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Abstract 

Background:  Screening for eligible patients continues to pose a great challenge for many clinical trials. This has led 
to a rapidly growing interest in standardizing computable representations of eligibility criteria (EC) in order to develop 
tools that leverage data from electronic health record (EHR) systems. Although laboratory procedures (LP) represent 
a common entity of EC that is readily available and retrievable from EHR systems, there is a lack of interoperable data 
models for this entity of EC. A public, specialized data model that utilizes international, widely-adopted terminology 
for LP, e.g. Logical Observation Identifiers Names and Codes (LOINC®), is much needed to support automated screen-
ing tools.

Objective:  The aim of this study is to establish a core dataset for LP most frequently requested to recruit patients for 
clinical trials using LOINC terminology. Employing such a core dataset could enhance the interface between study 
feasibility platforms and EHR systems and significantly improve automatic patient recruitment.

Methods:  We used a semi-automated approach to analyze 10,516 screening forms from the Medical Data Models 
(MDM) portal’s data repository that are pre-annotated with Unified Medical Language System (UMLS). An automated 
semantic analysis based on concept frequency is followed by an extensive manual expert review performed by physi-
cians to analyze complex recruitment-relevant concepts not amenable to automatic approach.

Results:  Based on analysis of 138,225 EC from 10,516 screening forms, 55 laboratory procedures represented 77.87% 
of all UMLS laboratory concept occurrences identified in the selected EC forms. We identified 26,413 unique UMLS 
concepts from 118 UMLS semantic types and covered the vast majority of Medical Subject Headings (MeSH) disease 
domains.

Conclusions:  Only a small set of common LP covers the majority of laboratory concepts in screening EC forms which 
supports the feasibility of establishing a focused core dataset for LP. We present ELaPro, a novel, LOINC-mapped, core 
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Introduction
Clinical trials are essential to advance clinical health care 
and evidence-based medicine [1, 2]. Efficient identifica-
tion and recruitment of eligible participants is considered 
a key factor to the success of clinical trials [3–5] and one 
of its major challenges throughout the last decades [6–
9]. Delayed or poor recruitment of target participants in 
stipulated time remains an enduring problem that leads 
to increased study costs and reduced power of clinical 
trials [4, 10–12]. Insufficient participant recruitment is 
one of the leading causes of early study termination and 
wasted research resources [13–19].

Eligibility screening is considered the cornerstone of 
participant recruitment and refers to applying eligibil-
ity criteria (EC) to specify the necessary characteristics 
of study participants who are eligible to participate in a 
study [20–22]. The wide adoption of Electronic Health 
Record (EHR) systems in recent years has resulted in 
large quantities of patient clinical data being available in 
electronic form, which led to increased interest in estab-
lishing and standardizing computable knowledge repre-
sentations of EC to develop decision support tools for 
different research aspects e.g. matching eligible patients 
to clinical trials [23–25]. However, these efforts are chal-
lenged by the unstandardized free-text format of EC [26, 
27]. In the last decades, different clinical terminologies 
have been introduced and used to encode medical con-
cepts of EC [28]. These terminologies provided a com-
putable form of EC despite the lack of common standards 
among different terminologies [21]. One of the most 
recognized terminology systems is the Unified Medical 
Language System (UMLS) [29, 30], which is considered 
a popular option for annotating EC because of its rich 
metathesaurus and interoperability with other termi-
nologies [21, 31–35]. Over the last years, various meth-
ods and techniques have been produced and applied to 
extract and transform medical concepts from free text 
into a computable representation using encoding ter-
minologies and annotating tools. This has enhanced the 
development of automated research tools that utilize 
patient data from repositories of EHRs to recruit patients 
for clinical trials [36–47].

Laboratory criteria represent one of the most common 
categories of EC in clinical trials [48]. There is an obvious 
lack of dedicated analyses and specialized data models of 

screening LP. A public, specialized data model in inter-
operable terminologies for laboratory concepts, e.g. the 
widely-adopted, international reference of laboratory 
standards named Logical Observation Identifiers Names 
and Codes (LOINC®) terminology, is much needed to 
boost computer-based decision support for automated 
screening for clinical trials [49, 50]. Ross et al. randomly 
selected 1000 studies from Clini​calTr​ials.​gov and found 
that laboratory and diagnostic tests represent around 
23% of EC in these studies [51]. In 2013 Bhattacharya 
et  al. showed that the semantic type “Diagnostic and 
Lab Results” constitute the majority of inclusion criteria 
in both full-text and protocols of Clini​calTr​ials.​gov [52]. 
Wang et al. classified laboratory and demographic EC to 
be among the easiest criteria to support automated que-
ries to data repositories from EHRs [53]. Both domains 
possess a key advantage over other EC domains, in which 
they are more structured and easy to retrieve from a lab-
oratory information system to support patient recruit-
ment. While many core data models for demographic 
EC already exist, e.g. Clinical Data Acquisition Standards 
Harmonization (CDASH), there is a clear research gap 
when it comes to specialized analyses and data models 
for LP in eligibility screening [54].

This dataset was created by analyzing 138,225 EC 
extracted from 10,516 UMLS-annotated screening forms 
of random clinical trials registered on Clini​calTr​ials.​gov 
and covering a broad range of different clinical domains 
(Fig.  3). The forms used in this analysis were obtained 
from the data repository of the Medical Data Models 
(MDM) portal [55, 56].

In this study, we introduce ELaPro (Eligibility Labora-
tory Procedures), a novel, public, LOINC-mapped, core 
dataset of the most frequent LP in screening for clinical 
trials. We use a semi-automated approach that combines 
an automated UMLS-based semantic analysis of labo-
ratory concepts followed by a thorough manual expert 
review. The scope of this analysis is confined to LP fol-
lowing the definition of a “Laboratory Procedure” by 
The National Cancer Institute (NCI) metathesaurus [57], 
which is defined as “A medical procedure that involves 
testing a sample of blood, urine, or other substance from 
the body”. Other diagnostic procedures, e.g. radiographic 
or endoscopic procedures are beyond the scope of this 
work. ELaPro is an interoperable data model, available 

dataset for the most frequent 55 LP requested in screening for clinical trials. ELaPro is available in multiple machine-
readable data formats like CSV, ODM and HL7 FHIR. The extensive manual curation of this large number of free-text 
EC as well as the combining of UMLS and LOINC terminologies distinguishes this specialized dataset from previous 
relevant datasets in the literature.
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in multiple machine-readable formats to be utilized in 
developing automated screening tools that can be inte-
grated in EHR systems to enhance the recruitment pro-
cess using real-time queries applied to data repositories 
of EHR systems.

Methods
Data collection
A direct access to the local UMLS database (2021AA) as 
well as the Metadata Repository (MDR) [58], the main 
database of the MDM portal, was granted by the Insti-
tute of Medical Informatics of the University of Muen-
ster for the purpose of this analysis. A total of 12,027 
EC forms were obtained from MDR as of August 2021, 
of which only 10,989 were technically accessible. Out 
of these 10,989 EC forms, 473 non-screening EC forms 
(e.g. follow-up, randomization or continuation crite-
ria) were identified and excluded from this study so that 
only 10,516 forms met the criteria of being screening EC 
forms and were therefore included in this analysis. Eli-
gibility screening forms were identified and included in 
this analysis. An R-based tool was developed and used to 
directly access and filter EC forms of MDM portal data-
base and connect them to their UMLS-annotated con-
cepts, which is the “raw data of the automated semantic 
analysis. A list of names and DOI’s of all included EC 
forms on MDM portal is found in Appendix 1.

Data analysis
Semantic form annotation
Typically, an EC form consists of 2 item groups; Inclusion 
Criteria and Exclusion Criteria. Each item group con-
sists of items; each item represents a complete element 
(criterion) of inclusion or exclusion criteria. All medical 
concepts of each item (criterion) are coded (annotated) 
using UMLS codes to standardize the representation of 
free-text EC. The annotating process is performed by a 
medical expert and reviewed by a physician experienced 
in UMLS. The detailed process and workflow of the cod-
ing process have been thoroughly described in previous 
works [59–61].

Automated semantic analysis in R
The automated part is based on an R-based tool to facili-
tate extraction and analysis of UMLS codes and their 
semantic types from pre-annotated screening forms 
in MDR (n = 10,516) and the UMLS database. We per-
formed an automated semantic analysis on 10,516 eligi-
bility screening forms available on the MDM portal as of 
August 2021. Utilizing the structure of MDR, the devel-
oped tool was able to automatically retrieve UMLS anno-
tations of all medical concepts within screening EC forms 

while excluding those from other unwanted types of EC, 
after that, the tool measures the frequency of occur-
rences (n) of these annotated concepts and sorts them 
according to frequency in a descending order.

In order to be able to analyze the collected UMLS 
codes, the developed tool used certain tables from the 
UMLS database to automatically assign the preferred 
term and semantic type of each collected code (table 
names are MRCONSO and MRSTY respectively [62]. 
Figure 1 illustrates the process of automated data collec-
tion and analysis used in this work.

In order to refine results and extract UMLS codes 
related to laboratory concepts, we needed to define 
reference semantic types that represent all laboratory 
concepts in UMLS metathesaurus. Based on prestudy 
communication with a senior scientist from the National 
Library of Medicine (NLM) as well as the definition of 
semantic types, two UMLS semantic Types, “Laboratory 
Procedure” and “Laboratory or Test Result”, were consid-
ered the two reference semantic types for laboratory tests 
in the UMLS metathesaurus.

Based on these 2 semantic types, results were divided 
into 2 groups; Group A was assigned the name “EC Labo-
ratory Codes” and includes concepts (codes) from the 2 
reference laboratory semantic types mentioned above, 
while group B was named “Non-Laboratory EC Codes” 
and includes codes from all other UMLS semantic types. 
Group B is necessary to ensure that relevant laboratory 
concepts, which are not linked to the aforementioned 
semantic types, are still considered for expert review (e.g. 
concepts like “Leukocytosis” or “Hemoglobin Increased” 
and many other concepts of semantic type “Finding”). 
Absolute frequency (n) was automatically counted for all 
codes in both groups, concepts were then sorted by abso-
lute frequency in a descending pattern from the most fre-
quent (highest n) to the least frequent (lowest n). Figure 1 
is a schematic representation of the semi-automated 
method of this analysis. A list of unique UMLS concepts 
of group A and B sorted by frequency is found in Appen-
dix 2A and 2B, respectively. A list of all original EC Ques-
tions for all codes in group A and B is found in Appendix 
3.

Manual expert review of laboratory concepts
A laborious manual review was necessary to identify and 
analyze complex concepts that indirectly imply a LP but 
do not have a laboratory semantic type, thus not amena-
ble to the above mentioned automated semantic analysis. 
The manual analysis was performed by 2 medical profes-
sionals (AR, JV) using Microsoft Excel. If a concept was 
ambiguous or in doubt it was discussed with 2 additional 
physicians experienced in UMLS (MD, SR) to decide 
whether a concept is relevant to a LP or not. We used 
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terms like primary laboratory concept (PLC) and second-
ary laboratory concept (SLC) to deal with classic issues 
of UMLS like redundancy (similar, but not identical con-
cepts)) and semantic complexity to help determine the 
actual representation (nTotal) of laboratory concepts. We 
provide examples for both in the following two sections.

Primary Laboratory Concept (PLC): refers to the 
UMLS concept that represents the preferred definition 
of each laboratory test in the master file. The decision 
of choosing the UMLS code representing each PLC was 
made by agreement of 4 physicians. By definition, a PLC 
must belong to semantic type “Laboratory Procedure” 
and, if applicable, be as general as possible to accom-
modate the different standards of the test among dif-
ferent clinical institutes. A PLC for a certain laboratory 
test is preferably, however not necessarily, the most fre-
quent code among all codes representing that concept. 
For example, the concept “Creatinine Measurement in 
Blood” (n = 2) is considered the PLC for creatinine meas-
urement despite having clearly less occurrence frequency 
than other more specific concepts like “Creatinine Meas-
urement in Serum” (n = 1492) and “Creatinine Meas-
urement in Plasma” (n = 142), since the former is more 
general and represents other possible variants of the test 
that might be used in different clinical research institutes.

Secondary Laboratory Concept (SLC): refers to UMLS 
concepts relevant to a PLC, i.e. it directly or indirectly 
refers to or implies the same laboratory test compo-
nent. SLCs include concepts from laboratory semantic 

types (group A), that are synonymous to a PLC (sibling) 
as in the previous example of Creatinine, or more typi-
cally include concepts from semantic type “Finding”, 
which usually implies that a test is necessary to evaluate 
this finding, e.g. “Platelet Count Normal” or “Increased 
Number of Platelets” imply the need to perform the test, 
and are therefore secondary to the PLC “Platelet Count 
Measurement”. SLCs also include certain pathologic con-
ditions that imply the need for a test, e.g. “Hyperkalemia” 
was considered an SLC to “Blood Potassium Measure-
ment”, “Leukocytosis” is secondary to “White Blood 
Cell Count Procedure” and “Anemia” is secondary to 
“Hemoglobin Measurement”, etc. In some rare instances, 
concepts that referred to a simple relation between two 
measurable laboratory tests were also considered an SLC 
if the PLC was part of the ratio, e.g. the concept “Alanine 
Aminotransferase (ALT) to Aspartate Aminotransferase 
(AST) Ratio Measurement” was counted with both “ALT 
Measurement” and with “AST Measurement”.

The Manual Curation (Expert Review): the most 
common concepts in the laboratory group A (PLCs) 
were identified based on the frequency of individ-
ual occurrence (n), then both A and B groups were 
searched to find all relevant concepts (SLCs) that 
directly or indirectly imply the same LP as each of the 
PLCs. The PLC and its SLCs are then grouped together 
in a master file to represent one LP (see Fig.  2). This 
process was repeated for each LP identified in group 
A. Therefore, the results of the manual analysis 

Fig. 1  Schematic representation of the semi-automated method used in this analysis. MDR: Metadata Repository; MDM: Medical Data Models 
Portal; EC: Eligibility Criteria; UMLS: Unified Medical Language System; MRCONSO: a UMLS table for concept names and sources; MRSTY: a UMLS 
table for semantic types; SLC: Secondary Laboratory Concept; PLC: Primary Laboratory Concept; LOINC: Logical Observation Identifiers Names and 
Codes; MII: German Medical Informatics Initiative [63, 64]; ODM: Operational Data Model; CSV: Comma-Separated Values
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(master file) include multiple groups of codes, each 
group represents one LP and is composed of one PLC 
and multiple SLCs. For each LP, a total count of fre-
quency (nTotal) was calculated by adding all concept 
occurrences (n) of single codes in the group represent-
ing the LP. A “Rank” was assigned to each LP based 
on its nTotal. The most frequent PLC (highest nTotal) 
was given rank number 1, second most frequent was 
given rank number 2 and so on. Unspecific concepts 
in group A (e.g. “Assay” or “Laboratory Results”) were 
excluded since they did not refer to any specific test 
component. Figure 2 shows an example of a manually 
analyzed LP. A diagram illustrating the manual process 
is in Appendix 4.

Mapping to LOINC®

The mapping process was based on matching the PLC to 
a LOINC “COMPONENT”, which is the part of LOINC 
that specifies what is being measured, evaluated or 
observed. For most LP, a primary and one or more sec-
ondary LOINC codes were assigned. The decision of 

choosing primary and secondary LOINC concepts was 
based mainly on a well-recognized core dataset created 
by the Medical Informatics Initiative (MI-I) that includes 
primary and secondary LOINC concepts for the top 300 
most common laboratory tests based on data from 5 dif-
ferent university hospitals in Germany [63–65]. If no 
proper matching component was found in the MII core 
dataset for any of our results, the LOINC database V2.7 
was directly used to manually assign a primary, and if 
applicable a secondary LOINC concept(s). The final step 
was using the UMLS database to create a core dataset 
with full LOINC details (component, property, system, 
etc.) using the LOINC codes mapped to our results and 
an R-based tool.

Results
Overview
A total of 10,516 screening forms containing a total of 
138,225 criteria were recruited in this study. The MDM 
portal provides item group names to identify inclusion 
and exclusion criteria. 20,346 item groups within the 

Fig. 2  Manually analyzed concept of Bilirubin, Total Measurement. The row at the bottom shows mapping of PLC to LOINC (Further LOINC details 
were omitted from the image but can still be found in the dataset). PLC: Primary Laboratory Concept; STR: string (definition); n: frequency of 
individual concept; STY: Semantic Type; nTotal: Sum of all n’s (PLC and SLCs)
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10,516 forms were identified, 9684 of these item groups 
(47.59%) were inclusion criteria, while 9727 (47.8%) were 
exclusion criteria. 932 item groups (4.59%) were unspe-
cifically labeled.

Representation of medical specialties among EC forms (in 
medical subject headings (MeSH®) terms)
The MDM portal provides a (MeSH)-based keyword 
system [66]. Using this system, an automated analysis of 
representation of broad disease entities and medical spe-
cialties among EC forms was performed. We identified 23 
unique MeSH subcategories (n = 17,340) among included 
EC forms. “Neoplasms” represent 19.49% (n = 3381) as 
the most common disease entity among EC forms. Fig-
ure  3 shows the distribution of MeSH disease entities 
among EC forms. Appendix 5 shows absolute frequencies 
of each MeSH categories.

UMLS semantic types in screening eligibility criteria forms
A total of 27,055 unique codes were obtained from the 
included EC forms, among which 26,413 unique UMLS 
codes (97.62%) were filtered and included in this analy-
sis. These 26,413 UMLS codes were used 495,516 times 
and belong to 118 unique semantic types with the most 
common 5 semantic types being “Finding”, “Disease 
or Syndrome”, “Pharmacologic Substance”, “Therapeu-
tic or Preventive Procedure” and “Neoplastic Process” 
based on the frequency of occurrence of codes belong-
ing to these semantic types (n = 3849, 3047, 2201, 2140 
and 1204, respectively). Semantic type “Laboratory Pro-
cedure” ranked 6th and was one of the top 10 semantic 
types of UMLS concepts (n = 845), while semantic type 
“Laboratory or Test Result” was less frequently used 
(n = 331) and ranked 21st. Concepts from both reference 
laboratory semantic types combined comprised 4.45% 

Fig. 3  Diagrammatic representation of the distribution of clinical domains in MeSH terms among EC forms. MeSH: Medical Subject Headings
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(n = 1176) of all UMLS codes. Appendix 6 shows the fre-
quency of occurrence of UMLS codes of all 118 semantic 
types.

Laboratory concepts and cumulative frequencies
A total of 58 primary LP (PLCs) were identified by aggre-
gating all relevant (secondary) concepts and calculating 
nTotal for each LP by adding all frequencies of individ-
ual concepts (n) of PLC and its relevant SLC. Rank was 
assigned to PLCs based on nTotal. The cumulative sum 
of nTotal was continuously plotted and observed as the 
concepts were being analyzed (see Fig. 4). Analyzed labo-
ratory concepts that have an nTotal above 50 covered the 
complete transition and the steepest change of the slope 

of cumulative total frequencies (Orange graph in Fig. 4). 
Based on this, we have only included the first 55 analyzed 
laboratory concepts (PLCs) that have an nTotal above 50.

The final results of the semi-automated analysis 
included 55 PLCs as well as 648 SLCs and comprised 
703 unique UMLS concepts (2.66% of the 26,413 total 
unique concepts in all included EC forms). Among the 
703 unique laboratory concepts included in our final 
analysis, we identified 311 unique concepts that belong 
to the group of laboratory semantic types (Group A). 
These 311 concepts comprised 26.23% of the 1176 con-
cepts in group A and covered 77.87% of its total occur-
rences (n = 15,230/19558). The plot in Fig.  5 shows the 
cumulative frequency of UMLS concepts in the group of 

Fig. 4  Graph showing the cumulative total frequencies among the 58 aggregated set of LP in terms of nTotal, i.e. after manual analysis and 
combining of all n values of PLC and SLCs for each laboratory concept. Analyzed laboratory concepts that have an nTotal above 50 concepts cover 
the steepest change of the slope of cumulative frequencies (Orange). Based on this, we have only included the first 55 analyzed concepts that have 
nTotal above 50. Blue bars show the nTotal of each analyzed laboratory concept

Fig. 5  Plot diagram showing the coverage of laboratory concepts within the group of laboratory semantic types (Group A). 311 laboratory 
concepts representing our 55 LP cover 77.87% of all concept occurrences in group A. n: Frequency of Individual Concept
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laboratory semantic types (Group A) in terms of simple 
frequency (n). The complete table of results of the man-
ual analysis of PLCs and SLCs can be found in Appendix 
7.

Top UMLS laboratory concepts in screening eligibility 
criteria forms
The most frequent UMLS laboratory concept in our anal-
ysis of screening EC forms was Measurement of Creati-
nine in Blood with an nTotal of 1817. Table 1 shows a list 
of the top 55 UMLS laboratory concepts in screening EC 
forms.

Mapping to LOINC and generation of Core dataset
The 55 UMLS LP resulted from this analysis were 
mapped to LOINC terminology as previously explained 
in the ‘Methods’. Using assigned primary and secondary 
LOINC concepts, a core dataset was created by complet-
ing other LOINC details using LOINC database. The core 
dataset is available in machine-readable ODM and HL7 
FHIR files (see Fig. 6) in UMLS and LOINC terminolo-
gies at https://​doi.​org/​10.​21961/​mdm:​44732. CSV, ODM 
and FHIR formats of the dataset are found in Appendix 
8A-8C.

Discussion
Principal findings
The purpose of this study is to identify the LP most fre-
quently needed to recruit patients for clinical trials 
and evaluate the feasibility of establishing a core data-
set that can be used by tools of automated screening to 
help improve patient enrollment in clinical trials. The 
results show that only a small number of LP is frequently 
requested in most screening EC, clearly more than other 
LP, an observation that can be clearly seen in the cov-
erage graph depicted in Figs.  4 and 5 where 311 UMLS 
concepts representing only 55 LP covered 77.87% of all 
laboratory concept occurrences in screening EC forms. 
These findings clearly confirm the feasibility of creating 
a core dataset.

The results of this analysis include beside the dataset 
for LP, another dataset for the complete set of UMLS 
concepts and their 118 semantic types identified in 
10,000+ EC forms. These results could further contrib-
ute to the improvement of clinical research by serving as 
a rich source of data for researchers studying complexity 
and semantic content of EC. They can also be utilized as 
raw data to perform further analyses on other semantic 
domains, which might produce new core datasets that 
could contribute further to the enhancement of auto-
mated screening for clinical trials.

Comparison to earlier data models
Weng et al. extracted a list of the most frequent tags from 
EC text of 137,889 clinical trials by applying a pure Natu-
ral Language Processing (NLP) approach [67]. Weng’s list 
included 115 general tags in EC and did not focus on a 
certain domain, his list included only 20 concepts that 
may directly or indirectly refer to a LP, ELaPro over-
lapped with 17 of these concepts (10 PLCs and 7 SLCs). 
Doods et al. applied expert-knowledge to manually ana-
lyze 17 clinical trials and data elements of EHR systems of 
several hospitals in Europe to introduce a data inventory 
of 75 frequent research medical concepts that are availa-
ble as data items in EHR systems [68]. Dood’s data inven-
tory comprised 41 laboratory concepts in the domain 
“Laboratory Finding”, 29 of which overlapped with the 
dataset ELaPro. Kury et al. introduced a dataset of most 
frequent medical concepts of EC from 1000 random clin-
ical trials divided into 8 semantic domains using manual 
annotation of concepts into a web-based tool followed by 
an NLP analysis approach [69]. Kury sorted their results 
into domains, e.g. Device, Condition and Measurement 
etc. and analyzed the 15 most common concepts of each 
domain. Laboratory concepts were part of the domain 
“Measurement” and comprised 9 of its 15 most common 
tokens. All nine laboratory concepts from Kury’s dataset 
were part of ELaPro. All these findings provide support-
ing evidences of the accuracy and generalizability of our 
results.

While most of these relevant studies presented a gen-
eral analysis of semantic domains of EC, our study intro-
duces a specialized analysis for one entity of EC that is 
considered common and optimal for automated queries 
of EHR systems, i.e., LP, for which a clear gap in research 
and data models exist [51–53]. ELaPro is the result of 
analyzing a large number of UMLS-annotated screening 
EC forms (19516), thereby clearly exceeding the sample 
size of many relevant earlier studies. Furthermore, the 
EC forms used in this analysis covered almost all MeSH 
disease domains (see Fig. 3), which produces more repre-
sentative results and eliminates the bias that might come 
from being restricted to a specific clinical domain.

We noticed in our literature review that most of ear-
lier work have utilized NLP methods to provide a gen-
eral approach to semantic domains of EC with very 
little to no focus on LP. In 2019 Fraser et  al. used 3 
pre-trained datasets to study the performance of NLP 
approaches including “Deep Learning” methods in 
entity recognition, which is essential when studying 
fine-grained entities of EC like LP [70]. Several meth-
ods performed poor (F1 Score = 0.63) on the larg-
est dataset, “MedMentions”, that contains over 4000 
biomedical abstracts, annotated for UMLS seman-
tic types, suggesting potential challenges when solely 

https://doi.org/10.21961/mdm:44732
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Table 1  Top 55 screening LP ranked according to total frequencies. LP are listed using UMLS and LOINC Terminologies

Rank 1ry LOINC Code UMLS Lab. Procedure UMLS Definition nTotal

1 59,826–8 C3525719 Measurement of creatinine in blood 1817

2 7918–6 C3714540 HIV Antibody Measurement 1670

3 13,955–0 C0201487 Hepatitis C antibody measurement 1595

4 76,625–3 C0201836 Alanine aminotransferase measurement 1464

5 63,557–3 C0201477 Hepatitis B surface antigen measurement 1462

6 2106–3 C0546577 HCG Pregnancy Test 1383

7 26,515–7 C0032181 Platelet Count measurement 1381

8 1920–8 C0201899 Aspartate aminotransferase measurement 1303

9 54,363–7 C0201913 Bilirubin, total measurement 1265

10 4548–4 C0474680 Hemoglobin A1c measurement 1021

11 59,260–0 C0518015 Hemoglobin measurement 968

12 26,511–6 C0948762 Absolute neutrophil count 851

13 2164–2 C0373595 Creatinine clearance measurement 758

14 15,074–8 C0392201 Blood glucose measurement 633

15 69,405–9 C3811844 Estimated Glomerular Filtration Rate 513

16 26,464–8 C0023508 White Blood Cell Count procedure 487

17 19,197–3 C0201544 Prostate specific antigen measurement 471

18 77,145–1 C0428568 Fasting blood glucose measurement 400

19 5010–4 C1533728 Hepatitis C virus genotype determination 352

20 72,383–3 C5189164 HER2 in tissue by immunoassay 324

21 1783–0 C0201850 Alkaline phosphatase measurement 287

22 14,130–9 C3811131 Estrogen Receptor Measurement 283

23 10,676–5 C1868902 HCV viral load 257

24 70,218–3 C0202236 Triglycerides measurement 195

25 6298–4 C0729816 Blood potassium measurement 194

26 34,714–6 C0525032 International Normalized Ratio 191

27 40,557–1 C0373717 Progesterone receptor assay 180

28 1996–8 C0201925 Calcium measurement 171

29 5964–2 C0033707 Prothrombin time assay 137

30 14,913–8 C0853134 blood testosterone measurement 131

31 54,347–0 C0201838 Albumin measurement 130

32 14,647–2 C0201950 Cholesterol measurement test 130

33 22,748–8 C0202117 Low density lipoprotein cholesterol measurement 126

34 69,739–1 C0202274 Urine drug screen 124

35 26,446–5 C2697913 Leukemic Blast Count 122

36 1986–9 C0202100 Insulin C-peptide measurement 118

37 13,954–3 C3835873 Serum Hepatitis B E Antigen, qualitative 113

38 3015–5 C0202230 Thyroid stimulating hormone measurement 111

39 50,564–4 C0042014 Urinalysis 102

40 33,763–4 C1533071 N terminal pro-brain natriuretic peptide level 99

41 82,904–4 C2074589 chromosome studies Philadelphia 95

42 20,570–8 C0018935 Hematocrit procedure 93

43 3173–2 C0030605 Activated Partial Thromboplastin Time measurement 93

44 83,098–4 C0202022 Follicle stimulating hormone measurement 83

45 53,962–7 C0201539 Alpha one fetoprotein measurement 80

46 10,438–0 C3540684 CD20 Expressing Cell Measurement 76

47 76,485–2 C0201657 C-reactive protein measurement 74

48 58,410–2 C0009555 Complete Blood Count 71

49 42,595–9 C3641250 Hepatitis B DNA Measurement 68
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applying current NLP techniques to real-world data 
in the absence of a manual expert review [70, 71]. 
Recent NLP-based systems like Criteria2Query and 
ElilE achieved relatively better F1 scores in entity rec-
ognition (up to 0.795 and 0.79, respectively) [72, 73]. 
A more laboratory oriented system called Valx showed 

an F1 score above 0.97, however, this was only tested 
on a small entity (Diabetes Mellitus I and II). Recent 
NLP-based systems like Criteria2Query, ElilE or Valx 
provide a more scalable informatics approach [72–74]. 
However, our approach puts emphasis on highest accu-
racy of the results through physician-based curation.

Table 1  (continued)

Rank 1ry LOINC Code UMLS Lab. Procedure UMLS Definition nTotal

50 14,646–4 C0428472 Serum HDL cholesterol measurement 63

51 20,564–1 C0523807 Oxygen saturation measurement 60

52 30,395–8 C0857490 Granulocyte count 58

53 29,760–6 C0201916 Bilirubin, direct measurement 53

54 72,903–8 C0005845 Blood urea nitrogen measurement 51

55 1992–7 C0201924 Calcitonin measurement 50

Fig. 6  Screenshot of the dataset on MDM portal showing available download formats e.g. ODM and FHIR
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Strengths
Many earlier studies that analyzed EC were based com-
pletely or to a large extent on automated approaches 
like NLP, whose performance in analyzing fine-grained 
entities might be suboptimal compared to studies that 
involve manual expert review to process their data mod-
els similar to our study. ELaPro is a novel core dataset, 
not only because it combines an automated approach of 
semantic analysis followed by an intensive manual expert 
review to analyze complex EC patterns and concepts, 
but also because it represents the first public special-
ized dataset of LP in eligibility screening combining the 
UMLS with LOINC, one of most widely-adopted inter-
national references for laboratory concepts. The dataset 
ELaPro provides all potential LOINC-codes to the main 
element of each of the top LP which allows the user of 
this dataset to choose the code version that is most com-
monly used in their health system. ELaPro is also avail-
able in interoperable machine-readable formats like 
Operational Data Model (ODM) and Fast Health Inter-
operability Resources (FHIR) [75, 76].

Applications of ELaPro
ELaPro can serve as a data model in automated queries 
applied to EHR systems to automatically retrieve patients’ 
electronic data based on their laboratory results meeting 
certain criteria set by clinical researchers which will opti-
mize patient recruitment for clinical trials. ELaPro can 
also be useful in enhancing the interface between study 
feasibility platforms, i.e. planning feasibility of certain 
clinical research projects by evaluating the ability to find 
sufficient number of right candidates in a timely manner.

Limitations and challenges
Approach and Scalability: We realize that our approach 
does not provide an ultimate solution to automating 
patient recruitment, mainly due to lacking threshold val-
ues and comparable operators. However, providing an 
expert-curated dataset of the most common laboratory 
concepts can contribute to automate eligibility screening 
in many different systems.

The automated part of the analysis facilitates extraction 
and analysis of UMLS codes from a large number of pre-
annotated forms from the MDR of MDM portal. Further-
more, PLC and SLC terms illustrate the importance of 
manual curation in dealing with the issues of UMLS like 
redundancy and semantic complexity. While our expert-
based approach is not scalable in general, it ensures high 
accuracy in finding relevant lab concepts in ambiguous 
text strings of complex EC, which commonly lack entries 
and links in the LOINC or UMLS terminology system.

Potential Biases: The vast majority of EC analyzed in 
this study were originally taken from Clini​calTr​ials.​gov, 

which could pose a potential bias towards trials from the 
United States of America. Furthermore, the distribution 
of MeSH disease domains among included forms (Fig. 3) 
could also pose a potential bias towards the domains that 
are relatively more represented, i.e. neoplasms, cardio-
vascular and immune system diseases. Our work aims to 
study a representative sample of all major MeSH disease 
entities to produce a general core dataset of common LP. 
This set can be applied in EHR systems to enhance par-
ticipant recruitment for clinical studies in many different 
domains.

The complexity and redundancy of UMLS metathe-
saurus: Clinical terminologies have a complex semantic 
structure with redundant or duplicate concepts, this is a 
known issue in terminologies like UMLS [77], especially 
when it comes to components of laboratory tests. For 
instance, the same text string “Albumin” could refer to six 
semantically different concepts in UMLS (“Biologically 
Active Substance”, “Amino Acid”, “Peptide, or Protein”, 
“Gene or Genome”, “Laboratory Procedure”, “Clinical 
Attribute” or “Physiologic Function”). This issue poses 
challenges for automatic semantic processing of EC. In 
addition, many EC use names of pathologic conditions 
that imply the need to perform a LP rather than directly 
mentioning the name of the component to be tested, 
e.g. “Leukocytosis”, which refers to elevated white blood 
cells in blood belongs to semantic type “Finding”, yet 
implies the need to perform an LP to fulfill the criteria. 
Physician-based curations ensure semantic correctness 
of mapping text strings from EC to clinically relevant 
laboratory concepts defined in medical terminologies. 
This problem has led to many LP being confusingly anno-
tated by redundant concepts with non-laboratory seman-
tic types. This issue was dealt with in the manual part by 
using the hierarchy of PLC and SLC, where SLC’s repre-
sented all the possible redundant concepts that refer to 
the main laboratory concept (PLC).

Certain EC concepts like “Leukocytosis”, which do not 
belong to the two main laboratory semantic types, yet 
indirectly imply the need for a LP, posed a challenge to 
this study as they are not amenable to automated seman-
tic analysis. In most instances, this problem is solved by 
the manual expert review performed by a physician, but 
in some instances, the EC was vague or ill-defined, in 
which a LP is implied without specifying the exact com-
ponent to be tested, e.g. “Abnormal Liver Function”, in 
this case, these concepts were excluded from the analysis.

Future directions
Further work is needed to disentangle the above men-
tioned challenges. Similar approach can be taken to study 
other semantic domains of EC and produce dedicated 
in-depth analyses in order to introduce high quality core 

http://clinicaltrials.gov
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datasets that help standardize knowledge representation 
of EC and improve patient recruitment in clinical trials.

Conclusion
In this study we present ELaPro, the first specialized 
public core dataset for the most frequent 55 laboratory 
procedures in EC of clinical trials. This semi-automated 
study proves the feasibility of establishing such a dataset. 
The extensive manual expert curation of LP in UMLS-
annotated EC and mapping results to the widely-adopted 
laboratory reference, i.e. LOINC distinguishes the data-
set ELaPro from previous work. ELaPro is available in 
machine-readable formats like CSV, ODM and HL7 FHIR 
and can serve as a blueprint data model in automated 
queries applied to EHR systems to optimize patient 
recruitment in clinical trials and enhance the function 
of study feasibility platforms. Similar approach could be 
taken to study other semantic domains of EC and further 
research should try to solve problems like scalability and 
redundancy of concepts in complex medical terminolo-
gies like UMLS.
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