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Abstract

Background: Bivariate alternating recurrent event data can arise in longitudinal studies where patients with chronic
diseases go through two states that occur repeatedly, e.g., care periods and break periods. However, there was no
statistical software that provided tools for the analysis of such data. To meet this software need, we developed
BivRec, a package for R that contains a set of tools for exploratory, nonparametric and semiparametric regression
analysis of bivariate alternating recurrent events.

Results: The BivRec package provides functions for nonparametric estimations for the joint distribution of bivariate
gap times (bivrecNP) and semiparametric regression methods for evaluating covariate effects on the two types of
gap times under the accelerated failure time model framework (bivrecReg). The package also provides exploratory
data analysis tools such as a visualization of the gap times by groups. We utilize a subset of the South Verona
Psychiatric Case Register (PCR) data to illustrate the use of the BivRec package for the reviewed methods.

Conclusions: We demonstrate BivRec’s capability for data visualization, nonparametric and regression based
analysis, as well as data simulation. The package has default methods with satisfactory performance despite the
complexity of calculations and fills a gap in software for statistical analysis of bivariate alternating recurrent events.
BivRec is accessible under the GPL-3 General Public License through CRAN, facilitating its installation.
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Background
Bivariate alternating recurrent event data can arise in
longitudinal studies where individuals go through two
interchanging states that reoccur over time. For instance,
patients with chronic conditions, such as addiction or
mental illnesses, experience care periods and break peri-
ods repeatedly. The on and off periods of care or disease
form a sequence of recurrent gap times. Consider a group
of patients who enter a study at the time of a hospital-
ization due to a particular disease and during the study
experience a series of recurrent hospitalizations caused by
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the same disease. In this case, patients experience alter-
nating periods of care and breaks from care (referred to
as Type I and Type II gap times, respectively, hereinafter)
until a censoring event such as the end of study occurs.
First, we introduce some notation. Let X0

ij and Y 0
ij be

random variables representing the length of Type I and
Type II gap times of episode j experienced by subject i,
respectively. Denote the collection of all episodes of sub-
ject i by Ni = {(

X0
i1,Y

0
i1
)
,
(
X0
i2,Y

0
i2
)
, . . .

}
, i = 1, 2, . . . , n.

In addition, we assume that the bivariate recurrent event
process of subject i is subject to right censoring Ci, which
has survival function G(·) with maximum support τc =
sup{t : G(t) > 0}. Letmi denote the number of episodes of
bivariate alternating recurrence times for subject i, which
satisfies the conditions:
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mi−1∑

j=1
(X0

ij + Y 0
ij ) ≤ Ciand

mi∑

j=1
(X0

ij + Y 0
ij ) > Ci.

Note that, in the last bivariate pair
(
X0
imi

,Y 0
imi

)
, X0

imi
may

or may not be censored, but Y 0
imi

is always censored,
for which we use the hospitalization example to illus-
trate. When the censoring occurs during the last care
period, X0

imi
, the break period afterwards, Y 0

imi
cannot be

observed, and when the censoring occurs during the last
break period, Y 0

imi
is only partially observed.

The observation of the gap times X0
ij and Y 0

ij is sub-

ject to the censoring time C∗
ij = Ci −

j−1∑

l=1

(
X0
il + Y 0

il
)

and max
{
C∗
ij − X0

ij , 0
}
, respectively, where

0∑

1
= 0.

Due to the censoring, the observed data for sub-
ject i are

{(
Xij,Yij,�X

ij ,�Y
ij

)
, j = 1, . . . ,mi

}
, where

Xij = X0
ij ,Yij = Y 0

ij and �X
ij = �Y

ij = 1 for

j = 1, . . . ,mi − 1, while Ximi = min
(
X0
imi

,C∗
imi

)
,Yimi =

min
{
Y 0
imi

, max
(
C∗
imi

− Ximi , 0
)}

,�X
imi

=
I
(
X0
imi

< C∗
imi

)
and �Y

imi
= 0. Figure 1 shows an illus-

tration of this process where the Type I gap of the last
episode is observed but the Type II gap following it is
censored (i.e., 0 < C∗

imi
− Ximi < Y 0

imi
).

The BivRec package was designed to analyze bivari-
ate alternating recurrent data with the form as depicted
in Fig. 1. It provides a consistent and user-friendly set of
functions to: explore and visualize the data, estimate and
plot the joint cumulative distribution function (cdf ), the
marginal survival and the conditional cdf using nonpara-
metric methods [1] and fit semiparametric accelerated
failure time models [2, 3] to estimate the effect of covari-
ates on the two alternating gap times.
BivRec version 1.2.1 is available through CRAN at

https://cran.r-project.org/package=BivRec. The reference
manual can be found in both CRAN and Additional file
1 of this paper. The implementation in R was designed
for users with some experience analyzing survival data
and follows conventions used in similar R packages. Most
functions in BivRec are S4 methods that produce S4 class
objects. Where possible functions have been optimized
using Fortran 90 to reduce running time.

Implementation
Nonparametric analysis
In 2005, Huang and Wang [1] developed a nonparamet-
ric method for estimating the joint distribution of the
two types of alternating gap times, which is a useful data
summary tool for bivariate alternating recurrent event
data. In the BivRec package, we implementedHuang and
Wang’s (2005) [1] nonparametric methods in the function
bivrecNP() to estimate:

1. the joint cumulative distribution function (cdf ) for
the two types of gap times, Pr

(
X0
ij ≤ x,Y 0

ij ≤ y
)
, and

its associated standard error (in an output data frame
and a contour plot),

2. the marginal survival function for the Type I gap
times, Pr

(
X0
ij > x

)
, and its associated standard error

(in an output data frame and a survival plot), and
3. the conditional cdf for the Type II gap times given

the Type I gap times, Pr
(
Y 0
ij ≤ y|X0

ij ≤ x
)
, and its

associated standard error (in an output data frame
and a conditional cdf plot).

For estimation for the cdf, assume that there exists a
subject-level latent variable �i with an unspecified cdf,
P�(·) such that the bivariate gap times

(
X0
ij ,Y 0

ij

)
, j =

1, 2, . . . are identically and independently distributed
(i.i.d.) given �i and that the censoring time Ci is inde-
pendent of (Ni,�i). Define variables Z0

ij = X0
ij + Y 0

ij and

W 0
ij =

(
X0
ij ,Y 0

ij

)
, then their joint cdf is FZ0,W 0(z,u) =

Pr
(
X0
i1 + Y 0

i1 ≤ z,X0
i1 ≤ x,Y 0

i1 ≤ y
)
for z = x + y and

u = (x, y). The marginal survival function of Z0
ij is hence

SZ0(z) = 1 − FZ0,W 0(z, (∞,∞)). Our interest lies in
the estimation of the joint distribution FX0,Y 0(x, y) =
Pr(X0

ij ≤ x,Y 0
ij ≤ y), which is determined by FZ0,W 0(z,u)

through the identity FX0,Y 0(x, y) = FZ0,W 0(x + y, (x, y)).
Let Fa(z,u) = E[ aiI(Zi1 ≤ z,W i1 ≤ u,�i1 = 1)]
and Ra(z) = E[ aiI(Zi1 ≥ z)], where the weight ai =
a(Ci) is a non-negative function ofCi and satisfies E[ a2i ]<∞, with a special case of ai = 1, i.e., no weights.
Then, following Huang and Louis (1998) [4], it is shown
that FZ0,W 0(z,u) = ∫ z

0 SZ0(s−)
Fa(ds,u)
Ra(s) , where SZ0(·) is

the marginal survival function of Z0
ij [1]. Noticing that

Fa(ds,u) and Ra(s) can be replaced with their respective

Fig. 1 Illustration of a bivariate alternating recurrent event process

https://cran.r-project.org/package=BivRec
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empirical estimators and that the survival function SZ0(·)
can be estimated by the estimator of [5] for univariate
(i.e., single-type) recurrent gap times Z0

ij, one can estimate
the joint distribution of interest for any (x, y) satisfying
x + y ≤ τc as follows:

F̂X0,Y 0(x, y) =
∑

t∗k≤x+y

∏

l<k

{

1 − Ĥa(t∗l ,∞)

R̂a(t∗l )

}
Ĥa(t∗k , (x, y))

R̂a(t∗k )
,

(1)

where t∗1 , t∗2 , . . . t∗K are the distinct and uncensored recur-
rence times from {Zij, j = 1, . . .m∗

i , i = 1, . . . , n} with
m∗

i = mi − 1 for mi ≥ 2 and m∗
i = 1 for mi = 1,

Ĥa(z,u) = n−1
n∑

i=1

aiI(mi≥2)
m∗

i

m∗
i∑

j=1
I(Zij = z,W ij ≤ u) and

R̂a(z) = n−1
n∑

i=1

ai
m∗

i

m∗
i∑

j=1
I(Zij ≥ z).

Next, we focus on the estimation of the marginal sur-
vival function for Type I gap times, SX0(x) = Pr(X0

i1 ≥ x).
Let x∗

1, x∗
2, . . . x∗

M denote the distinct and uncensored Type
I gap times from {Xij, j = 1, . . .m∗

i , i = 1, . . . , n}. Follow-
ing Wang and Chang (1999) [5], Huang andWang in 2005
[1] proposed to estimate SX0(x) for x ≤ τc with:

ŜX0(x) =
∏

x∗
k≤x

{

1 − ĤX(x∗
k)

R̂X(x∗
k)

}

,

where ĤX(t) = 1
n

n∑

i=1

aiI(mi≥2)
m∗

i

m∗
i∑

j=1
I(Xij = t) and R̂X(t) =

1
n

n∑

i=1

ai
m∗

i

m∗
i∑

j=1
I(Xij ≥ t). Finally, they argued that the

marginal distribution of Type II gap times Y 0
ij is not

estimable due to induced dependent censoring, and hence
proposed to estimate the conditional distribution of Type
II gap times given Type I gap times, FY 0|X0(y|x) =
Pr(Y 0

i1 ≤ y|X0
i1 ≤ x) using the estimator

F̂Y 0|X0(x, y) = F̂X0,Y 0(x, y)
1 − ŜX0(x)

, for x + y ≤ τc.

Similarly, one can estimate Pr(Y 0
i1 ≤ y|x2 ≤ X0

i1 ≤ x1)

by F̂X0,Y0 (x,y)
ŜX0 (x1)−ŜX0 (x2)

for x1 + y ≤ τc.
The standard errors of the estimators for the joint dis-

tribution and the marginal survival function of Type I
gap times are estimated based on the large sample prop-
erties of these estimators proved in [1]. Briefly, for 0 ≤
x + y ≤ L, L < τ < τc with τ being the maximal support
of Ra(z),

√
n{F̂X0Y 0(x, y) − FX0Y 0(x, y)} weakly converges

to a Gaussian process with mean zero and variance-
covariance function � = E[φ1(z1,u1)φ1(z2,u2)]. Simi-
larly,

√
n{Ŝx0(x) − Sx0(x)} converges weakly to

a Gaussian process with mean zero and with variance-
covariance function
�s = Sx0(x1)Sx0(x2)E[ ξ1(x1)ξ1(x2)] where x1, x2 ∈[ 0, L].
The definitions of φ1(z,u) and ξ1(x) can be found in
[1]. For the conditional distribution estimator, F̂Y 0|X0(y|x),
the package provides the bootstrap standard error and
confidence intervals.

Semiparametric regression
Researchers, especially in clinical settings, are often more
interested in regression methods that allow them to
understand the relationship between covariates and the
recurrent event process. In this regard, Chang in 2004
[2] proposed a semiparametric accelerated failure time
(AFT) model which allows the estimation of the covari-
ate effects on the two types of alternating gap times to
be done simultaneously (referred to as Chang’s method
hereinafter). Recognizing that the estimation of the AFT
model coefficients by Chang is based on a nonsmooth,
rank-based estimating function, Lee et al. in 2018 [3]
proposed a smooth, U-statistic-based estimating func-
tion whose solution is found to be more computationally
tractable (referred to as Lee et al.’s method hereinafter).We
now briefly review the AFT model for bivariate recurrent
gap times and the estimation methods developed by [2]
and [3] and implemented in the function bivrecReg().
Let Ai denote a p × 1 vector of baseline covariates of

subject i and γ i = (γi1, γi2)′, a subject-specific latent vec-
tor that carries information for within subject correlations
among the recurrent gap times. The censoring time Ci is
assumed to be independent of (Ni,Ai, γ i). The AFTmodel
assumes that conditioning on Ai and γ i, the bivariate gap
time pairs (X0

ij ,Y 0
ij ), j = 1, 2, . . . are i.i.d. within subject i.

Furthermore, each (log) gap time is linearly related to the
covariates as follows:

logX0
ij = γi1 + A′

iβ1 + εij1,

logY 0
ij = γi2 + A′

iβ2 + εij2, (2)

where β1,β2 denote the regression coefficients for Type
I and Type II gap times, respectively, and εijk , k = 1, 2,
are mutually independent random errors with mean zero.
Both the errors and the latent vectors γ i come from
unspecified distributions.
In 2004, Chang [2] considered the transformed, com-

plete gap times given by X̃0
ij(b) = X0

ij exp(−A′
ib1) and

Z̃0
ij(b) = X0

ij exp(−A′
ib1) + Y 0

ij exp(−A′
ib2), where b =

(b′
1, b′

2)
′. Their observed counterparts are:

X̃ij(b) = min

⎧
⎨

⎩
X̃0
ij(b),Ci exp(−A′b1) −

j−1∑

l=1
Z̃il(b)

⎫
⎬

⎭
, and
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Z̃ij(b) = min

⎧
⎨

⎩
Z̃0
ij(b),Ci exp(−A′b1) −

j−1∑

l=1
Z̃il(b)

⎫
⎬

⎭
.

The rank-based estimating functions [2] are:

U1(b) = n−1/2
n∑

i=1

1
m∗

i

m∗
i∑

j=1

[

Ai − SX1 {b, X̃ij(b)}
SX0 {b, X̃ij(b)}

]

,

U2(b) = n−1/2
n∑

i=1

1
m∗

i

m∗
i∑

j=1

[

Ai − SZ1 {b, Z̃ij(b)}
SZ0 {b, Z̃ij(b)}

]

,

where SXk (b, t) = n−1
n∑

i=1

1
m∗

i

m∗
i∑

j=1
A⊗k
i I(X̃ij(b) ≥ t) and

SZk (b, t) = n−1
n∑

i=1

1
m∗

i

m∗
i∑

j=1
A⊗k
i · I(Z̃ij(b) ≥ t) for k = 0, 1

and A⊗k
i = 1 for k = 0; A⊗k

i = Ai for k = 1. Denote the
solution to U1(b) = 0 and U2(b) = 0 by β̂Chang. Chang
(2004) proposed to use the resampling method in [6] to
estimate the covariance matrix for β̂Chang. Since both the
point estimate and the resampling-based interval estimate
rely on solving nonsmooth estimating functions, fitting
the AFT model with Chang’s method can be computa-
tionally inefficient and even encounter a nonconvergence
problem, in which case the R function will give the user an
error message.
Motivated by a multi-state model [7], Lee et al.

[3] defined the transformed gap times X0
ii′j(b1) =

exp
(
A′
ii′b1

)
X0
ij and Z0

ii′j(b) = exp
(
A′
ii′b1

)
X0
ij +

exp
(
A′
ii′b2

)
Y 0
ij with Aii′ = Ai′ − Ai. Their observed

counterparts are:

Xii′j(b1) = exp(A′
ii′b1)Xij, and

Zii′j(b)=exp(A′
ii′b1)Xij+exp(A′

ii′b2)Yij for j=1, . . . ,m∗
i.

The authors use OL(·, ·), a symmetric, continuous func-
tion on {(t, s) : 0 ≤ t ≤ L, 0 ≤ s ≤ L} such that OL(s, t)
is monotonic in t if s is given and vice versa to derive the
following U-statistic-based estimating equations:

D∗
1(b1) = n−2

n∑

i=1

⎡

⎣
n∑

i′=1
Aii′

1
m∗
i

m∗
i∑

j=1

�X
ij OL1{Xij,Xii′j(b1)}
Ĝ1{Xij ∧ L1}

⎤

⎦ ,

D∗
2(b) = n−2

n∑

i=1

⎡

⎣
n∑

i′=1
Aii′

1
m∗
i

m∗
i∑

j=1

�Y
ij OL2{Zij,Zii′j(b)}
Ĝ2{Zij ∧ L2}

⎤

⎦ ,

where Ĝ1 and Ĝ2 are Kaplan-Meier estimators of the sur-
vival function of the censoring time G(·) based on the
data {(Xi1, 1 − �X

i1), i = 1, . . . , n} and {(Zi1, 1 − �Y
i1), i =

1, . . . , n}, respectively, and L1 < τc and L2 < τc are limits
that ensure respect for the support of G(·). The bivariate
functions in the estimating functions,OL1 andOL2 are not
necessarily the same. Current implementations used L1 =

L2 = L and OL(s, t) = log[min{max(t, s), L}]− log(L).
The regression coefficient estimators, β̂1 and β̂2 can
be obtained by inductively solving D∗

1(b1) = 0 and
D∗
2((β̂

′
1, b′

2)
′) = 0. Note that the smooth and monotonic

nature of the estimating equations guarantees a unique
solution, a property not possessed by Chang’s method.
Moreover, Lee et al. proved the weak convergence of
n1/2(β̂ − β) to a mean zero normal distribution with vari-
ance that can be consistently estimated by �̂−1

β̂
�̂∗(�̂−1

β̂
)′

where the definitions of �̂
β̂
and �̂∗ can be found in [3].

Results
We use a subset from the South Verona Psychiatric Case
Register (PCR) [8] to illustrate functions in BivRec for
data exploration, visualization and analysis in R. Our PCR
sample contains data on patients’ care and break peri-
ods and disease-related and socioeconomic factors such
as age at disease onset, education level, and sex from 336
patients with schizophrenia or related disorders with their
conditions first recorded between 1981 and 1995 in South
Verona, Italy. We focus on two covariates, one categorical,
EDU, and one continuous, Age10, that were previously
studied in [3]. These correspond to the education level and
age at onset (in 10 years), respectively.We also show a sim-
ulated data set and how to simulate data with a function
in BivRec in a later section.

Data preparation
Even though bivariate alternating recurrent data may be
displayed in a wide or long format, in line with various lon-
gitudinal methods, the BivRec package requires that the
data is in a long format, with possibly multiple rows for
each participant, reflecting the number of episodes that
the participant experienced. In addition to a set of base-
line covariates (which repeats for each row if a participant
has more than one row in the data), the long format data
should have six columns corresponding to i, j,Xij,Yij,�X

ij ,
and �Y

ij which are defined in the previous section and can
be specified in the statements of a data object function
bivrecSurv() by “id=”, “episode=”, “xij=”, “yij=”,
“d1=”, and “d2=”, respectively. See Table 1 for the detailed
definitions of these arguments. All the functions for data
exploration and analysis in BivRec use the data object
created with this function. We used the PCR data to cre-
ate a bivrecSurv() object as follows (see the package
manual [9] for further details):
> bivrec_object <- with(PCR, bivrecSurv(id = id,

episode=episode, xij=Xij, yij=Yij, d1=d1, d2=d2)
)

Note that in practice, the input data may have quality
issues such as unequal length of variables, negative val-
ues for the gap time variables (xij and yij), gaps or
non-integers in the episode variable within a subject (e.g.,
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Table 1 Arguments and compatible standard functions for
function bivrecSurv()

Argument Description

id Vector of subject’s unique identifier.

episode Vector indicating the pair or episode
number (j) for a subject (i); this will
determine order of events for each subject.

xij Vector with the lengths of time spent in
event of Type I for individual i in episode j.

yij Vector with the lengths of time spent in
event of Type II for individual i in episode j.

d1 Vector of censoring indicator corresponding
to Type I gap times (xij); d1 = 1 for
uncensored, and = 0 for censored gap times.

d2 Vector of censoring indicator corresponding
to Type II gap times (yij); d2 = 1 for
uncensored, and = 0 for censored gap
times. Note that in the last episode, yij is
always censored (i.e., d2 = 0).

Compatible functions: plot()

j = 1, 3, 4 or j = a, b, c), unreasonable values in the cen-
soring indicators (e.g., (d1, d2) = (0, 1) for any episode
or (d1, d2) = (1, 1) for the last episode), or no subjects
having any uncensored episodes observed (i.e., all d2 =
0). In these cases, the user will get an error message such
as “Error: Data not cleaned” with possibly more
details to help pinpoint the problem. However, missing
values are allowed in the input data even though only sub-
jects with complete data will be used in any subsequent
analysis. It is worthwhile to mention that in applications,
the time variables may not be observed continuously (e.g.,
in days); for example, a subject’s censoring event could
occur on the same day as the last observed event, caus-
ing the situation of (d1, d2) = (1, 1) for the last episode
of events (j = mi). For these subjects, we suggest users to
add a small quantity to the censoring time during the data
cleaning process.

Data exploration
We begin the exploration of this data set by obtaining a
visualization of the care and break periods (Fig. 2) using
the plot() function on a bivrecSurv object in the
following way:
plot(bivrecSurv(id, episode, Xij, Yij, d1, d2), main

= "Hospitalization", xlab = "Time in Days", ylab
= "Individual", type = c("Care", "Break"))

The resulting plot shows that during the study, the
majority of the observation time was spent out of the hos-
pital or care facility, as accentuated by the larger portions
of blue in the graph.
The data can also be viewed in subgroups defined by a

categorical covariate of six or less levels if a user specifies
such a covariate using the by argument of plot(). An

Fig. 2 Care and break periods in the South-Verona Psychiatric Case
Register (PCR) data sorted by the overall follow-up time of each
individual

example of this feature is shown by looking at times in and
out of care based on education levels in the PCR data set.
Figure 3 shows the resulting subgroup plots for the levels
of the variableEDU, an indicator with values of one for par-
ticipants with secondary or higher education levels and
zero otherwise. Note that in this example, the covariate
Age10 is automatically dropped from the by statement,
since the function detects that Age10 is possibly a contin-
uous variable. In addition, 10 subjects had missing values
for the EDU variable, which is reflected in amessage letting
the user know only 326 of the subjects were used instead
of the full 336 sample.

plot(bivrecSurv(id, episode, Xij, Yij, d1, d2), xlab
= "Time in Days",
ylab = "Individual", type = c("Care", "Break"),
by = data.frame(EDU, Age10))

[1] "Age10 not used - either continuous or had more
than 6 levels."

[1] "Subjects for plots: 326."

The “bluer” shade of the left panel compared to the one
on the right in Fig. 3 indicates that patients with higher
education level might have longer break periods than
those with less education. Thus, considering education as
a factor that affects the re-hospitalization process is rea-
sonable. Note that more than one categorical covariate
can be specified in the by argument, but subgroup plots
are created for each covariate separately. If subgroups
defined by the combinations of multiple categorical vari-
ables (e.g., sex and race) are desired, users can define a
new categorical variable (with ≤6 levels) before applying
the plot() function.
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Fig. 3 Care and break periods in the PCR data stratified by education (1 = secondary education or higher; 0 = less than secondary education)

Nonparametric analysis
We use the function bivrecNP() to estimate the joint
distribution FX0,Y 0(x, y) for all combinations of values
given by the options u1 and u2. The non-negative weight
in the nonparametric estimator in Equation (1), ai =
a(Ci), is specified by the option ai. For the data example,
we use a simple unit weight a(Ci) = 1 by settingai=1 (the
default). If one sets ai=2, the weight will be the censoring
time of each subject, a(Ci) = Ci. The function will auto-
matically estimate the marginal survival probability for
Type I gap times SX0 for all distinct and uncensored recur-
rence times. We set conditional=TRUE to request the
conditional distribution estimate for Type II gap times
given that Type I gap times fall into a certain interval
specified by the given.interval argument. In the

following example, we set given.interval=c(100,
500) to estimate FY 0|X0(y|100 ≤ X0 ≤ 500), and the
confidence level of the point-wise confidence intervals is
set by level=0.99 as an illustration that the confidence
level can be changed to values different than 0.95. Table 2
and the package manual [9] provide further details of the
function bivrecNP().

npresult <- bivrecNP(with(PCR, bivrecSurv(obs,
episode, Xij, Yij, d1,Delta)), ai=1, u1 = seq
(100, 5600, 50), u2 = seq(100, 5600, 50),
conditional = TRUE, given.interval=c(100, 500),
level=0.99)

Using the function head() we show a snapshot
of all the output elements. To see the entire data
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Table 2 Arguments and compatible standard functions for
function bivrecNP()

Argument Description

response A response object of the bivrecSurv
class.

level The confidence level for the point-wise
confidence interval; must be between 0.50
and 0.99; the default value is 0.95.

ai Value 1 or 2 to indicate which weight
function to use in the nonparametric
estimator; 1 indicates that the weights are 1
for all subjects, a(Ci) = 1 (default); 2
indicates that the weight is the subject’s
censoring time, a(Ci) = Ci .

u1 A vector (or single number) of time values to
be used for the estimation of the joint cdf,
Pr(X0 ≤ u1, Y0 ≤ u2).

u2 A vector (or single number) of time values to
be used for the estimation of the joint cdf,
Pr(X0 ≤ u1, Y0 ≤ u2).

conditional A logical value. If TRUE, this function will
calculate the conditional cdf for the Type II
gap time given an interval of the Type I gap
time and the bootstrap standard error and
confidence interval at the specified
confidence level; the default is FALSE.

given.interval A vector c(v1, v2) that must be
specified if conditional=TRUE. The
vector indicates an interval for the Type I gap
time to be used for the estimation of the cdf
of the Type II gap time given this interval.

If given.interval=c(v1, v2), the
function calculates
Pr(Y0 ≤ y|v1 ≤ X0 ≤ v2). The given values
v1 and v2must be in the range of gap
times in the estimated marginal survival.

Compatible functions: plot(), head(), print()

frame for all the output elements, use the R function
print(). The individual output elements (joint_cdf,
marginal_survival, and conditional_cdf) can
also be retrieved using the $ operator following the output
object.
head(npresult)

Joint CDF:
x y Joint Probability SE Lower .99

1 100 100 0.03643287 0.007369238 0.01745098
2 100 150 0.10615974 0.011888622 0.07553668
3 100 200 0.14574185 0.014243776 0.10905231
4 100 250 0.17134490 0.015291002 0.13195789
5 100 300 0.18304805 0.016005629 0.14182028
6 100 350 0.19124806 0.016345453 0.14914496

Upper .99
1 0.05541477
2 0.13678280
3 0.18243138
4 0.21073191
5 0.22427581
6 0.23335116

Marginal Survival:
Time Marginal Survival SE Lower .99

1 1 0.8645649 0.006485151 0.8478602
2 2 0.8585200 0.012363982 0.8266725

3 3 0.8551457 0.012745105 0.8223165
4 4 0.8433871 0.013060110 0.8097464
5 5 0.8356440 0.014002689 0.7995754
6 6 0.8305315 0.014528650 0.7931082

Upper .99
1 0.8812695
2 0.8903675
3 0.8879750
4 0.8770277
5 0.8717125
6 0.8679548

Conditional CDF:
Time Conditional Probability Bootstrap SE

1 0.0000 0.0000 0.0000
2 28.6281 0.0000 0.0000
3 57.2563 0.0000 0.0000
4 85.8844 0.0000 0.0000
5 114.5126 0.1476 0.0300
6 143.1407 0.2309 0.0344

Bootstrap Lower .99 Bootstrap Upper .99
1 0.00 0.00
2 0.00 0.00
3 0.00 0.00
4 0.00 0.00
5 0.07 0.23
6 0.16 0.32

We use the plot() function on the resulting object to
simultaneously generate plots for all the estimated distri-
butions. To individually plot the joint cdf, the marginal
survival probability and the conditional cdf, one can use
the plotJoint, plotMarg and plotCond functions,
respectively.
> plot(npresult, type = c("Care Time (x)", "Break

Time (y)"))

Figure 4 is the contour plot of the joint cdf in the half-
plane where estimations meet the condition x + y ≤ τc,
for τc = 5697. The joint cdf shows that, for instance, the
probability that participants were in care for 2000 days

Fig. 4 Contour plot of the joint cdf of the care and break periods for
combinations that meet the condition x + y ≤ τc , where τc = 5697
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or less and out of care for 3000 days or less is over 0.70.
Note that the choices of u1 and u2 in the code will deter-
mine if the plot of the joint distribution is drawn on a half
plane or not. For instance, if we had codedu1=seq(100,
2000, 50) and u2=seq(100, 3000, 50), then all
the (x, y) pairs defined by u1 and u2 would be estimable
because max(u1)+max(u2) ≤ τc. In addition, the result-
ing object (npresult in this example) will show values
of NA for the joint probability for any combination of u1
and u2 that does not meet the x + y ≤ τc condition.
The line plots of the estimated marginal survival prob-

ability and conditional cdf (with corresponding 99% con-
fidence intervals in this example) are shown in Fig. 5.
The left panel shows that care times shorter than a year
and a half are the most likely as the survival probabil-
ity drops sharply before 500 days. With this in mind, we
look at the conditional cdf plot for patients who received
between 100 and 500 days of care and conclude that
the probability that those patients spent 3000 or fewer
days out of care was close to 80%. The bivrecNP()
function with conditional=TRUE specification for the
PCR data produced results in 248.39 seconds (4.14 min-
utes, using an AMD Ryzen 5 3500U with Radeon Vega
Mobile Gfx 2.10 GHz processor with 16 GB RAM for this
and other analyses in this paper). Note that the comput-
ing time would be shorter if a less fine grid was specified
for u1 and u2. The visualizations for the results, shown in
Figs. 4 and 5 ran in less than 2 seconds each.

Semiparametric regression
The function bivrecReg() provides point estimates,
standard error estimates, an estimated variance-
covariance matrix and confidence intervals at a specified
confidence level for the effects of covariate(s) on the

two types of gap times, based on the Chang’s method
and Lee et al.’s method. Using the PCR data, we show
how to estimate the effects of the education and age of
disease onset on the two types of gap times X0

ij (care
time) and Y 0

ij (break time) by fitting the AFT model using
the function bivrecReg(). We again need to specify
a bivrecSurv object as the response, but now we add
the covariates to the right hand side of the formula (for
further details on the syntax of this function see Table 3
and the reference manual of this package [9]). Note that
only baseline (i.e., time-invariant) covariates can be fit
in the AFT model in Eq. (2), otherwise, user will get the
message, "Error: Time-varying covariates
not allowed." We use the function’s default estima-
tion method, Lee et al.’s method, to obtain estimates and
Wald confidence intervals based on the asymptotic stan-
dard error estimate. This method can also be explicitly
specified by the option method="Lee.et.al". The
messages shown while the function is running and the
model fitting output from summary() are as follows.

lee_reg <- bivrecReg(bivrecSurv(obs, episode, Xij,
Yij, d1, Delta) ~

Age10 + EDU, data = PCR, "Lee.et.al")
[1] "Fitting model with covariates: Age10, EDU"
[1] "Estimating standard errors"

summary(lee_reg)

Call:
bivrecReg(formula = bivrecSurv(obs, episode, Xij, Yij

, d1, Delta) ~
Age10 + EDU, data = PCR, method = "Lee.et.al")

Number of Subjects:
326

Coefficients:
Estimates SE z Pr(>|z|)

xij Age10 0.007912 0.068685 0.1152 0.45415
xij EDU 0.565462 0.230886 2.4491 0.00716 **

Fig. 5 Plots of the marginal survival probability of the care period and the conditional cdf of the break period given the care period
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Table 3 Arguments and compatible standard functions for
function bivrecReg()

Argument Description

formula A formula with a bivrecSurv object on
the left of a ’∼’ operator as response, and
the covariate(s) on the right.

data A data frame that includes all the variables
listed in the formula.

method A string indicating which method
(“Lee.et.al” or “Chang”) to estimate the
effects of covariates; the default is
“Lee.et.al”.

Compatible functions: summary(), vcov(), coef(),
confint(), print()

yij Age10 0.235739 0.079093 2.9805 0.00144 **
yij EDU 0.190598 0.279005 0.6831 0.24726
---
Signif. codes: 0 ‘**’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

0.1 ‘ ’ 1

exp(coefficients):
exp(coeff) Lower .95 Upper .95

xij Age10 1.00794 0.88099 1.1532
xij EDU 1.76026 1.11956 2.7676
yij Age10 1.26584 1.08407 1.4781
yij EDU 1.20997 0.70030 2.0906

We show the confidence interval for education and
the full variance-covariance matrix using the functions
confint() and vcov(), respectively. Similar to the
standard R function confint(), one can specify the
confidence level and an individual parameter of interest.
If needed, one could also see coefficient results using the
function coef().
confint(lee_reg, parm = "EDU", level = 0.99)

Lower .99 Upper .99
xij EDU -0.02926095 1.1601852
yij EDU -0.52807127 0.9092662

vcov(lee_reg)
xij Age10 xij EDU yij Age10

xij Age10 0.0047176538 0.0080735691 -0.0007661948
xij EDU 0.0080735691 0.0533083731 -0.0004292888
yij Age10 -0.0007661948 -0.0004292888 0.0062557817
yij EDU -0.0002528134 -0.0080874185 0.0078465550

yij EDU
xij Age10 -0.0002528134
xij EDU -0.0080874185
yij Age10 0.0078465550
yij EDU 0.0778436776

Based on the above results, we conclude that patients in
the secondary education or higher (EDU=1) group tended
to have 1.76 (= e0.56, p-value = 0.007) times longer care
periods and 1.21 (= e0.19, p-value > 0.05) times longer
break periods than patients with less education (EDU=0)
after adjusting for covariate Age10. In addition, a ten year
delay in age of disease onset was associated with a 1.27-
fold (= e0.24, p-value = 0.001) increase in the length of
break period and a minimal change in the care period
of less than 1% (= e0.007, p-value > 0.05), holding EDU
constant.

We also fit the AFT model using Chang’s method for
point estimation along with Parzen’s resampling algorithm
to obtain standard error estimates and construct Wald
confidence intervals. The results are as follows.

chang_reg <- bivrecReg(bivrecSurv(obs, episode, Xij,
Yij, d1, Delta) ~ Age10 + EDU, data = PCR,
method="Chang")

[1] "Fitting model with covariates: Age10, EDU"
[1] "Estimating standard errors"

summary(chang_reg)

Call:
bivrecReg(formula = bivrecSurv(obs, episode, Xij, Yij

, d1, Delta) ~
Age10 + EDU, data = PCR, method = "Chang")

Number of Subjects:
326

Coefficients:
Estimates SE z Pr(>|z|)

xij Age10 -0.0384594 0.0644613 -0.5966 0.27538
xij EDU 0.1125969 0.0624213 1.8038 0.03563 *
yij Age10 0.0977722 0.0687592 1.4220 0.07752 .
yij EDU -0.0014153 0.0817583 -0.0173 0.49309
---
Signif. codes: 0 ‘**’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

0.1 ‘ ’ 1

exp(coefficients):
exp(coeff) Lower .95 Upper .95

xij Age10 0.96227 0.84806 1.0919
xij EDU 1.11918 0.99030 1.2648
yij Age10 1.10271 0.96368 1.2618
yij EDU 0.99859 0.85073 1.1721

It is important to point out that due to the resam-
pling algorithm needed to obtain variances, applying
Chang’s method to the PCR data (n = 326 after
omitting missing values for EDU) led to substantially
longer computing times than applying Lee et al.’s method
(56 minutes vs. 67 seconds). Similarly, applying these
methods to a simulated data set with a smaller sam-
ple size, n = 150, led to a much shorter computing
time (602 and 16 seconds for the two methods, respec-
tively). In addition, as discussed earlier, the convergence
of Chang’s method is not guaranteed for any dataset,
and when the convergence is not achieved, users get the
following error message, "Error: Max Iterations
reached. Did not converge." For these reasons,
we recommend to use the default "Lee.et.al"method
for fitting the AFT model. For a comparison of the esti-
mation bias, standard error, and coverage probability
between these two methods with more extensive simu-
lation studies, see [3]. Nonetheless, we show how to use
function simBivRec() provided in the BivRec pack-
age to simulate a bivariate alternating recurrent event
data. This provides a way for users to perform their own
simulation studies.
Following [3], in the example below, we show how to

simulate a dataset with a categorical covariate a1 from
a binomial distribution with success probability 0.5 and
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a continuous covariate a2 from a uniform (0, 1) distribu-
tion using the function simBivRec(). This function has
options to simulate data based on the various scenarios
outlined in [3]. As an example, we set the parameters
in the same way as for the scenario presented in the
top panel of Table 3 in [3]: the sample size is n = 150
(nsize=150); the regression coefficients for the effect
of covariate a1 on the Type I and Type II gap times are
set as beta1=c(0.5, 0.5); those for covariate a2
are set as beta2=c(0, -0.5); and the support of the
uniform distribution (0, τc) for the censoring time is set
with tau_c=63, which yields censoring rate of 15% for
the first bivariate gap time pairs, on average. Additional
parameters for the within-subject correlation structure
of the gap times are set through the option, set=1.1,
meaning the first parameter setting of simulation scenario
1 in [3].
> set.seed(288)
> sim_data <- simBivRec(nsize=150, beta1=c(0.5,0.5),

beta2=c(0,-0.5), tau_c=63, set=1.1)

The first few lines of the simulated data are shown as
follows, where id is the subject ID (which can take both
numerical and string values in the package), epi is the
episode number of a gap time pair, xij and yij are the
jth episode of the observed Type I and Type II gap times
of subject i, respectively, ci is the overall censoring time
of subject i, d1 and d2 are their corresponding censoring
indicators, and a1 and a2 are two baseline covariates.
> head(sim_data)

id epi xij yij ci d1 d2 a1
1 1 1 1.185118 0.000000 1.185118 0 0 0
2 2 1 6.849741 3.538764 38.786585 1 1 1
3 2 2 13.009921 1.907714 38.786585 1 1 1
4 2 3 5.421483 4.081705 38.786585 1 1 1
5 2 4 3.977259 0.000000 38.786585 0 0 1
6 3 1 7.686659 6.956327 41.881625 1 1 0

a2
1 0.6116200
2 0.1322523
3 0.1322523
4 0.1322523
5 0.1322523
6 0.5353968

Conclusions
Despite the growing need and interest in the study of
recurrent event data along with the development of R
packages for its analysis such as survrec [10], reda [11]
and reReg [12], software for analyzing bivariate alter-
nating recurrent events has been lacking. In this paper,
we reviewed nonparametric and semiparametric regres-
sion methods for gap times between alternating recurrent
events and demonstrated how to use the BivRec package
that we developed in R to perform these analyses. We also
demonstrated BivRec’s capabilities for data visualization
and simulation.
There is still a need for further package development

such as additions of univariate recurrent gap times (i.e.,

gap times of recurrent events of the same type) meth-
ods as the degenerated case of the bivariate alternat-
ing gap times data such as the seminal nonparametric
work by Wang and Chang (1999) [5] and the subsequent
semiparametric regression methods by various authors
[2, 13–16]. Finally, some competing, intensity-based mod-
els for bivariate alternating recurrent event data, which are
not included in our package, can be found in [17] and [18].
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