Huang X. Shared frailty models for recurrent events and a 
terminal event. Biometrics. 2004;60:747–56.

	34.	 Twisk JWR, Smidt N, de Vente W. Applied analysis of recurrent events: a 
practical overview. J Epidemiol Community Health. 2005;59:706–10.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Comparison of statistical models for estimating intervention effects based on time-to-recurrent-event in stepped wedge cluster randomized trial using open cohort design
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Actual example
	Basic notation
	Statistical models
	Data generation process
	Parameter settings
	Simulation set-up
	Analysis of an actual example
	Software and code

	Results
	Simulation
	Actual example

	Discussion
	Conclusions
	Acknowledgements
	References


