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Abstract 

Background:  Pediatric population presents several barriers for clinical trial design and analysis, including ethical con-
straints on the sample size and slow accrual rate. Bayesian adaptive design methods could be considered to address 
these challenges in pediatric clinical trials.

Methods:  We developed an innovative Bayesian adaptive design method and demonstrated the approach as a re-
design of a published phase III pediatric trial. The innovative design used early success criteria based on skeptical prior 
and early futility criteria based on enthusiastic prior extrapolated from a historical adult trial, and the early and late 
stopping boundaries were calibrated to ensure a one-sided type I error of 2.5%. We also constructed several alterna-
tive designs which incorporated only one type of prior belief and the same stopping boundaries. To identify a pre-
ferred design, we compared operating characteristics including power, expected trial size and trial duration for all the 
candidate adaptive designs via simulation when performing an increasing number of equally spaced interim analyses.

Results:  When performing an increasing number of equally spaced interim analyses, the innovative Bayesian adap-
tive trial design incorporating both skeptical and enthusiastic priors at both interim and final analyses outperforms 
alternative designs which only consider one type of prior belief, because it allows more reduction in sample size and 
trial duration while still offering good trial design properties including controlled type I error rate and sufficient power.

Conclusions:  Designing a Bayesian adaptive pediatric trial with both skeptical and enthusiastic priors can be an 
efficient and robust approach for early trial stopping, thus potentially saving time and money for trial conduction.
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Background
Children are often treated off-label due to the inadequacy 
or nonexistence of pediatric-specific safety and efficacy 
data [1, 2]. Meanwhile, the gap between adult approval 
and incorporation of pediatric information in drug labe-
ling is substantial. For example, children tend to wait 
6.5 years longer than adults to access new drugs on aver-
age [3]. Although clinical trials in children have resulted 

in significant improvements in their health care [4], the 
pediatric population inherently presents several barriers 
for clinical trial design and analysis, particularly, ethical 
constraints on sample sizes and prolonged recruitment 
processes. Ethical restrictions result from children’s 
status as a vulnerable population who “should not be 
enrolled in a clinical study unless necessary to achieve an 
important pediatric public health need” [5]. Difficulties 
also exist in the enrollment of pediatric patients because 
parents tend not to risk having their children exposed 
to unsure treatment effects [6, 7]. As a consequence of 
inadequate sample size or slow enrollment, pediatric 
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clinical trials may be underpowered and yield inconclu-
sive results [4]. Therefore, innovative methods such as 
adaptive designs are in demand to address these chal-
lenges and to identify effective treatments for the pediat-
ric population in a timely manner.

Adaptive design methods have gained their popu-
larity in the recent decade, and both the U.S. Food and 
Drug Administration (FDA) and the European Medi-
cines Agency (EMA) have released guidance relating to 
their use. Adaptive design methods use the “learn as we 
go” approach which allows trials to adjust to informa-
tion accumulated during the trial conduct that may not 
available when the trial began; therefore, they provide a 
variety of advantages over non-adaptive designs [8]. For 
example, adaptive design methods have the ability to 
stop a trial early if there is overwhelming evidence that 
the trial is unlikely to demonstrate efficacy at full accrual 
to reduce the number of patients exposed to ineffective 
drugs or stop a trial early if there is enough evidence that 
the trial would succeed to expedite patients’ access to 
efficacious medications.

Most traditional adaptive designs for clinical trials are 
based on frequentist methods, whilst in recent years 
Bayesian adaptive designs gained attention due to their 
flexibility of combining prior information with current 
information at the initial design stage, during the con-
duct of the trial, and at the analysis stage [9]. Also, it is 
easier to interpret adaptive trial designs using Bayesian 
methods than frequentist methods [10], and simulations 
can be used for Bayesian adaptive designs to evaluate the 
equivalent frequentist operating characteristics including 
power and type I error rate [11, 12].

Under the Bayesian framework, prior distribution 
refers to the probability distribution of our prior belief 
about the parameter of interest beforehand and the pos-
terior distribution is our updated belief after seeing the 
data. Although the concept of applying Bayesian adaptive 
design methods has been widely discussed using nonin-
formative prior with large variability for moderate and 
large clinical trials, noninformative prior may be prob-
lematic for pediatric clinical trials with small sample size 
as it can cause numerical instability and pathological pos-
terior inference, and in order to obtain reliable inference, 
“the prior should be vague enough to cover the plausible 
values of the parameter, but not too vague to cause stabil-
ity issues” [13, 14]. However, if a more informative prior 
could be justified, pediatric clinical trials are particu-
larly well suited to benefit from Bayesian adaptive design 
methods. In practice, most pediatric studies are initiated 
after the same indication approved in adult population, 
therefore, a large amount of prior information exists 
for a new pediatric drug which has already been inten-
sively tested on adults for safety and efficacy reasons [15]. 

Leveraging such prior information from historical adult 
trials can spare the need to start from scratch for testing 
a new treatment in pediatric patients under the assump-
tion of sufficient similarity in disease progression and 
response to treatment between adult and pediatric stud-
ies [16, 17].

As first introduced by Kass and Greenhouse [18] and 
later summarized by Spiegelhalter [19], the idea of com-
munity of priors can be used to “describe a range of 
viewpoints that should be considered when interpret-
ing evidence, and therefore a Bayesian analysis is best 
seen as providing a mapping from a space of specified 
prior beliefs to appropriate posterior beliefs” [21, p.160]. 
Recently, Ye, Reaman et al. [20] suggested that in a deci-
sion-making scenario for a pediatric clinical trial, mod-
els calculated under "skeptical” or”enthusiastic" prior 
beliefs can be considered simultaneously to control the 
type I error rate. Specifically speaking, historical adult 
study results showing treatment benefit could serve as an 
enthusiastic prior for futility criteria in the pediatric trial 
[20, 21], which allow us to stop a trial as soon as possi-
ble if the treatment effect is small or adverse despite the 
fact that we are enthusiastic that the treatment is effica-
cious, thereby minimizing exposure to ineffective medi-
cation for pediatric patients. Meanwhile, skeptical prior 
implying no treatment benefit also allows us to evalu-
ate success criteria and stop the trial early when there is 
compelling efficacy evidence even though we are skepti-
cal about the treatment benefit, so that pediatric patients 
could access to effective medication early.

In this paper, we applied an innovative Bayesian adap-
tive design method to a case study of a published phase 
III pediatric trial incorporating a community of prior 
beliefs. The early success criteria were based on skeptical 
prior while the early futility criteria were based on enthu-
siastic prior extrapolated from a historical adult trial. We 
also investigated the effect of an increasing number of 
interim analyses on the operating characteristics of the 
innovative design compared to several alternative designs 
incorporating only one prior belief to provide a recom-
mendation on Bayesian adaptive design option for the 
case study.

Methods
Case study
The case study is a published phase III placebo-con-
trolled randomized pediatric clinical trial to evaluate 
the safety and efficacy of a single treatment of two doses 
(4 U/kg and 8 U/kg) of Botox with standardized physi-
cal therapy (PT) in pediatric patients with lower limb 
spasticity on which pediatric approval was based. The 
same product was previously approved in adults on the 
basis of a single-phase III placebo-controlled study in a 
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similar indication. In the pediatric trial, 412 subjects 2 to 
16 years and 11 months of age were randomized in a 1:1:1 
ratio to the Botox 8 U/kg group, Botox 4 U/kg group, or 
control group. The full label information is available at 
https://​www.​fda.​gov/​media/​131444/​downl​oad [22].

The original analyses for both the adult and pediatric 
trials were frequentist approaches, so we re-analyzed 
the primary efficacy endpoints using a Bayesian model 
to obtain posterior mean with standard deviation for 
the convenience of applying Bayesian adaptive design 
methods.

Table 1 summarizes both the pediatric and adult clini-
cal trial designs and results of the primary efficacy end-
points used in the approval of Botox for the treatment 
of pediatric lower limb spasticity. For normal endpoint, 
the posterior distribution is approximately normal, so an 
approximate 95% credible interval (CI) can be computed 
as: posterior mean ± 2 × posterior SD. Then the approxi-
mate 95% CI for the treatment difference between Botox 
4 U/kg group and control is (-0.10, 0.30) which contains 
zero, i.e., not enough evidence to declare treatment supe-
riority to control. Therefore, we aimed at proposing an 
innovative Bayesian adaptive design to achieve treatment 
efficacy while maintaining good trial property.

Prior beliefs
For the case study, we focused on the Bayesian analy-
sis on two arms, the Botox 4 U/kg group and control 
group as the Botox 4 U/kg group was less efficacious 
(Table 1) and arm dropping is not the focus of our pro-
posed method. We specified the priors separately for the 
two arms, which would lead to a prior on the difference 
between the Botox 4 U/kg treatment group and control 
group, and then we created a community of priors to 
be imposed on the difference between treatment (Botox 
4 U/kg) and control to be consistent with the original 
analysis.

The skeptical prior is the pediatric stand-alone prior 
following a normal distribution with mean zero and 
standard deviation (SD) 0.5, which indicates no 

difference between treatment and placebo, i.e., skeptical 
viewpoint about treatment benefit. Our choice for stand-
ard deviation (SD) of the proposed skeptical prior was 
based on prior sensitivity analysis. We’ve investigated the 
impact of different choice of SD (0.1, 0.2, 0.5, 1, 2, 5, 10) 
on the posterior estimates of difference between treat-
ment control and found that the posterior estimates were 
similar when SD ≥ 0.5. Therefore, we decided on a 
weakly-informative prior of N (0, 0.52) for the difference 
between treatment and control. The enthusiastic prior is 
extrapolated from the adult trial results with mean 0.20 
and SD 0.10 obtained from the adult trial posterior distri-
bution, i.e., enthusiastic viewpoint about treatment bene-
fit. The noninformative prior is a flat distribution with 
heavy tails centered at zero and SD 100, which provides 
no prior information with large variability and is there-
fore equivalent to frequentist approach, i.e., let the data 
speak for itself with no underlying strong opinion about 
treatment benefit. The choice of SD for noninformative 
prior was also based on sensitivity analysis. We also cal-
culated prior effective sample size (ESS) to quantify the 
amount of information borrowed from the adult data 
through the prior [23]. We used variance-ratio (VR) 
method [24] to compute for prior ESS in our case of nor-
mal-normal model with conjugate prior. Based on 
Table 1, the variance of pediatric trial data is σ 2 = 0.12 , 
the prior ESS is σ 2

σ 2
skep

= 0.12

0.52
≈ 0.04 for the skeptical prior 

and σ 2

σ 2
enthus

= 0.12

0.12
= 1 for the enthusiastic prior. Therefore, 

both the skeptical and enthusiastic prior have minimal 
informativeness. Additionally, the prior ESS is 
σ 2

σ 2
noninf

= 0.12

1002
≈ 0.000001 for the non-informative prior.

Figure 1 plots the distributions of these three different 
prior beliefs: the pink dashed line is the skeptical prior, 
the black solid line is the enthusiastic prior, and the green 
dashed line is the noninformative or flat prior.

Bayesian adaptive designs
In this section, we will re-design the phase III pedi-
atric clinical trial to illustrate an innovative Bayesian 

Table 1  Comparison of adult and pediatric trial

Trt treatment, Ctrl control, SD standard deviation

Historical Adult Trial Pediatric Trial

Design phase III, randomized, placebo-controlled phase III, randomized, placebo-controlled

Trial Duration 1–2 years 4.5 years

Sample Size Botox group (233)
Ctrl. (235)

Botox 8 U/kg group (128)
Botox 4 U/kg group (126)
Ctrl. (130)

Primary Efficacy Endpoint
Posterior mean (SD)

Botox group vs Ctrl.: 0.20 (0.10) Botox 8 U/kg group vs Ctrl.: 0.27 (0.10)
Botox 4 U/kg group vs Ctrl.: 0.10 (0.10)

https://www.fda.gov/media/131444/download
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adaptive design method incorporating two prior dis-
tributions which represent two extreme ends of prior 
beliefs: skeptical and enthusiastic. For demonstration 
purposes, we focused on the Bayesian sequential moni-
toring for the treatment difference between the Botox 4 
U/kg group and control group in the virtual execution 
of the pediatric trial. So, we are re-designing a new trial 
that has two arms and randomization is 1:1 for alloca-
tion to control and treatment (the Botox 4 U/kg group).

Under the context of the re-design using the proposed 
Bayesian adaptive design method, the early stopping 
criteria for success was based on skeptical prior and the 
early stopping criteria for futility was based on enthu-
siastic prior. We adopted the Haybittle–Peto approach 
for the choice of early decision boundaries [25, 26], i.e., 
the same threshold at every interim analysis:

a)	 stop early for success based on skeptical prior if pos-
terior probability

b)	 stop early for futility based on enthusiastic prior if 
posterior probability

Pr (treatment > control|data, skeptical prior) > se

Pr (treatment > control|data, enthusiastic prior) < fe

Where the early success boundary se is the early success 
boundary and fe is the early futility boundary. The suc-
cess and futility criteria were also evaluated at the final 
analysis:

a)	 achieve late success based on skeptical prior if poste-
rior probability

b)	 achieve late futility based on enthusiastic prior if pos-
terior probability

If the trial does not achieve any of the early or late suc-
cess/futility criteria, inconclusive results will be obtained. 
Inconclusive pediatric clinical trials need to fulfill post 
marketing requirements without getting subsequent tri-
als. Therefore, definitive answer is important in pediatric 
as it would prevent the delayed or non-use of beneficial 
therapies [4].

Under the framework of Bayesian methodology, null 
and alternative hypotheses are defined as different sce-
narios under which we assess the performance of the 
simulated trials [27]. The null and alternative hypotheses 
are H0 : δ = 0 versus H1 : δ > 0 , where δ is the difference 

Pr (treatment > control|data, skeptical prior) > sl

Pr (treatment > control|data, enthusiastic prior) < fl

Fig. 1  Distribution of Prior Beliefs
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between the true treatment effect for the Botox 4 U/kg 
group and control group. For all the adaptive designs, the 
following Operating Characteristics were evaluated:

1)	 Type 1 error rate: under the null hypothesis scenario 
( H0 : δ = 0 ) of having no difference, the proportion 
of such simulations that falsely declared the treat-
ment was superior to control, i.e., the total propor-
tions of early and late success under H0

2)	 Power: under a particular alternative hypothesis sce-
nario ( H1 : δ = δtarget ), of having a target difference 
of 0.05 (i.e., the observed difference between Botox 
4 U/kg group and control is 0.05), the proportion of 
such simulations that concluded that the treatment 
was superior to control, i.e., the total proportions of 
early and late success under H1

3)	 Futility rate: the total proportions of early and late 
futility under H0 or H1 separately

4)	 Mean number of subjects: the average sample size 
across all the simulations under H0 or H1 separately

5)	 Mean trial duration: the average trial duration (in 
weeks) across all the simulations under H0 or H1 sep-
arately

We need to calibrate and justify the decision boundary 
for the proposed innovative Bayesian adaptive design by 
exploring the effect of these boundaries on the Operat-
ing Characteristics. When determining the Haybittle–
Peto boundary using the frequentist approach, the same 
threshold for level of significance is chosen at every 
interim analysis, i.e., 0.001 for the interim analysis, and 
the final analysis is performed using a standard thresh-
old of 2.5% for level of significance. When using the 
Bayesian approach, the trade-off between the strength 
of skepticism in the prior and the early success bound-
ary allows for more flexible decision making in the trial 
relative to the Haybittle-Peto boundary, i.e., a relaxed 
Haybittle-Peto approach. More skepticism in the prior 
impacts the final analysis, whereas increasing the early 
decision threshold avoids some of this impact, possibly 
at the cost of a lower early stopping rate when favora-
ble results are seen. We chose 99.8% as the early success 

boundary because it balanced these concerns and con-
trolled for overall type I error rate. The early futility 
boundary fe was tuned as 70% to maintain power. At the 
final analysis, the late futility boundary fl was set to be 
more stringent as 85%.

In addition to the innovative design, we also inves-
tigated the fixed design and several alternative adap-
tive designs with variations in early stopping criteria 
(Table  2). We started with fixed design which did not 
include any interim analysis, then moved on to investi-
gate adaptive design options. As a comparison to adap-
tive design 3, we also looked at similar designs which 
only incorporate one type of prior belief at interim analy-
sis: Bayesian adaptive design 1 only stop early for success 
based on skeptical prior while adaptive design 2 only stop 
early for futility based on enthusiastic prior. Similar to 
adaptive design 3, adaptive design 4 includes both early 
success and early futility decision rules, but all based on 
non-informative prior.

Frequentist group-sequential design (GSD) is often 
considered as the benchmark for comparison. To ascer-
tain that the Bayesian adaptive design 4 with non-
informative prior is comparable to the frequentist GSD, 
we rerun the simulation with frequentist decision rule 
chosen to form 1-to-1 correspondence to the respec-
tive Bayesian decision boundary under non-informa-
tive prior, and calculated p-value based on one-sided 
t-test at both interim and final analyses. The Bayesian 
and corresponding frequentist decision rule at interim 
analysis:

a)	 stop early for success based on noninformative prior 
if posterior probability

	 Comparable to frequentist one-sided t-test p-value < 
0.002

b)	 stop early for futility based on Noninformative prior 
if posterior probability

Pr (treatment > control|data, noninformative prior) > 99.8%

Pr (treatment > control|data, noninformative prior) < 70%

Table 2  Bayesian fixed/adaptive designs investigated

Early success Early futility Late success Late futility

Bayesian Fixed Design - - - -

Bayesian Adaptive Design 1 Skeptical prior - Skeptical prior Skeptical prior

Bayesian Adaptive Design 2 - Enthusiastic prior Enthusiastic prior Enthusiastic prior

Bayesian Adaptive Design 3 Skeptical prior Enthusiastic prior Skeptical prior Enthusiastic prior

Bayesian Adaptive Design 4 Non-informative prior Non-informative prior Non-informative prior Non-informative prior
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	 Comparable to frequentist one-sided t-test p-value > 0.3
	 The Bayesian and corresponding frequentist decision 

rule at the final analysis:
c)	 achieve late success based on noninformative prior if 

posterior probability

	 Comparable to frequentist one-sided t-test p-value 
< 0.025

d)	 achieve late futility based on noninformative prior if 
posterior probability

Comparable to frequentist one-sided t-test p-value > 
0.15

We could compare the operating characteristics of 
the frequentist GSD to Bayesian adaptive design 4 with 
non-informative prior.

Simulation Settings
Design simulations were performed using the Fixed 
and Adaptive Clinical Trial Simulator (FACTS) ver-
sion 6.3 [28]. As for the execution aspects of the simu-
lated trial, the maximum sample size was set to be 256 
and the accrual rate was simulated in FACTS using a 
mean of 2 subjects per week with no dropouts, accord-
ing to the original trial property. Patients were rand-
omized to two arms (control, Botox 4 U/kg treatment) 
with equal allocation (1:1) and their scheduled visit 
was 12  weeks after randomization. The primary end-
point is a continuous variable following a normal dis-
tribution; therefore, Bayesian independent dose model 
was used under the FACTS Core Design-Continuous 
module:

where d = 1 denotes the control group, d = 2 denotes 
the Botox 4 U/kg treatment group. As mentioned before, 
different prior beliefs will be imposed on the difference 
between treatment and control, i.e., θ2 − θ1 . In FACTS, 
prior for each experimental arm needs to be speci-
fied separately, so to achieve the same prior specifica-
tion as denoted in Fig.  1, we could introduce priors for 
θd , d = 1, 2 as follows:

Pr (treatment > control|data, noninformative prior) > 97.5%

Pr (treatment > control|data, noninformative prior) < 85%

Y ∼ N (θd , σ
2)

θd ∼ N (µd , v
2
d)

σ 2 ∼ Invers e-Gamma(α,β) = Scaled-inverse-chi-squared

(

σn

2
,
σ 2
µσn

2

)

•	 Under skeptical prior belief: θ1 ∼ N (0, 0.35362) , 
θ2 ∼ N (0, 0.35362) , so that  θ2 − θ1 ∼ N

(

0, 0.52
)

 
since 

√

0.35362 + 0.35362 = 0.5.

•	 Under the enthusiastic prior belief: 
θ1 ∼ N (0, 0.07072), θ2 ∼ N (0.2, 0.07072), 
so that  θ2 − θ1 ∼ N

(

0.2, 0.12
)

 since 
√

0.07072 + 0.0707 = 0.1.
•	 Under the noninformative prior 

belief:θ1 ∼ N
(

0, 70.712
)

, θ2 ∼ N
(

0, 70.712
)

 , so that  
θ2 − θ1 ∼ N (0, 1002) since

√

70.712 + 70.712 = 100.

For the prior imposed on σ 2 , the Inverse-Gamma dis-
tribution could be reparametrized as the Scaled-inverse-
chi-squared distribution [29]:

where the parameter σn > 0 is the degree of freedom 
or weight, and σµ > 0 is the scale or central value. As 
denoted in Gelman et  al. [29], the Scaled-inverse-chi-
squared distribution provides the information equivalent 
to σn observations with squared standard deviation σ 2

µ , 
and increasing σn corresponds to increasing the effec-
tive strength of the prior. As for prior choice, weakly 
informative prior instead of noninformative prior was 
considered since the resulting posterior distribution was 
highly sensitive to the choice of weight σn and scale σµ , 
and noninformative on the log scale may not work [30]. 
Prior sensitivity analysis was conducted to investigate 
the impact of different prior distribution of σ 2 (different 
combinations of weight σn and scale σµ ) on type I error 
rate, and we chose σn = 1, σµ = 0.07 to control for type I 
error at the nominal level of 2.5%.

Using the specified model, we then performed FACTS 
simulations under different hypothetical subject response 
scenarios presented in Table  3. To optimize the number 
of interims, we also simulated trials which had between 1 
and 18 interim analyses that were evenly spaced by num-

ber of patients enrolled (Table 4). Note that scenario with 
0 interim is corresponding to the fixed design, which 
works as a reference for each of the adaptive designs. 
For each adaptive design candidate, 10,000 virtual tri-
als were simulated in FACTS under each hypothetical 
scenario and each specification of number of interims. 
These simulations allow us to evaluate Operating char-
acteristics including type I error rate and power, as well 

�
−2
(
�
2|�n, ��

)
=

1

Γ

(
�n

2

)

(
�
2
�
�n

2

) �n
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2
−1
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(

−
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as estimating expected trial duration and number of sub-
jects enrolled when performing an increasing number of 
interim analyses.

Operating characteristics could be directly obtained 
from FACTS for fixed design & Bayesian adaptive design 
1, 2, 4. As for the proposed adaptive design 3, Additional 
handling was conducted using R [31] for the FACTS 
output generated under the FACTS Core Design-Con-
tinuous module, and figures were produced using the 
package ggplot2 following the steps below (The FACTS 
screen-cuts and R code were provided in supplementary 
file 1):

Step 1: Create a FACTS adaptive design with the skep-
tical prior and include the interims and the QOIs but 
do not implement any stopping criteria so all interims 
are evaluated, and every simulation runs to full accrual 

and final analysis, then output weeks files for every 
simulation.

Step 2: Create a new FACTS adaptive design and 
change the prior to the enthusiastic prior and re-simulate 
without adaptation by keeping the same random num-
ber seed and making no other changes so that exactly the 
same patient responses are simulated.

Step 3: Aggregate the weeks files for designs simulated 
of the same trials but with skeptical or enthusiastic prior 
from Step 1 & 2 separately.

Step 4: Load the 2 sets of aggregated weeks files into 
R and join them on the Sim and Scenario ID columns so 
we have posterior probabilities under either skeptical or 
enthusiastic prior at each interim.

Step 5: Analyze the joined data for each simulated trial 
to see which stops early for success on the skeptical prior 
at interims, which stops early for futility on the enthusi-
astic prior at interims, which makes no early stopping up 
to full accrual or reach inconclusive at final analysis.

Results
Null and alternative scenarios
As mentioned before, the null scenario is the case where 
there is no difference in treatment effects between Botox 
4 U/kg group and control with an effect size of 0, and the 
alternative scenario is the case where the true treatment 
effect for Botox 4 U/kg group is superior to control with 
a target effect size of 0.5. The operating characteristics 
for Bayesian adaptive designs including type I error rate 
and power are presented in Fig. 2 while futility rate under 
the null or alternative scenarios are presented in Fig.  3. 
The expected sample size and trial duration are shown in 
Fig. 4. Note that the fixed design with no interim analysis 
(number of interim analysis = 0) works as a reference in 
each of the four adaptive design candidates.

In Fig. 2, the stopping boundaries for success or futility 
were adjusted to ensure the desired one-sided type I error 
of 2.5% for Bayesian adaptive design 3, and the same suc-
cess or futility boundaries were used for designs 1, 2 and 
4. Then we could compare type I error rate and power 
among all the adaptive design candidates as follows:

1)	 The type I error was first controlled but then gradu-
ally inflated (> 2.5%) with an overall increasing ten-
dency, while the power was maintained (> 90%) with-
out fluctuations when more interim analyses were 
included in the Bayesian adaptive design 1 that only 
allows early stopping for success based on skeptical 
prior (Fig. 2a and b).

2)	 The type I error was first inflated but then quickly 
controlled (< 2.5%) with a decreasing tendency in 
general, while the power was maintained (> 90%) 
with a slight drop when more interim analyses were 

Table 3  Virtual Subject Response Scenarios

Trt treatment, Ctrl control, SD standard deviation

Scenario Ctrl
Mean (SD)

Trt
Mean (SD)

Difference 
between Trt. 
and Ctrl
Mean (SD)

Trt. 0
(H0, no difference)

0 (0.07) 0 (0.07) 0 (0.10)

Trt. 0.02
(Small difference)

0 (0.07) 0.02 (0.07) 0.02 (0.10)

Trt. 0.05
(H1, target difference)

0 (0.07) 0.05 (0.07) 0.05 (0.10)

Trt. 0.08
(Large difference)

0 (0.07) 0.08 (0.07) 0.08 (0.10)

Trt. -0.05
(Harmful scenario)

0 (0.07) -0.05 (0.07) -0.05 (0.10)

Table 4  Different number of interims investigated

Number of 
interims

Timing of planned interims (number of patients 
enrolled)

0 NA (Full accrual up to 256, no interim analysis)

1 128

2 85 170

3 64 128 192

4 51 102 153 204

5 43 86 129 172 215

6 37 74 110 146 183 220

7 32 64 96 128 160 192 224

8 28 56 84 112 140 168 196 224

9 25 50 75 100 125 150 175 200 225

10 23 46 69 92 115 138 161 184 207 230

12 20 40 60 80 100 120 140 160 180 200 220 240

14 17 34 51 68 85 102 119 136 153 170 187 204 221 238

18 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 
221 234
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included in the Bayesian adaptive design 2 that only 
allows early stopping for futility based on enthusias-
tic prior (Fig. 2c and 2d).

3)	 The type I error was generally increasing (< 2.5%) 
with small fluctuations, while the power was main-

tained (> 90%) with a slight decreasing trend [32] 
when more interim analyses were included in the 
Bayesian adaptive design 3 that allows early stopping 
for either success based on skeptical prior, or futility 
based on enthusiastic prior (Fig. 2e and 2f ).

Fig. 2  Type I Error (under H0) and Power (under H1) for Bayesian Adaptive Designs. a and (b) are Bayesian adaptive design 1 that only allow 
early stopping for success based on skeptical prior; (c) and (d) are Bayesian adaptive design 2 that only allow early stopping for futility based on 
enthusiastic prior; (e) and (f) are Bayesian adaptive design 3 that allow early stopping for success based on skeptical prior, or early stopping for 
futility based on enthusiastic prior; (g) and (h) are Bayesian adaptive design 4 that allow early stopping for either success or futility both based on 
non-informative prior
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4)	 The type I error was generally controlled (< 2.5%) 
with a strong decreasing tendency, while the power 
was heavily affected (< 90%) and tends to zero when 
more interim analyses were included in the Bayesian 
adaptive design 4 that allows either early stopping for 

either success or futility both based on non-informa-
tive prior (Fig. 2g and 2h).

According to Fig.  2, Bayesian adaptive design 1 yields 
inflation of type I error rate, which requires stricter 

Fig. 3  Futility Rate for Bayesian Adaptive Designs under Null (H0) and Alternative (H1) Scenarios. a and (b) are Bayesian adaptive design 1 that only 
allow early stopping for success based on skeptical prior; (c) and (d) are Bayesian adaptive design 2 that only allow early stopping for futility based 
on enthusiastic prior; (e) and (f) are Bayesian adaptive design 3 that allow early stopping for success based on skeptical prior, or early stopping for 
futility based on enthusiastic prior; (g) and (h) are Bayesian adaptive design 4 that allow early stopping for either success or futility both based on 
non-informative prior
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skeptical prior or success boundaries. In terms of power, 
the loser would be Bayesian adaptive design 4 since the 
power almost drops down to zero when performing an 
increasing number of interims although type I error rate 
decreases because of the trade-off between type I and 
type II error rate. Note that Bayesian adaptive design 4 
incorporating non-informative prior corresponds to a 

frequentist Pocock design [12], which is often criticized 
for giving too high a probability of early stopping. The 
same story could be told in Fig.  3 where most Bayesian 
adaptive designs had futility rate under the alternative 
scenario controlled under 10% except for adaptive design 
4 in which false futility was claimed so that power was 
affected. Figure  4 shows that the expected sample size 

Fig. 4  Mean Sample Size and Trial Duration for Bayesian Adaptive Designs under Null (H0) and Alternative (H1) Scenarios. a and (b) are Bayesian 
adaptive design 1 that only allow early stopping for success based on skeptical prior; (c) and (d) are Bayesian adaptive design 2 that only allow early 
stopping for futility based on enthusiastic prior; (e) and (f) are Bayesian adaptive design 3 that allow early stopping for success based on skeptical 
prior, or early stopping for futility based on enthusiastic prior; (g) and (h) are Bayesian adaptive design 4that allow early stopping for either success 
or futility both based on non-informative prior
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is considerably reduced by many interim analyses for 
Bayesian adaptive design 3 under both the null and alter-
native scenarios.

To help explain the nuances, the operating charac-
teristics for Bayesian adaptive design 1–4 are provided 
as Tables 1, 2, 3, and 4 in supplementary file 2, which 
combines information from Figs. 1 and 3 to facilitate 
the comparison between the proposed design and sev-
eral alternatives (only mean sample size is presented 
as it behaves similarly to mean trial duration). The 
operating characteristics for frequentist GSD are pro-
vided as Table 5 in supplementary file 2. We could see 
that the operating characteristics of the frequentist 
design are comparable to Bayesian adaptive design 4 
with non-informative prior, consistent with the find-
ings in [12].

According to the operating characteristics presented 
so far, generally speaking, when an increasing number 
of interim analyses were performed, we could observe 
a slight decrease in power and a small inflation in type 
I error rate or futility rate. Also, as expected Bayesian 
adaptive design 3 is the best design since it produces the 
greatest reduction in sample size as well as trial duration 
while still controlling for type I error rate and maintain-
ing sufficient power. Bayesian adaptive designs 1 & per-
form as one you expect—showing an inflated type I error 
rate. And the lack of futility analyses makes the trial 
continue to full accrual under the null scenario, while 
for Bayesian adaptive design 2 we see sufficient power 
and control of the type I error rate, but no reduction in 
sample size under the alternative scenario since there is 
no interim efficacy analysis. Bayesian adaptive design 4 
aggressively minimizes sample size at a sacrifice of power 
making the design undesirable.

Harmful scenario
The harmful scenario is defined as the case where the 
true treatment effect for Botox 4 U/kg group is infe-
rior to control with a difference -0.05 (SD = 0.1), i.e., 
effect size is -0.5. Under the harmful scenario, we evalu-
ated the operating characteristics for Bayesian adaptive 
designs including rates of early or late success, early or 
late futility or inconclusive results: all the Bayesian adap-
tive designs except for design 1 resulted in a 100% early 
futility stop rate, resulting in a large reduction of the 
overall sample size regardless of prior choices, which 
we see clearly demonstrated in Fig.  5. Same as the null 
or alternative scenario, under the harmful scenario, the 
fixed design with no interim analysis (number of interim 
analysis = 0) functions as a reference in each of the four 
adaptive design candidates.

Figure  5 shows that the expected sample size or trial 
duration could at least be reduced by half with only 
one interim analysis or reduced by two-thirds with 
two interim analyses for all the adaptive designs except 
Bayesian adaptive design 1. The amount of reduction in 
expected sample size or trial duration is similar in Bayes-
ian adaptive design 2 and 3, and more aggressive in 
Bayesian adaptive design 4.

A decision could be made based on simulation results 
under harmful scenario jointly with the ones under null 
or alternative scenarios: Bayesian adaptive design 1 does 
not allow for early futility stopping which clearly risks 
exposing subjects to ineffective or even harmful treat-
ment effect. While Bayesian adaptive design 4 aggres-
sively minimizes the sample size more than the other 
designs in the harmful scenario, the sacrifice in power 
when an increasing number of interim analyses were 
performed was too great, making this design undesirable 
overall. Bayesian adaptive designs 2 and 3 fall in-between, 
with less aggressive futility analyses yielding larger 
expected sample sizes, while maintaining reasonable sta-
tistical power.

Design justification
Overall, these simulations demonstrate that Bayes-
ian adaptive design 3 (incorporating both skeptical and 
enthusiastic priors) provides a suitable balance and yields 
favorable Operating Characteristics compared to the 
alternative designs (incorporating only one type of prior 
belief or only using either an early success or early futility 
assessment) even when performing an increasing num-
ber of interim analyses.

In Fig.  4, we observe that the expected sample size 
or expected trial duration reduced the most for adap-
tive design 3 with 6 interim analyses and then produced 
diminishing returns beyond this point. Figure 6 presents 
the simulation results for Bayesian adaptive design 3 with 
6 evenly spaced interim analyses every 37 subjects. The 
x-axis is the difference between treatment and control, 
from -0.05 to 0.08, and the y-axis shows the proportion 
of the 10,000 simulated trials either stopped early for suc-
cess or futility or continued to full accrual (late success/
late futility/inconclusive).

The green curve is the probability of early stopping 
for success. The probability of early stopping for suc-
cess increases with the increase in treatment difference. 
When the true treatment difference is around 0.05 (i.e., 
the treatment effect observed in adults), 93.8% of times 
the trial may be stopped early for success, compared to 
over 99% for no interim analysis, indicating a slight loss 
in power for the ability to stop early for success.
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The red curve is the probability of stopping early 
for futility. When the treatment effect is zero or in the 
harmful direction, from -0.05 to 0, the chance of stop-
ping for futility always exceeds 86%. The probability of 
early stopping for futility decreases as the treatment 

difference increases. When the treatment difference 
is higher than 0.02, the chance that the trial would be 
stopped for early futility is less than 3%.

The blue curve is the probability of the simulated tri-
als continuing up to full accrual (late success/late futility/

Fig. 5  Mean Sample Size and Trial Duration for Bayesian Adaptive Designs under the Harmful Scenario. a and (b) are Bayesian adaptive design 
1 that only allow early stopping for success based on skeptical prior; (c) and (d) are Bayesian adaptive design 2 that only allow early stopping for 
futility based on enthusiastic prior; (e) and (f) are Bayesian adaptive design 3 that allow early stopping for success based on skeptical prior, or early 
stopping for futility based on enthusiastic prior; (g) and (h) are Bayesian adaptive design 4 that allow early stopping for either success or futility both 
based on non-informative prior



Page 13 of 17Wang et al. BMC Medical Research Methodology          (2022) 22:118 	

inconclusive) without early stopping for either success or 
futility, whose parabola shape shows that early stopping 
for either success or futility might be harder to achieve 
if the true treatment effect seems ambiguous, i.e., we are 
not sure if it’s harmful or beneficial.

Figure 7 is a variation of Fig. 6, which shows the pro-
portion of the 10,000 simulated trials either achieved suc-
cess or futility or inconclusive results. The green curve is 
the probability of achieving success at either interim or 
final analyses, which increases with the increase in treat-
ment difference. When the true treatment difference 
is ineffective or harmful, from 0 to -0.05, the chance of 

concluding the trial was successful is below 2.5%, indicat-
ing that type I error rate is well controlled. The red curve 
is the probability of achieving futility at either interim or 
final analyses, which decreases with the increase in treat-
ment difference. The blue curve is the probability of the 
inconclusive trials which did not achieve either success 
or futility.

Discussion
Prior choices
In this paper, we aimed at exploring the flexibility of 
Bayesian adaptive designs to incorporate different prior 

Fig. 6  Bayesian Adaptive Design Property the Preferred Design Demonstrating Early Success, Early Futility, and Full Accrual Results
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beliefs into the clinical trials, which is one of the greatest 
strengths of the Bayesian methodology. In our re-design 
for the case study, the enthusiastic prior incorporated in 
the proposed Bayesian adaptive design for the pediatric 
clinical trial is based on similar historical adult clinical 
trial. In practice, to utilize data from adult trials as enthu-
siastic prior data for pediatric trials, it must first be deter-
mined whether it is reasonable to assume that the adult 
data are relevant to the pediatric patient population. 
Challenges exist in quantifying the level of relevance of 
historical adult data. Here one needs to be aware of the 
risk of overrating the relevance of the adult data, that is if 

we over rely on the adult data then we will end up need-
ing more patients to demonstrate that the drug is inef-
fective in pediatrics. The goal is to identify a weight that 
will prevent early stopping if we have some initial data 
that is less favorable, without overweighing less favorable 
pediatric data as we gain additional patients. Modeling & 
simulation [33] is a useful tool to explore and set expecta-
tions on the relevance of the adult data.

When historical adult data are not available, another 
way to quantify prior information for new pediatric 
trial is to consider prior elicitation, an approach of com-
bining opinions from different experts in an explicitly 

Fig. 7  Bayesian Adaptive Design Property for the Preferred Design Demonstrating Success, Futility, and Inconclusive Results
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model-based way to form a valid subjective prior under 
the Bayesian framework [34]. For examples of prior elici-
tation, see Hampson et  al. (2015) [35] and Jansen et  al. 
(2020) [36], both utilized the results from an elicitation 
meeting to create prior probability distributions to assist 
with the design and planning of a Bayesian trial. Some 
other studies on prior elicitation considered a mixture of 
prior beliefs from different clinicians: Gajewski and Mayo 
(2006) [37] used a mixture of beta priors elicited from cli-
nicians with opposite viewpoints for binomial endpoints 
in phase II clinical trial, and Moatti et al. (2016) [38] used 
a mixture of normal priors elicited from experts for log 
hazard ratio in phase III survival trial. Another standard 
approach for informative prior incorporation is power 
prior, which is defined to be the likelihood function based 
on the historical data raised to a power parameter that 
enables the historical data to be weighted relative to the 
current data [39, 40]. The power prior approach has been 
recently applied in many fields such as clinical trials [41, 
42], genetics research [43], environmental studies [44], 
etc. Later introduced by Hobbs et  al. (2011) [45], com-
mensurate prior is an extension of the traditional power 
prior approach to allow for the commensurability of the 
information in the historical and current data to deter-
mine how much historical information is used, and its 
applications in prior elicitation have been recently devel-
oped and discussed in [24, 46]. Additionally, the elicita-
tion of specific values of the power parameter could also 
be done via a meta-analytic argument that assumes the 
historical and current parameter as exchangeable [47, 48]. 
Schmidli et al. (2014) [49] derived a Bayesian meta-ana-
lytic-predictive prior from historical data to be combined 
with the new data, and demonstrated its applications in 
clinical trials with historical control information.

Note that prior choices are not limited to the two 
extreme viewpoints illustrated in this paper and previous 
literatures. Ye et al. suggested that alternative designs for 
early phase pediatric clinical trials using noninformative 
prior instead of skeptical prior for early success criteria 
could be considered to improve power with a reason-
able inflation in false-positive rate [20]. In the rare dis-
eases or when the disease is life-threatening or severely 
debilitating with an unmet medical need this trade-off 
may be warranted [35]. We have compared the design 
property of this alternative design with our proposed 
innovative design 3 when performing 6 equally spaced 
interim analyses at every 37 subjects. For our case study, 
the simulated trial can be stopped early for efficacy or 
futility at the same probability levels under both designs, 
therefore the alternative design could not improve power 
significantly. The possible explanation is that our case 
study is a phase III trial with much more abundant sam-
ple size compared to the early phase study analyzed in 

Ye et  al. [20], so studies with sufficient sample size are 
more robust to the change in viewpoint from no strong 
opinion to skeptical when the trial data will dominate the 
results. We also found when higher number of interim 
analyses were performed, stricter skeptical prior would 
be needed to balance operating characteristics including 
type I error rate and power, which are the main factor for 
consideration.

Our choice of prior to optimize control of the type I 
error rate was based solely on simulations. As the num-
ber of interim analyses increases the larger the degree of 
skepticism that is needed to control the type I error at 
the nominal level of 2.5% and this comes at the cost of 
decreased power.

Limitations
In our case study, to account for multiplicity issue and 
preserve the intended significance level and power, the 
stopping boundary for early or late success were cali-
brated to ensure a type I error rate of 2.5% for the one-
sided test of treatment superiority to control, while the 
stopping boundary for early or late futility was deter-
mined to ensure early stopping while preserving sufficient 
power. It is clear that if different values had been chosen 
for the stopping boundary, different decisions may have 
been made at the interim analyses. For instance, if the 
proposed Bayesian adaptive design 3 used less aggres-
sive stopping boundaries for futility, higher power could 
be obtained, although the study would be more likely to 
run for longer, exposing patients to ineffective or harmful 
treatment. Moreover, the Haybittle–Peto boundary con-
sidered in this paper is simple to understand, implement, 
and describe, but often criticized for being too conserva-
tive as it only allows early trial stopping for overwhelm-
ingly large difference between the treatments [50]. Other 
common boundary methods could be further explored to 
adjust for multiplicity: O’Brien-Fleming method which 
allows early stopping boundary to vary at every interim 
look [51], the flexible alpha spending function developed 
by Lan and DeMets (1983) which does not require the 
pre-specification of the interim timing [52], etc.

Overall, the community of prior approach demon-
strates promise, though will require extended discus-
sion, and thought on the prior choice for pediatric trial 
designs. Additionally, the community of prior approach 
incorporating both skeptical and enthusiastic prior could 
have been compared to other priors (mixture prior, 
power prior, etc.) in a Bayesian adaptive design setting 
and we plan to compare them in our future work.

In this paper, we also investigated the impact of an 
increasing number of interim analyses. An increase in the 
number of interims would have led to smaller expected 
sample size and shorter trial duration, but at the cost of 
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increased operational complexity at each interim analy-
sis [53] due to time requirements for data cleaning, per-
forming the analysis and presentations of the results and 
an overall loss of power. Therefore, we need to be aware 
of the trade-off between early trial cessation and opera-
tional cost.

Conclusion
In this paper, we have shown through a case study how 
to innovatively re-design a pediatric phase III trial incor-
porating a community of prior belief. We also justified 
the advantage of the innovative adaptive design by com-
paring it with several alternative adaptive designs only 
incorporating one kind of prior belief. Simulation results 
showed that compared to alternative designs, the innova-
tive design offers good control of frequentist operating 
characteristics including acceptable type I error, suf-
ficient power, fewer patients recruited on average than 
the original target sample size, and shorter trial dura-
tion when performing an increasing number of interim 
analyses.

In conclusion, the primary benefit of Bayesian adaptive 
designs is to improve study efficiency, to provide more 
flexible trial conduct, and to treat more patients with 
more effective treatments in the trial while maintaining 
desirable frequentist operating characteristics. This is of 
particular benefit when accrual to a pediatric clinical trial 
may be prolonged in the case of cancer and other rare 
pediatric diseases.
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