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Abstract 

Background:  The sample size calculation in a confirmatory diagnostic accuracy study is performed for co-primary 
endpoints because sensitivity and specificity are considered simultaneously. The initial sample size calculation in an 
unpaired and paired diagnostic study is based on assumptions about, among others, the prevalence of the disease 
and, in the paired design, the proportion of discordant test results between the experimental and the compara-
tor test. The choice of the power for the individual endpoints impacts the sample size and overall power. Uncertain 
assumptions about the nuisance parameters can additionally affect the sample size.

Methods:  We develop an optimal sample size calculation considering co-primary endpoints to avoid an overpow-
ered study in the unpaired and paired design. To adjust assumptions about the nuisance parameters during the 
study period, we introduce a blinded adaptive design for sample size re-estimation for the unpaired and the paired 
study design. A simulation study compares the adaptive design to the fixed design. For the paired design, the new 
approach is compared to an existing approach using an example study.

Results:  Due to blinding, the adaptive design does not inflate type I error rates. The adaptive design reaches the 
target power and re-estimates nuisance parameters without any relevant bias. Compared to the existing approach, 
the proposed methods lead to a smaller sample size.

Conclusions:  We recommend the application of the optimal sample size calculation and a blinded adaptive design 
in a confirmatory diagnostic accuracy study. They compensate inefficiencies of the sample size calculation and sup-
port to reach the study aim.
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Background
In a diagnostic accuracy trial the experimental test is 
compared to the reference standard, which defines the 
true disease status. Either the evaluation is limited to 
the comparison with the reference standard (single-test 
design) or another test is considered in addition (com-
parative design) [1]. The present article puts the focus on 
comparative study designs in which the experimental test 
is compared to an already evaluated comparator test. In 

the unpaired design, either the experimental test or the 
comparator test is assigned randomly to study partici-
pants in addition to the reference standard [2]. In con-
trast, in the paired design, participants undergo all three 
diagnostic procedures [3]. Due to the within-subject 
comparison of the diagnostic tests in the paired design, 
the variability of the study results will be diminished 
[4]. For this reason, the paired design is preferred to the 
unpaired design if technically feasible and ethically justi-
fiable [4]. Hence, the focus of this article is especially on 
the paired design. Figure  1 gives an overview about the 
different designs.

Independent of the chosen study design, sensitiv-
ity and specificity are used as co-primary endpoints 
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in a confirmatory diagnostic accuracy trial [4, 5]. Both 
endpoints are combined via a joint hypothesis which 
is evaluated by the Intersection-Union Test [6, 7]. In 
this context, Stark et  al. [8] developed an approach to 
calculate the sample size considering the prevalence. 
The advantage of this optimal sample size calculation 
is to avoid an overpowered study as it is often the case 
with the conventional approach. We will extend this 
approach to the unpaired and paired comparative study 
design. Hereby, the study might either aim to show 
superiority, non-inferiority or a combination of both 
regarding the co-primary endpoints.

To adjust the sample size during the course of the 
study, an adaptive design can be applied. Zapf et al. [9] 
reveal that adaptive designs including group-sequen-
tial designs are hardly developed and rarely applied in 
diagnostic studies. Stark et  al. [8] introduce a blinded 
adaptive design for sample size re-estimation in the 
single-test design. Focusing on comparative study 
designs, Mazumdar et al. [10] propose a group-sequen-
tial design, but restricted to the area under the receiver 
operating characteristic curve as endpoint. McCray 
et al. [11] developed a blinded sample size re-estimation 
procedure in the paired study design regarding sensi-
tivity and specificity. Their approach is based on the re-
estimation of the proportion of concordant test results 
and the prevalence. To further develop the approaches 
of McCray et al. [11] and Stark et al. [8], we transfer the 
blinded adaptive design in the single-test design using 
the optimal sample size calculation to both compara-
tive study designs. Hence, novel aspects in the present 
work are first, the development of the optimal sample 
size calculation in the unpaired as well as paired design 
aiming to show superiority, non-inferiority or a combi-
nation of both regarding the co-primary endpoints and 
second, the implementation of a blinded-sample size 

re-estimation procedure in the unpaired and paired 
design based on the optimal sample size calculation.

The present article is structured the following way: at 
first, we introduce the optimal sample size calculation 
in the unpaired and paired study design aiming to show 
superiority, non-inferiority or a combination of both. 
Second, we describe the procedure of the blinded sam-
ple size re-estimation in the unpaired and paired study 
design. Third, we compare the blinded adaptive design 
in a paired trial to the approach of McCray et  al. [11] 
using an exemplary trial. Then, we present the results 
of a simulation study investigating the blinded adaptive 
design compared to a fixed design in an unpaired and 
paired study. Finally, we discuss the results and offer a 
conclusion.

Methods
Sample size calculation in a comparative diagnostic study
In this section, we introduce the optimal sample size 
calculation for a comparative diagnostic study, which is 
already developed by Stark et  al. [8] for the single-test 
design. In a comparative diagnostic study, sensitivity 
and specificity of the experimental test can be tested for 
superiority, non-inferiority or the combination of supe-
riority and non-inferiority against the comparator test. 
For the motivation and application of the optimal sample 
size calculation, we focus on the paired design testing for 
superiority regarding both endpoints because the paired 
design is the more relevant design in comparative studies 
[4]. However, the advantages of the optimal sample size 
calculation are also valid in the unpaired design. Further-
more, we provide formulas for the optimal approach in 
the unpaired and paired design.

In confirmatory diagnostic studies, sensitivity and 
specificity are combined as co-primary endpoints 
via the Intersection-Union test [8]. The null hypoth-
esis of the Intersection-Union-Test is the union of the 

Fig. 1  Study designs of a confirmatory diagnostic accuracy trial
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individual null hypothesis regarding sensitivity and the 
individual null hypothesis regarding specificity [6]. The 
overall power of this Intersection-Union test is calcu-
lated by the product of the power of each individual 
hypothesis. To show superiority of the experimental 
test regarding sensitivity and specificity against the 
comparator test, the global null hypothesis H0global for 
equality is given by:

SeE and SpE denote the sensitivity and specificity of the 
experimental test. SeC and SpC represent the sensitiv-
ity and specificity of the comparator test. H0global is only 
rejected if both H0Se and H0Sp are rejected simultaneously. 
Superiority of the experimental test regarding sensitivity 
and specificity against the comparator test can be con-
cluded from point estimates and p-values or confidence 
intervals. Sensitivity and specificity represent the success 
probabilities of a binomial distribution which follow an 
asymptotic normality in the case of a large sample [12]. 
For the analysis based on confidence intervals, we pro-
pose to use approximate 100 · (1 − α)% confidence inter-
vals for the difference of two proportions.

Conventional sample size calculation
To motivate the advantage of the optimal sample size cal-
culation, we show the problems related to the procedure 
of the conventional sample size calculation in a confirma-
tory diagnostic study in the context of the paired design.

The conventional sample size calculation consists of 
three steps: calculate the needed number of diseased 
and non-diseased individuals, refer these numbers to the 
prevalence to receive numbers needed to show sensitivity 
and specificity and, choose the maximum to determine 
the final sample size [13–15].

We now perform these three steps for a paired diag-
nostic study mentioned in McCray et al. [11]. The exam-
ple study compares the experimental combination of 

(1)
H0Se : SeE = SeC and H0Sp : SpE = SpC

H0global = H0Se ∪H0Sp

Positron Emission Tomography (PET) and computed 
tomography (CT) against CT alone to diagnose pancre-
atic cancer. The goal is to show superiority of the experi-
mental test against the comparator test. The biopsy 
defines the true disease status. Table 1 shows the assump-
tions for sample size calculation used in this example. 
The disease prevalence π represents the proportion of 
diseased individuals on all individuals. Parameters ψD 
and ψND denote the proportion of discordant test results 
in the diseased and non-diseased population, hence those 
proportions in which both diagnostic tests lead to dif-
ferent test results. The conventional approach plans the 
sample size for each endpoint with a power of 90% which 
theoretically leads in the product to an overall target 
power of approximately 80%. The significance level α is 
set to 5% per endpoint. The 1 − α/2 and 1 − β quantile of 
the standard normal distribution is denoted by z1 − α/2 and 
z1 − β. The individual steps are as follows:

1.	 Sample size of diseased individuals based on the for-
mula of Miettinen et al. [16]:

	 Sample size of non-diseased individuals:

2.	 Total sample size including at least nSe diseased indi-
viduals:

	 Total sample size including at least nSp non-diseased 
individuals:

nD =
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NSe =
nSe

π
= 74

0.47
= 157

Table 1  Assumptions of the paired diagnostic accuracy trial for the comparison of the experimental Positron Emission Tomography 
(PET) combined with the computed tomography (CT) against the comparator test PET

General input parameters: 
Significance level per endpoint: α = 0.05 (two− sided),   
Overall Power: Poweroverall = 1 − βoverall = 0.8
Power per endpoint: PowerSe = PowerSp = 1 − βSe = 1 − βSp = 0.9

Prevalence:
π = 0.47

Comparator test (CT) Experimental test (PET/CT) Proportion of 
discordant test 
results

Diseased population SeC = 0.81 SeE = 0.90 ψD = 0.09

Non-diseased population SpC = 0.66 SpE = 0.80 ψND = 0.14
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3.	

The study recruits more individuals than would be 
necessary to show the specificity because the sensitiv-
ity determines the final sample size in this scenario. This 
can result in an overpowered study. If the prevalence was 
smaller, the difference between NSe and NSp would be 
even larger. Vice versa, if the prevalence was larger, NSp 
would determine the final sample size. These discrep-
ancies between the sample sizes of both endpoints can 
result in an overpowered study. To face this problem, we 
propose the optimal sample size calculation explained in 
the next section.

Optimal sample size calculation
At first, we present the general idea of the optimal sam-
ple size calculation. Then, we expand the optimal sample 
size calculation in the single-test design developed by 
Stark et al. [8] to an unpaired and paired study. Further-
more, we provide formulas testing for superiority regard-
ing both endpoints in the unpaired and paired design. 
In additional materials, we show hypotheses and sample 
size formulas testing for non-inferiority or combinations 
of superiority and non-inferiority [see Additional file 1]. 
Furthermore, we offer R-Code for the optimal sample 
size calculation considering superiority in both endpoints 
in additional materials [see Additional file 2].

The general idea behind the optimal sample size cal-
culation consists of the individual splitting of the overall 
power (Poweroverall) to both endpoints, so that NSe and 
NSp are equal. In this case, we won’t need to select a max-
imum from both sample sizes. Consequently, the final 
sample size is the smallest representative sample which 
allows to reach the desired overall power. We calculate 
the final sample size with the following equation in which 
the symbol “ !

= ” denotes that terms on both sides must 
be equal:

Under the condition:

NSp = nSp

1− π
= 47

1− 0.47
= 88

N = max
(

NSe,NSp

)

= 157

(2)NSe
!= NSp

(3)
nSe

π

!= nSp

1− π

(4)PowerSe·PowerSp = Poweroverall

In the following subsections, we plug the condition 
into the sample size calculation; noting that the resulting 
equations cannot be solved analytically respect to βSe.

Unpaired design
In the unpaired design, the optimal sample size calculation 
uses the formula for the comparison of two independent 
proportions following Zhou et al. [1]:

where V0(SeC − SeE) and VA(SeC − SeE) represent the var-
iance of the difference between SeC and SeE under the null 
and alternative hypothesis, respectively. In the unpaired 
design, the variance V(SeC − SeE) is defined as [1]:

The variance V(SpC − SpE) is calculated in analogy.
Although the sample size formula in Eq. (7) fits to the Wald 

confidence interval for the difference of two independent 
proportions, we propose to analyse the unpaired design with 
the two-sided 1- α Score confidence interval for the difference 
of two independent proportions [17]. The coverage probabil-
ity of the Score confidence interval is closer to the nominal 
level compared to the Wald confidence interval [18–20].

Paired design
In the paired design, the optimal sample size is based on 
the formula of Miettinen et al. [16]:

with ψD as the proportion of discordant test results in the 
diseased sample, which varies between [16, 21]:
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(10)|SeC − SeE| ≤ ψD ≤ SeC + SeE − 2· SeC· SeE
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The interval of the proportion of discordant test results 
in the non-diseased sample ψND is calculated in analogy by 
considering SpC and SpE.

For two different proportions of discordant test results 
in the diseased ( ψD1

,ψD2 ) and non-diseased ( ψND1
,ψND2

 ) 
population, the total sample size N(ψD, ψND) in Eq. (9) is 
monotone increasing:

In analogy to the unpaired design, we propose to ana-
lyse the paired design with the two-sided 1- α Tango’s 
asymptotic score confidence interval for the difference of 
two matched proportions [22, 23]. We recommend this 
based on the reason given above. Furthermore, the Wald 
confidence is not range preserving [24].

Application of the optimal sample size calculation 
in the paired design
We apply the optimal sample size approach to the exam-
ple study introduced in Table 1 and compare the results to 
those of the conventional approach. For this purpose, we 
simulate, based on 10,000 simulation runs, the empirical 
power of both approaches for a varying prevalence π and 
calculate the sample size. Figure  2 shows the results. In 
most cases, the conventional approach is highly overpow-
ered due to the choice of the maximum sample size of both 

(11)
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endpoints in the third step. If the prevalence is in the range 
between 0.5 and 0.75, the empirical power will be closer to 
the target power of 80%. The empirical power will be the 
closest to the target power, if the prevalence equals 0.6 as 
the discrepancy between NSe and NSp is the smallest.

The optimal approach splits the overall power to both 
endpoints depending on the prevalence, so that the prod-
uct of the empirical power of both endpoints comes close 
to the target power of 80%.

Considering the sample size, the optimal approach 
will lead to a smaller sample size than the conventional 
approach if the prevalence is unbalanced. Figure  2 con-
tains an enlarged image section of the sample size so that 
the differences between both approaches are highlighted.

Blinded sample size re‑estimation
The procedure of a blinded sample size adjustment based 
on the re-estimation of nuisance parameters basically fol-
lows five phases named by Stark et al. [8]. In Fig. 3, these 
five steps are explained in context of the unpaired and 
paired study design. The nuisance parameters re-esti-
mated during the study are the prevalence and addition-
ally proportions of discordant test results in the paired 
design. The main difference between the adaptive designs 
in the unpaired and paired study design consists of the 
sample size for the interim analysis. In the unpaired 
design, the prevalence is estimated based on 50% of the 
initially calculated sample size. In the paired design, both, 
the initial sample size and the sample size for the interim 

Fig. 2  Empirical power and sample size of the conventional and optimal sample size calculation. Simulations are based on the example study given 
in Table 1 with a varying prevalence π. The figure considering the sample size contains an enlarged image section so that the differences between 
both approaches are highlighted
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analysis equal the minimal sample size [11]. The minimal 
sample size is received with the minimal possible propor-
tion of discordant test results in the diseased ( ψDmin

 ) and 
non-diseased population ( ψNDmin

 ). Assumptions about 
the sensitivity and the specificity of the comparator and 
experimental test determine the minimal possible pro-
portion of discordant test results. Following Eq. (10), the 
minimal proportion of discordant test results are calcu-
lated with:

Furthermore, the calculation of the minimal sample 
size requires assumptions about the prevalence.

During interim analysis, the prevalence is estimated 
by the maximum likelihood estimator of a binomial 
proportion [25]:

The number of diseased individuals involved in the 
interim analysis is represented by nD, and the sample size 
used for interim analysis is denoted by n.

In analogy, the proportion of discordant test results 
is estimated by the maximum likelihood estimator of a 
multinomial distribution [26]:

(12)
ψDmin = |SeC − SeE|
ψNDmin =

∣

∣SpC − SpE
∣

∣

(13)π̂ = nD

n

(14)ψ̂D = nD10 + nD01

nD

Table  2 shows the parameters needed to re-estimate 
the proportions of discordant test results.

The estimation of nuisance parameters represents a 
blinded adaptive design because the sensitivity and the 
specificity of the experimental test are not revealed. 
Hence, the type I error rate will not be inflated by 
definition.

(15)ψ̂ND = nND10 + nND01

nND

Fig. 3  Procedure of the blinded adaptive design in an unpaired and paired diagnostic trial

Table 2  Results in a paired diagnostic study

DiseasednD

Comparator Test
True
Positive (TPC)

False
Negative (FNC)

Experimental
Test

True
Positive (TPE)

nD11
nD10

False
Negative (FNE)

nD01
nD00

Non-diseased nND

Comparator Test
False
Positive (FPC)

True
Negative (TNC)

Experimental
Test

False
Positive (FPE)

nND11
nND10

True
Negative (TNE)

nND01
nND00
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Results
Application of the blinded sample size re‑estimation 
in the example study
This section serves for illustration of the blinded sam-
ple size re-estimation in the paired study design. For 
this purpose, we compare the approach of McCray et al. 
[11] to the adaptive design procedure described in this 
article by taking up the example of a paired diagnostic 
accuracy study already introduced in Table 1. The main 
progress of our new approach compared to McCray 
et al. [11] is to implement the optimal sample size cal-
culation. We reveal the advantage of the optimal sam-
ple size calculation in this context again.

Table  3 compares the theoretical aspects and the 
results of both adaptive design procedures. They dif-
fer in the definition of endpoints, hypothesis and in the 
way the sample size calculation is performed. McCray 
et  al. [11] work with the quotient of sensitivities and 
the quotient of specificities of both diagnostic tests as 
endpoints. They use sample size formulas which rely 
on the true-positive-positive rate (TPPR) and true-
negative-negative-rate (TNNR) [27]. TPPR denotes the 
proportion of test results in which both, the compara-
tor test and the experimental test correctly diagnose a 
diseased individual. Vice versa, TNNR represents the 
proportion of test results in which both tests correctly 
return a negative test result. For initial sample size 
calculation, TPPRmax and TNNRmax are used, which 
represent the maximal possible TPPR and  TNNR, 
respectively.

McCray et  al. [11] perform the sample size calcula-
tion based on the conventional three steps by planning 
the sample size calculation with a power of 80% per end-
point. This leads to a theoretical overall power of 64%.

In contrast to McCray et  al. [11], our approach uses 
the optimal sample size calculation. It is based on sample 
size formulas considering the difference of sensitivities 
and the proportion of discordant test results in the dis-
eased population or the difference of specificities of both 
tests and the proportion of discordant test results in the 
non-diseased population, respectively [1]. In contrast to 
McCray et al. [11], we choose the differences as endpoint 
measurement because the guideline on clinical evalua-
tion of diagnostic agents suggests this [4]. Furthermore, 
we perform the optimal sample size calculation to reach 
an overall power of 80%.

Table  3 shows the initial sample size, the sample size 
for interim analysis and the re-estimated sample size 
of both adaptive design procedures. Due to the opti-
mal approach, sample sizes resulting from our adaptive 
design are lower than those of McCray et  al. [11]. The 
optimal sample size calculation avoids that one of both 
co-primary endpoints is overpowered which leads to 
smaller sample sizes.

The difference between both approaches regarding 
sample sizes will be even more extensive if the prevalence 
is unbalanced. A figure in additional materials, which 
depicts the simulated empirical overall power based on 
10,000 simulations runs and the calculated sample size, 
illustrates this difference between both approaches for 

Table 3  Comparison of the blinded adaptive design procedure with McCray et al. [11]

McCray et al. (2017) Our approach

General information Endpoint SeE
SeC and SpESpC

SeE − SeC and SpE − SpC

H0global H0Se : SeE
SeC

= 1∪
H0Sp : SpE

SpC
= 1

H0Se : SeE − SeC = 0∪
H0Sp : SpE − SpC = 0

Sample size calculation Conventional approach
α per endpoint: 0.05 (two-sided)
Power per endpoint: 0.8

Optimal approach
α per endpoint: 0.05  
(two-sided)
Overall power: 0.8

Parameter of dependency between both tests TPPR = nD11
nD

TNNR = nND00
nND

ψD = nD10+nD01
nD

ψND = nND10+nND01
nND

Initial
sample size calculation

Size of internal pilot study TPPRmax and TNNRmax correspond to ψDmin
 and ψNDmin

Parameter of dependency between both tests for 
initial sample size calculation

TPPRmax = SeC = 0.81
TNNRmax = SpC = 0.66

ψDmin
= |SeC − SeE| = 0.09  

ψNDmin
= |SpC − SpE| = 0.14

Initial sample size, size of internal pilot study 186 133

Sample size
re-estimation

Estimation of nuisance parameters π̂ = 0.44
ˆTPPR = 0.80 |
ˆTNNR = 0.66

π̂ = 0.44

ψ̂D = 0.11 |
ψ̂ND = 0.14

Re-estimated sample size 242 200



Page 8 of 12Stark et al. BMC Medical Research Methodology          (2022) 22:115 

the initial sample size calculation based on ψDmin and 
ψNDmin

 by varying π [see Additional  file  3]. This figure 
reveals that the approach of McCray et al [11]. is highly 
overpowered although they plan with a power of 80% 
per endpoint. This theoretically leads to a theoretical 
overall power of 64%. In this example, the dependence 
between both diagnostic tests is almost maximal because 
ψD and ψND are almost minimal. In this case, the underly-
ing assumptions of sample size formulas and confidence 

intervals are not valid [11]. Hence, the approach of 
McCray et al. [11] is highly overpowered.

In contrast, the optimal sample size calculation enables to 
reach an overall power of 80% independent of the prevalence.

Simulation study
We perform a simulation study to evaluate type I error 
rates, statistical power, sample sizes and bias of the adap-
tive design based on re-estimated nuisance parameters 
in the unpaired and paired study design. We compare 
results of the adaptive design to those of the fixed design 
which gets by without re-estimation of the sample size. 
Table 4 shows the simulated scenarios testing for superi-
ority in both endpoints. Based on the example of a paired 
diagnostic accuracy study used by McCray et al. [11], we 
choose one initial scenario. Starting from the initial sce-
nario, we vary one parameter in each further scenario. 
That results in 15 scenarios in the unpaired design and 
19 scenarios in the paired design, each simulated with 
10,000 simulation runs. In analogy to these scenarios, we 
perform simulations testing for non-inferiority in both 
endpoints, or the combinations of superiority and non-
inferiority, respectively. In this section, we focus on the 
results of those scenarios testing for superiority in both 
endpoints because the other results are comparable to 
them. For completeness, we make the remaining simu-
lated scenarios and their results available in the online 
supplement materials [see Additional files 4 and 5].

Table 5 shows distributions involved in the data genera-
tion mechanism. We use the statistical software R version 
4.0.5 to perform the simulations with the default random 
number generator Mersenne-Twister, but with the own 
initialization methods of R [28, 29].

Figure  4 shows type I error rates with accord-
ing Monte Carlo errors due to simulations (1.96 x 
SE = 0.00098), power and true sample sizes (Ntrue) with 
root-mean-squared-error of the re-estimated sample 
size (RMSE) under H1 and additionally the mean of 
the re-estimated samples sizes per scenario (Nmean) of 
those scenarios containing the minimal, medium and 
maximal ψDtrue in the paired study design. The depicted 

Table 4  Simulated scenarios in the unpaired and paired study 
design testing for superiority in both endpoints. The proportion 
of discordant test results is only relevant in the paired design

10,000 simulation runs per 
scenario

Nominal significance level α per 
endpoint

0.05 (two-sided)

Nominal overall target power 0.8

Initial scenario Variation 
of initial 
scenario

Sensitivity comparator test SeC 0.8 0.6, 0.7

Specificity comparator test SpC 0.7 0.6, 0.8

True prevalence πtrue 0.2 0.4, 0.6, 0.8

Assumed prevalence πass. πtrue +  0.1 πtrue - 0.1
πtrue +  0.2
πtrue +  0.3

True discordant results
diseased population ψDtrue

0.11
(0.15, if:
SeE − SeC = 0.15)

0.18, 0.26

Assumed discordant results
diseased population ψDass.

0.18

True discordant results
non-diseased population ψNDtrue

0.14
(0.15, if:
SpE − SpC = 0.15)

0.24, 0.38

Assumed discordant results
non-diseased population ψNDass.

0.24

Sensitivity experimental test SeE =̂SeC

Specificity experimental test SpE =̂SpC

Sensitivity experimental test SeE SeC +  0.1 SeC +  0.05
SeC +  0.15

Specificity experimental test SpE SpC +  0.1 SpC +  0.05
SpC +  0.15

Table 5  Description of the data generation mechanism of the unpaired and paired design in the simulation study (Bin: binomial 
distribution, MVBin: multivariate binomial distribution, k: number of trials, p: success probability, ρ: dependence between both tests, N: 
total sample size, nDE: diseased individuals in experimental group, nDC: diseased individuals in comparator group)

Unpaired design Paired design

Diseased individuals (nD) according to
reference standard

nDE
∼ Bin(k = N, p = πtrue)

nDC
∼ Bin(k = N, p = πtrue)

nD ~ Bin(k = N, p = πtrue)

True Positive
Results (TP)

TPE ∼ Bin(k = nDE
, p = SeE )

TPC ∼ Bin(k = nDC
, p = SeC )

(TPE , TPC ) ∼ MVBin(kE = nDE
, kC = nDC

,  
pE = SeE, pC = SeC, ρ = TPPR)

True Negative
Results (TN)

TNE ∼ Bin(k = N − nDE
, p = SpE )

TNC ∼ Bin(k = N − nDC
, p = SpC )

(TNE , TNC ) ∼ MVBin(kE = N − nDE
, kC = N − nDC

,

pE = SpE, pC = SpC, ρ = TNNR)
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results offer some characteristics which can be gen-
eralized to other scenarios in the paired and unpaired 
design. Referring to Fig. A, one important aspect is that 
scenarios preserve type I error rates. In analogy to the 
overall power of the Intersection-Union Test explained 
in section 2, global type I error rates result as the prod-
uct of the individual type I error rates of each endpoint 
(0.05 two-sided each). Due to the analysis with the score 
confidence interval in this scenario with small preva-
lence, results are conservative [24].

Considering Fig. B and C, the overall power of the 
fixed design decreases with increasing ψDtrue . The larger 
ψDtrue is, the smaller the dependence between both tests 
is. The smaller the dependence between both tests is, the 
larger Ntrue becomes. The discrepancy between Ntrue and 
Nmean in the fixed design increases, if ψDtrue increases. If 
ψDtrue is medium, the assumption about this parameter 
in the fixed design equals the true parameter. But the 
assumption about the prevalence is larger than the preva-
lence is in truth. Therefore, Nmean is smaller than Ntrue and 
the overall power is smaller than the target power of 80%.

The adaptive design compensates wrong assumptions 
about nuisance parameters. The discrepancy between 
Ntrue and Nmean of the adaptive design is small. Hence, 
the overall power comes close to the target power. The 
adaptive design re-estimates ψDtrue , ψNDtrue and πtrue 
without any relevant bias. In those scenarios based on 

the initial prevalence of 20%, relative bias of ψ̂D is little 
higher than relative bias of ψ̂ND . Due to this prevalence, 
there is only a small number of diseased patients in the 
sample which can be consulted for the re-estimation of 
ψDtrue . Supplement materials show simulations results 
of the bias.

Figure 5 compares the overall power depending on the 
true prevalence πtrue in the unpaired and paired design. 
If πtrue is low, the power in both fixed designs is the low-
est. The power becomes larger with increasing preva-
lence. In the depicted scenarios, the assumed prevalence 
is larger than the true prevalence. A low true prevalence 
represents a small number of diseased individuals. In 
this case, the number of diseased individuals is the deter-
mining aspect for sample size calculation to show the 
sensitivity. In the fixed unpaired design, a higher num-
ber of diseased individuals is wrongly assumed which 
results in a too small sample size and power. Vice versa, 
a high true prevalence leads to a too large sample size 
and power. The number of non-diseased individuals now 
determines the sample size to show the specificity. Due 
to the wrongly assumed prevalence, a too small number 
of non-diseased individuals is expected. The sample size 
is calculated too large. The fixed paired design is highly 
overpowered, independent of πtrue. Both proportions of 
discordant test results are assumed higher than in truth. 
The sample size is calculated too large.

Fig. 4  Global type I error, overall power and sample sizes of the fixed and adaptive paired design. Simulations are based on the initial scenario and 
a variation of the true proportion of discordant test results in the diseased population ( ψDtrue

 ). In Fig. A, black dotted lines mark the interval of Monte 
Carlo error due to simulations. In Fig. B, the target power equals 0.8
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In contrast to the fixed designs, both adaptive designs 
reveal a power closer to the target power of 80%. If πtrue 
equals 80%, the overall power of the adaptive paired 
design stands out. In this scenario, the proportion of 
non-diseased individuals is initially assumed smaller than 
in truth. Hence, the sample size used for the re-estima-
tion of nuisance parameters is already larger than the 
true sample size. The overall power is higher compared to 
scenarios with a lower πtrue.

Discussion
In this article, we present an approach for blinded sample 
size re-estimation in a comparative diagnostic accuracy 
study. This allows the sample size to be revised for incor-
rect assumptions during the course of the study, so that 
the study is neither over- nor underpowered. We use an 
example and simulation study to show that the approach 
does not inflate type I error rates, reach the target power 
and re-estimate nuisance parameters without any rel-
evant bias.

One strength of our simulation study is that it is based 
on a realistic initial scenario. Therefore, the simulation 
study covers the results of realistic as well as of extreme 
parameter combinations. But of course the simulation 
study does not depict all possible parameter combinations.

One general weakness of our proposed approach is that 
the sample size calculation and the confidence intervals 
used for evaluation are not based on the same formulas.

McCray et  al. [11] use a sample size calculation and an 
evaluation method which belong together. Due to differ-
ent endpoints in the approach of McCray et  al. [11] and 
our approach, we don’t compare both approaches within 
an extensive simulation study. However, we compare both 
approaches within the example study. We show that our 
approach requires a smaller sample size and comes closer to 
the target power than the approach of McCray et al. [11], if 
the dependence between both diagnostic tests is maximal. 
In contrast to our work, McCray et al. [11] do not extend 
their approach to show non-inferiority or a combination of 
superiority and non-inferiority in both diagnostic tests.

We recommend to apply blinded adaptive designs in 
comparative diagnostic accuracy studies, especially if 
the nuisance parameters are extremely small or large. 
The reason for this is that a blinded adaptive design can 
correct extremely small or large sample sizes based on 
wrong assumptions.

Our work creates some space for further research. One 
important unanswered question asks about the conse-
quences of the re-estimation of the prevalence on the 
blinding if predictive values are chosen as co-primary 
endpoints. Both, the positive and negative predictive 
value depend on the prevalence. Hence, the analysis 
is not blinded in the strong sense. Furthermore, it is of 
interest to develop unblinded adaptive designs in com-
parative diagnostic accuracy studies to allow for early 
stopping due to futility or efficacy [9].

Fig. 5  Overall power of the fixed and adaptive design in an unpaired and paired diagnostic study. Simulations are based on the initial scenario and 
a variation of the true prevalence (πtrue). The target power equals 0.8
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Conclusions
A confirmatory diagnostic accuracy study can either be 
performed as a single-test or a comparative study design. 
Comparative study designs are distinguished between an 
unpaired and paired study design. Stark et  al. [8] intro-
duce the optimal sample size calculation and the blinded 
adaptive design to re-estimate the sample size in the 
single-test design. This approach avoids an overpowered 
diagnostic accuracy study by calculating the sample size 
for two co-primary endpoints sensitivity and specificity 
in dependence of the prevalence of the disease.

In this article, we transfer the optimal sample size cal-
culation to both comparative study designs. Furthermore, 
we propose blinded adaptive designs for an unpaired and 
paired diagnostic accuracy study. In the unpaired design, 
the adaptive design re-estimates the prevalence whereas, 
in the paired design, it additionally re-estimates the pro-
portions of discordant test results. Subsequent to the 
re-estimation of these nuisance parameters, the sample 
size is re-calculated. Due to the blinded character of the 
adaptive designs, type I error rates are not inflated. Both 
approaches reach the target power and re-estimate nui-
sance parameters without any relevant bias.

We recommend to apply the optimal sample size cal-
culation and a blinded adaptive design in a confirmatory 
diagnostic accuracy trial. Both approaches support to 
calculate the necessary sample size to achieve the tar-
geted power without much additional effort.
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