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Abstract 

Background:  Missing data prove troublesome in data analysis; at best they reduce a study’s statistical power and at 
worst they induce bias in parameter estimates. Multiple imputation via chained equations is a popular technique for 
dealing with missing data. However, techniques for combining and pooling results from fitted generalized additive 
models (GAMs) after multiple imputation have not been well explored.

Methods:  We simulated missing data under MCAR, MAR, and MNAR frameworks and utilized random forest and 
predictive mean matching imputation to investigate a variety of rules for combining GAMs after multiple imputa-
tion with binary and normally distributed outcomes. We compared multiple pooling procedures including the “D2” 
method, the Cauchy combination test, and the median p-value (MPV) rule. The MPV rule involves simply computing 
and reporting the median p-value across all imputations. Other ad hoc methods such as a mean p-value rule and a 
single imputation method are investigated. The viability of these methods in pooling results from B-splines is also 
examined for normal outcomes. An application of these various pooling techniques is then performed on two case 
studies, one which examines the effect of elevation on a six-minute walk distance (a normal outcome) for patients 
with pulmonary arterial hypertension, and the other which examines risk factors for intubation in hospitalized COVID-
19 patients (a dichotomous outcome).

Results:  In comparison to the results from generalized additive models fit on full datasets, the median p-value rule 
performs as well as if not better than the other methods examined. In situations where the alternative hypothesis is 
true, the Cauchy combination test appears overpowered and alternative methods appear underpowered, while the 
median p-value rule yields results similar to those from analyses of complete data.
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Background
Before the onset of data collection in many studies, sam-
ple size calculations are conducted to ensure that the 
study is adequately powered to find a meaningful clini-
cal effect size if one exists. In all but the rarest circum-
stances, some data cannot be collected as planned, which 
leaves the analyst with a dataset that is either underpow-
ered, biased in some manner, or both. Typically, missing 
data are categorized into three common patterns. Data-
sets with missingness completely at random (MCAR) 
occur when the probability of a data point being miss-
ing is completely independent of its value or the value of 
other variables. Missingness at random (MAR) instead 
refers to when the probability of a value being missing 
is dependent on other covariates in the dataset, but not 
dependent on the true value of the variable. The most dif-
ficult missing data pattern, missingness not at random 
(MNAR), occurs when the probability of missingness of a 
variable is dependent on its value [1].

Since missing data are commonplace, several methods 
exist which address their ensuing problems. The most 
straightforward approach to dealing with missing data is 
simply to use only rows of the data that are not missing 
any values. This approach, commonly referred to as the 
“complete case” or “list-wise deletion” approach, is useful 
when the amount of missing data is small (some recom-
mend no more than 5% of the data be missing), but inap-
propriate when there is substantial missing data [2–4]. In 
the latter situation, a complete case approach is likely to 
be both underpowered and biased. A popular approach 
to mitigate these issues, multiple imputation (MI), 
involves replicating the analytic dataset m times and then 
in each replicated dataset filling in missing values with 
a stochastic “reasonable guess” (imputation) of what the 
true value might be. Due to the stochastic component, 
each of the m datasets is filled in with slightly different 
guesses. A variety of imputation methods exist, two of 
which will be analyzed in this paper: predictive mean 
matching (PMM) and random forest (RF) imputation [5]. 
Multiple imputation is often paired with chained equa-
tions, also known as the fully conditional specification, 
which specifies the multivariate imputation model one 
variable at a time. Starting with an initial simple impu-
tation (e.g., mean imputation), multivariate imputation 
by chained equations uses a sequence of iterations from 
the conditionally-specified models to generate imputed 

values that reflect relationships in the data. This tech-
nique can be generalized well to both continuous and 
categorical data [6].

PMM imputation is particularly useful for continuous 
variables and is conducted by estimating a value for a 
missing data cell with multiple regression based on other 
columns that are not missing data. For a given “modeled” 
column, observations with similar predicted values (of 
the same column) are placed together into small groups 
regardless of whether any data were initially missing. 
Then, the missing observations are randomly assigned 
the true values of the rows from their group which were 
not missing the modeled column. This process allows 
realistic values to be used in imputations that certainly 
exist on the domain of the data as well as maintain some 
variability [5, 7]. RF imputation is a powerful non-para-
metric method which involves building a random forest 
for each variable with missing values and using the results 
of that random forest to impute data. Typically, a sample 
of non-missing data will be sampled with replacement to 
create a classification or regression tree. This process will 
be repeated multiple times on bootstrap resamples, cre-
ating a variety of trees, which results in a bootstrapped 
random forest based on observed data. With this random 
forest, one can randomly select observed values from the 
terminal nodes of each of the trees in the forest to replace 
the missing data. Multiple random samples from these 
terminal nodes can create multiple imputed datasets [8]. 
Random forests can conveniently handle both categorical 
and continuous data and will often perform well in the 
presence of interacting or non-linear relationships.

Regardless of the exact imputation method, once all 
m copies of the original dataset have had their missing 
data stochastically filled in with imputed data, statisti-
cal analyses are performed on each imputed dataset to 
produce m results pertaining to the research question at 
hand. The final step of the MI process is to then pool the 
m results together and treat the combined outcome as 
the result [9]. When the statistical analysis of the imputed 
datasets involves an estimate or test statistic that is nor-
mally distributed, the pooling of results can be accom-
plished using a process called Rubin’s rules. To obtain the 
combined estimate, one can simply take the mean of the 
estimates over the m analyses. Obtaining the combined 
variance involves a calculation with the variance of the 
estimate across imputations with the average variances of 

Conclusions:  For pooling results after fitting GAMs to multiply imputed datasets, the median p-value is a simple yet 
useful approach which balances both power to detect important associations and control of Type I errors.
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the estimate within each imputation. Then, one can draw 
final conclusions with a Wald test based on the mean 
estimate and the combined variance [9, 10]. However, 
this pooling process is designed to work only with esti-
mates that are normally distributed; when presented with 
estimates or test statistics that are non-normally distrib-
uted, one must use alternative methods to pool results 
from m multiply imputed datasets.

One such instance of complex models that do not have 
normally distributed estimates or test statistics are gen-
eralized additive models (GAMs). GAMs are useful for 
their ability to fit a line through data with varying “curvy-
ness” in a more efficient and elegant manner than other 
traditional polynomial functions. Although most often 
employed for purposes of prediction and description, 
GAMs will sometimes be used for hypothesis testing 
and inference; our later applications concern situations 
where a flexible model is desired alongside hypothesis 
tests. Several fitting procedures exist to estimate the 
components involved in GAMs, most of which have a 
penalty term which can optimize model fit while pro-
tecting against overfitting. However, with such flexibility 
comes the cost of no longer having interpretable slope 
estimates or normally distributed test statistics. Thus, 
GAM parameters have no meaningful interpretation and 
cannot be combined with straightforward pooling meth-
ods. In general, beyond plotting a GAM, the only way to 
examine the importance of a GAM association numeri-
cally is to examine its effective degrees of freedom along 
with an approximate F statistic. These approximations 
are detailed in Wood [11, 12] and can provide a p-value 
which, if small, suggests that the relationship between 
a predictor in the GAM and the outcome is not a per-
fectly horizontal line. Wood’s approximations for these 
F statistics and effective degrees of freedom (and their 
corresponding p-values) are implemented in the R pack-
age mgcv [11]. Therefore, rather than attempting to apply 
normal pooling rules to these non-normal statistics, we 
suggest that additional methods of pooling are necessary 
when using GAMs together with multiple imputation.

We set out to examine several methods of pool-
ing GAMs after MI based on their F statistics, effective 
degrees of freedom (edfs), and p-values. A simple com-
bination method to pool GAMs after MI, and the focus 
of this study, is to take the median of all imputed within-
imputation GAM p-values as the pooled p-value measur-
ing the strength of evidence for the association. Eekhout, 
Wiel, and Heymans [13] aptly named this method the 
median p-value (MPV) rule, and they investigated its 
utility in determining the significance of categorical pre-
dictor variables in logistic regression models after MI. 
They demonstrated that in null models, the Type I error 
rate of results based on the MPV rule is only slightly 

inflated. In  situations where the alternative hypothesis 
is true, the MPV rule performs equal to or better than 
other conventional methods. Several other methods for 
combining GAMs after MI are applicable as well; the 
most complex of which is the D2 method outlined by van 
Buuren [5] and originally proposed by Rubin [14], which 
involves combining test statistics in such a way to test 
against a "pooled" F distribution. Another method, the 
Cauchy combination test proposed by Lui and Xie [15], 
involves transforming then summing p-values into a joint 
Cauchy-distributed test statistic which can then be com-
pared against the Cauchy cumulative distribution func-
tion. The Cauchy combination test was introduced in the 
context of genomic data, and to our knowledge has not 
been applied in the context of MI. Finally, we will investi-
gate some alternative ad-hoc approaches described in the 
following section.

Our primary motivation in this work is to demonstrate 
the viability (or lack thereof ) of the MPV rule in  situ-
ations where MI and GAMs are used in conjunction. 
Such an exceptionally straightforward pooling method, if 
empirically valid, would be a welcome and cogent solu-
tion to this complex problem. In this work, we com-
pare the empirical performance of the MPV in terms of 
power and type I error control relative to a suite of pos-
sible alternatives, using simulations and case studies. Our 
simulation studies were adapted from Friedman [16] to 
fit GAMs on multiply imputed data to variables which 
have varying degrees of "true" signal (including one vari-
able with a true signal of zero). We additionally vary the 
imputation methods (PMM and RF), the missingness 
mechanisms (MCAR, MAR, and MNAR), and the out-
come type (continuous/dichotomous). We then apply 
our proposed MPV rule and its competitors in two case 
studies, one examining the effect of home elevation (i.e. 
meters above sea level) on a six-minute walk distance for 
patients with pulmonary arterial hypertension (PAH), 
and the other investigating the extent to which C-reactive 
protein is associated with the risk of mechanical ventila-
tion for patients infected with the novel Coronavirus dis-
ease (COVID-19).

Methods
Proposed multiple imputation pooling methods
In this section, we describe the various methods we 
examined in this study. The first, D2, involves pooling 
F-statistics from the m GAM fits and then comparing 
a pooled version of the F-statistic to an F-distribution 
whose numerator and denominator degrees of freedom 
are based upon the variance of F-statistics across imputa-
tions, the effective degrees of freedom from each GAM, 
and the number of imputations. Further details regard-
ing this method can be found in van Buuren [5]. This D2 
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method is the most complex of the approaches evaluated 
in this study, and while understandable, it is not immedi-
ately intuitive. Some functionality is provided in R for D2 
in the "mice" package [17], but the existing implementa-
tion is not applicable in the GAM context without cus-
tom programming. Furthermore, a component of the D2 
method involves dividing the average test statistic across 
imputations by the number of parameters in the model; 
however, the number of parameters in GAMs are not 
fixed between models that are run on different imputa-
tions, so the correct denominator to use in the equation 
is unclear. Therefore, we evaluate two versions of the D2 
method, one in which the average test statistic across 
imputations is divided by the average number of param-
eters across imputations (D2) and the other which is the 
average of the quotients of each test parameter divided 
by the number of parameters within imputation models 
(Alt. D2), as shown below:

where means are taken across m imputations
The second method we investigated is the Cauchy 

combination test, which deals only with p-values (as do 
all other considered combination methods). The Cauchy 
combination test is conducted by summarizing p-values 
from all imputations using the formula below into t0, 
then comparing this statistic against a standard Cauchy 
distribution:

This method requires fewer calculations and is easier 
to implement than the D2 method. The Cauchy combi-
nation method was originally conceived to assess sig-
nificance among large numbers of tests in genome-wide 
association studies and was designed to be most accurate 
for small p-values. The fatter tails of the Cauchy distribu-
tion reduce the effects of correlation between p-values of 
similar tests, and in our case, tests from multiply imputed 
datasets are likely to be correlated [15].

Finally, our proposed solution, the MPV rule, is simply 
to take the median p-value across the m GAM results. 
Ultimately, in this context, the analyst needs a singular 
summary measure, and the median of all of the p-values 

D2 :
mean(test statistics)

mean(number of parameters)

Alt. D2 : mean

(

test statistics

number of parameters

)

,

t0 =

m
∑

i=1

tan{(.5− pi)π}

p-value =
1

2
− (arctan t0)/π

is a concrete (if ad-hoc) method that has been shown to 
work in other situations [13]. The median p-value across 
all GAMs captures the central tendency of all individual 
p-values in a robust manner. We also explore the empiri-
cal properties of several other ad-hoc methods, including 
the mean p-value rule (identical to the MPV but with a 
different measure of central tendency), a single imputa-
tion approach (simply using results from a single imputed 
dataset, avoiding any pooling procedures) and a complete 
case (list-wise deletion) approach.

Simulation
Data for the simulation was generated using a model 
adapted from Friedman ([16], p. 37):

where

and

We chose this true generating model due to its reason-
able number of variables, its variety of beta parameter 
sizes, and its diversity of functional forms (trigonomet-
ric, polynomial, and linear). The GAM approach should 
feasibly be able to approximately capture the relationship 
between each covariate (except for x6) and the response, 
while results pertaining to x6 can be considered as 
evaluating the type I error rate (since the true relation-
ship between x6 and y is a horizontal line, i.e., the null is 
true). Each covariate was generated from an independ-
ent uniform(0, 1) distribution. While the independence 
assumption is somewhat unrealistic and will limit impu-
tation quality, it allows us to examine the power of each 
covariate’s relationship with the outcome more precisely. 
A similar model was utilized in simulations with a binary 
outcome; a standardized version of this formula pro-
duced a series of normally distributed random variables 
which were then transformed into a probability through 
a logit link and fed into a binomial process. This results 
in a binary outcome for which the log-odds of success 
are related to each covariate according to the same func-
tional form as above.

Given a missingness mechanism and outcome type, 
each simulation study was carried out using the steps 
below (also outlined in a flow chart in Fig. 1):

1.	 The Friedman generating model was used to simulate 
S = 10,000 datasets.

2.	 GAMs were fit to all full datasets wherein each 
covariate was modeled with its own smoothed term 

f (x) = 10sin(x1x2�) + 20(x3 − .5)
2
+ 10x4 + 5x5 + 0x6 + �

ε ∼ N (0, 9)

x1, . . . , x6 ∼ unif (0, 1)
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to produce our primary “full-data” (i.e. “gold-stand-
ard”) benchmarks. Because GAMs can vary in their 
number of basis functions, we specified that each 
fit be limited to a maximum of 10 basis functions to 
maintain model consistency across imputations and 
simulations. Note that for binary outcomes, GAMs 
were fit using a binomial-family model with a logit 
link.

3.	 Next, using the mice package [17], we simulated 
missingness within each dataset at a rate of 35% 
under the prespecified missing data pattern. That is, 
after simulating missingness, roughly 65% of rows in 
a dataset had no missing data, while the other 35% 
were missing data for at least one variable. Descrip-
tion and verification of the procedure to simulate 
these missing data patterns is outlined in Schouten, 
Lugtig, and Vink [18].

4.	 As a second benchmark, GAMs were fit using list-
wise deletion (which reduced the sample to 65% of 
its original size) to allow for comparison of methods 
to the complete case approach (arguably, the simplest 
possible approach to missing data).

5.	 Each dataset was then multiply imputed using 
chained equations with m = 25. Default options were 
utilized under both random forest and predictive 
mean matching approaches. Imputation quality is 
described by Figure A7 in Additional file  1: Appen-
dix.

6.	 We ran similar GAMs (as in steps 2 and 4) on each of 
the m imputed datasets.

7.	 We implemented the D2, Cauchy combination, MPV, 
and mean p-value rules to pool results on the GAMs 
from step 7.

8.	 Pooled p-values were compared to a significance 
level of 0.05 to compute power to detect the associa-
tions for x1 through x5 and to calculate Type I error 
rates for x6. These were then compared to both the 
full-data results (gold-standard) and complete case 
results.

These steps were repeated for normal and binary out-
come data and under MCAR, MAR, and MNAR missing 
data patterns, which resulted in six total simulation stud-
ies. Attention is primarily paid in this paper to MAR data, 
but results under the MCAR and MNAR framework are 
also presented in Additional file 1: Appendix.

Preliminary analysis revealed that the default GAM fit-
ting option, generalized cross-validation (GCV), often 
produced results with a much higher type I error rate 
than the anticipated 5%. A short comparison of model 
fitting techniques revealed that between maximum likeli-
hood (ML), restricted maximum likelihood (REML), and 
GCV, the ML method produced type I error rates closest 
to, although still slightly higher than, the expected rate of 
5%. This finding is consistent with writings from Wood 
[11], where GCV is found to produce less accurate results 
than ML, and from Wood [19, 12], where it is argued that 
GCV is more at risk than ML or REML of global opti-
mization failure, which in turn under-penalizes over-fit-
ting and leads to a higher Type I error rate. Therefore, all 

Fig. 1  Simulation study flow chart
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models in the simulation study utilized ML for GAM fit-
ting; however, all three fitting methods are examined and 
compared in our first application. Finally, we repeated the 
simulation studies with cubic B-splines in lieu of GAMs 
to evaluate and compare the performance of the MPV 
using an alternative semi-parametric spline model for 
normal outcomes.

Results
Results for each of the pooling methods, as well as the 
complete case analysis and full data analysis, are shown 
in Fig. 2 (normal outcome) and Fig. 3 (binary outcome).

In Fig.  2, we find the pooling methods have a some-
what consistent order in regard to proportion of tests 
rejected at p < 0.05 across imputation methods and vari-
ables, with the proportion of rejections being highest 
for the Cauchy combination method, followed by the 
MPV rule, a single imputation approach, a mean p-value 
rule, and then the two D2 methods. The exceptions to 
this ordering occur for the third and sixth covariates, for 
which single imputation rejects a larger proportion of 
tests than the MPV rule.

The Cauchy combination rule seems to be the highest-
powered approach for pooling; in all situations it has the 
highest proportions of tests with p < 0.05, sometimes sus-
piciously finding more significant findings than the “gold 

standard” models run on the full data. However, for the x6 
variable which has a null effect, the Cauchy combination 
rule significantly over-rejects tests compared to other 
methods. Curiously, almost all methods over-rejected 
tests (i.e., rejected tests at a rate higher than 5%) for the 
x6 variable, including the full data analysis and complete 
case analysis. In terms of power, the MPV rule performs 
only slightly worse than the full data analysis for variables 
x1 through x5 and performs much better than the com-
plete case analysis in most settings. On the other hand, 
both D2 methods perform rather poorly (e.g., low power) 
in most situations compared to the other approaches, 
although they still typically perform better than the com-
plete case analysis. The D2 methods additionally have low 
Type I error rates (rates that are much lower than those 
for the full data or complete case approaches).

Findings for the binary outcome data under a MAR 
framework are very similar, as shown in Fig.  3. Addi-
tionally, findings regarding the capability of these pool-
ing methods were similar in simulations conducted 
under MCAR and MNAR frameworks (see Additional 
file  1: appendix). A point of peculiarity is that in both 
the normal and dichotomous outcome simulations, the 
Type I error rate in the perfect, full-data data case devi-
ates further than anticipated from 5%. We conjecture 
that the p-value distribution even in the full-data case is 

Fig. 2  Proportion of tests that rejected the null hypothesis (normal outcome, MAR, GAM)
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biased due to the inherent variability in the smoothing 
parameter selection that is not being accounted for when 
testing the null hypothesis. However, as mentioned pre-
viously, these GAMs were fit with a ML approach which 
in preliminary analyses had lower Type I error rates than 
REML or GCV. So, although the Type I error rate is not 
as low as one might hope for in the perfect, full-data data 
case, we have utilized what we believe to be currently the 
most conservative method of all fitting options.

A natural follow-up question that arises for the MPV 
is: how many imputed datasets are necessary to achieve 
satisfactory performance? To shed light on this, we illus-
trate the proportion of tests with p < 0.05 using the MPV 
and several choices of the number of imputed datasets 
in Fig.  4. Generally, the performance of the MPV rule 
improved with an increased number of imputations; 
as the number of imputed datasets increased, power 
increased for x1, x2, and x4, and remained constant for 
x5, while the type I error rate decreased toward the full-
data level. Improvements were greatest for low number 
of imputations and tapered off after 10 imputations. 
Strangely, this was not the case for x3, where the MPV 
rule’s power decreased with additional imputations. This 
is because both PMM and RF have difficulties captur-
ing the nature of the x3 relationship to Y (see Additional 
file 1: Appendix Figure A7), particularly PMM, since the 

relationship is non-linear in such a fashion that the linear 
relationship is biased toward the null (U-shaped).

PMM imputation seemed to yield results more consist-
ent with the full data approach than RF imputation, with 
the exceptions of x3 and the null variable x6, where the 
type I error rate was higher for PMM imputed data. As 
stated above, the better performance of RF over PMM for 
x3 is likely due to RF imputation’s ability to better identify 
and model non-linear relationships.

In addition to GAMs, the effectiveness of the MPV 
in comparison to other methods was also examined on 
B-spline models. B-spline models, like GAMs, are a tech-
nique for fitting a smooth curve through data, where the 
curviness of the line is possible due to the combination 
of “knots” being placed along the x-axis and constrained 
polynomial terms. In our investigation, we examined 
cubic B-spline regression models with 10 degrees of free-
dom with knots placed at seven internal equally-spaced 
quantiles of the covariate. B-splines were examined only 
with normal data, and inference was conducted using 
likelihood ratio tests (LRT). Figure 5 presents results for 
B-spline models on normal data with a baseline MAR 
missing data structure. The alternative D2 method was 
not used in this analysis, as the number of degrees of 
freedom in the case of B-splines is more tractable.

Fig. 3  Proportion of tests that rejected the null hypothesis (binary outcome, MAR, GAM)
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Fig. 4  MPV rule performance by number of imputations (normal outcome, MAR, GAM)

Fig. 5  Proportion of tests that rejected the null hypothesis (normal outcome, MAR, B-spline)
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Again, Fig. 5 shows that the MPV performs compara-
bly well in terms of power  for covariates x1 through x5. 
Now, we also see a satisfactory performance of MPV for 
the null case (x6), in which, the MPV rule is closest to the 
expected Type I error rate while remaining slightly con-
servative. Further B-spline results are shown in the Addi-
tional file  1: Appendix for MCAR and MNAR missing 
data patterns. Figure 6 shows that the performance of the 
MPV generally improves or stays steady with additional 
imputations when used with LRTs of B-spline models, 
with the same exceptions as GAMs with the x3 variable.

It is clear we observe bias away from the null in both 
B-spline and GAM settings. To investigate this, we plot 
the p-values for the null effect of x6 with the GAM results 
Fig.  7. We see that not only are PMM and RF p-values 
for null effects non-uniform (with a heavy lean towards 
smaller p-values), but the complete case and full data 
situations likewise are left-heavy. Although we found that 
the type I error rate was better controlled for B-splines 
than for GAMs, similar histograms indicate that the 
B-splines still show evidence of bias away from the null 
after imputations (Fig.  8). However, the full data and 
complete case rejections of the null are near-uniform 
with rejection rates almost exactly at 5%, in contrast to 
the higher rates seen with GAMs. In conclusion, we have 

found that default imputation methods (PMM and RF) 
bias results slightly against the null, but also that GAM 
p-values are biased against the null regardless of impu-
tation technique as demonstrated by the inflated type I 
error rates even in the full data analysis.

Normal outcome application: six‑minute walk distance 
based on elevation in PAH patients
A recent paper [20] examined the effect of home eleva-
tion from sea-level (based on ZIP code) on distance 
walked during six minutes in patients presenting with 
pulmonary arterial hypertension. The six-minute walk 
distance (6-MWD) is an important clinical metric used 
for evaluating progression of disease. Several variables 
in this dataset were missing non-negligible amounts of 
data and the study authors used multiple imputation via 
chained equations with m = 25 imputations to address 
the missing data problem, using predictive mean match-
ing as their imputation method for continuous variables 
and logistic or multinomial regression for categorical 
variables.

A central model of interest from this study was a GAM 
in which 6-MWD was modeled by various demographic 
and clinical covariates, as well as a smoothed term for 
continuous elevation. Elevation was provided based on 

Fig. 6  MPV rule performance by number of imputations (normal outcome, MAR, B-splines)
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patient home address. It was in this context that we apply 
the various rules of GAM combination across multiple 
imputations to evaluate how these methods perform on 
real-world data. Figure  9 shows the relevant covariate 
curves of 25 GAMs fit with ML to data from each of the 
m imputations. Although standard errors of the curves 
are not plotted for the sake of clarity, it is visibly evident 
how some curves might suggest a stronger relationship 
between elevation and distance walked than others.

This heterogeneity across imputations is further dem-
onstrated in Fig.  10, which plots all p-values from each 

imputation’s GAM as well as the results from all investi-
gated pooling methods. The three panels represent three 
GAM fitting methods: ML, REML, and GCV, the last of 
which is the default GAM fitting method. The motivation 
for conducting GAMs with all three fitting methods was 
derived from preliminary concerns about inflated Type I 
error rates with the GCV approach.

For all model fitting options, the MPV approach 
yielded a p-value as anticipated – in the middle of all 
single imputation models’ p-values. The Cauchy com-
bination method gave smaller p-values than the other 

Fig. 7  Distribution of p-values for null effect with GAMs

Fig. 8  Distribution of p-values for null effect with B-splines
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combination methods, while the D2 method and alter-
native D2 method produced p-values on the high end, if 
not outside the range, of the single imputation p-values. 
In this application, the selected pooling method could 
clearly impact the results of the study if the authors 
leaned heavily on the alpha = 0.05 criteria for statistical 
significance of p-values.

Binary outcome application: Intubation risk by C‑reactive 
protein level
Our second application uses data from Peterson [21] 
and Windham et al. [22] which modeled the risk of intu-
bation for hospitalized patients infected with COVID-
19 based on patient characteristics including C-reactive 
protein (CRP) levels, age, body mass index (BMI), race, 
sex, lactate dehydrogenase, and additional clinical 

Fig. 9  Effects of smoothed elevation on 6-MWD for each imputation

Fig. 10  Imputed and combined p-values across fit methods
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measures. Limited clinical insight of risk factors for 
COVID-19 complications early in the pandemic neces-
sitated the need for flexible modeling without restrictive 
parametric assumptions. Therefore, a GAM with a logit 
link was chosen with a smoothed term for CRP level to 
maximize its predictive ability on intubation risk.

Missing data were non-negligible and dependent on 
observed patterns in the data. Therefore, we assumed a 
MAR framework and employed multiple imputation via 
chained equations with m = 25 imputations for analy-
sis. As before, we examine the behavior of the MPV 
rule in this analysis in comparison to other pooling 
methods. ML was used in this application as the fitting 
method. Figure  11 shows the distribution of p-values 
after MI. The rank order of the combined p-values was 
similar between predictive mean matching and random 
forest methods. Again, we see that the Cauchy combi-
nation rule results in the smallest p-value, while the D2 
and mean p-value rules have larger p-values. Unlike the 
prior application however, all methods lead to the same 
inferential decision (using a 5% significance level), so 
the choice of pooling method is less consequential. It 
is worth noting that a listwise deletion approach yields 
a p-value of 0.098, much higher than all other methods. 
Even though there were only 8 missing values for CRP 
out of the original 158 participants, only 51 of partici-
pants had complete data for all covariates, so listwise 
deletion cuts the sample to only 32% of its original 
size. Hence, multiple imputation was necessary in this 
example to fully leverage the available data and to max-
imize power/precision.

Discussion
When missing data arise, MI has proven to be a useful 
approach to minimizing the loss of power and bias that 
often accompany missing data. When using flexible mod-
eling techniques on MI datasets such as GAMs, pooling 
methods are not always straightforward, especially when 
test statistics or parameters are not normal and cannot 
be combined with Rubin’s rules. We have demonstrated 
that the MPV is a relatively valid, valuable, and straight-
forward way to pool results in comparison to other meth-
ods for estimation with GAMs or B-splines after MI. 
This result was found under MCAR, MAR, and MNAR 
missing data frameworks. This finding aligns with simi-
lar results from Eekhout, van de Wiel, and Heymans [13] 
in their application of the MPV to multi-categorical vari-
ables in logistic regression. Certainly, other methods have 
also demonstrated utility; if avoiding a Type II error sig-
nificantly outweighs the cost of making a Type I error, 
then the Cauchy combination test is recommended. If 
the analyst is concerned with avoidance of Type I errors, 
then one of the D2 approaches or the mean p-value rule 
might prove useful. Aside from these cases, we conclude 
that true to its namesake, the MPV rule strikes an excel-
lent middle ground by balancing decent power with a 
moderately controlled rate of false positives. Not only is 
the MPV an empirically helpful tool, but its simplicity 
facilitates its implementation in any software package.

The performance of D2 was somewhat poor in our 
simulation studies, but this is in line with what other 
empirical studies have found. In his description of the D2 
method, van Buuren [5] describes that, in comparison to 
other combination methods, it is often underpowered 

Fig. 11  Imputed and combined p-values for CRP and intubation relationship
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since it utilizes less of the information that the data pro-
vides compared to other methods. However, in other 
simulations, the D2 method has performed too liberally, 
particularly with large sample sizes, large amounts of 
missing data, and few imputations [5]. Thus, the perfor-
mance of D2 remains unpredictable.

There was a non-negligible amount of bias towards the 
alternative hypothesis in GAMs, even for models fit to 
the full dataset using maximum likelihood. This bias in 
the full-data models was attenuated using the B-spline 
LRT approach. However, since default options were 
used in the multiple imputation PMM and RF mod-
els, the imputation models were not correctly specified, 
which induced additional bias in both B-spline and GAM 
approaches when performed on imputed datasets (as 
seen in Figure A7 of the Additional file 1: Appendix). This 
observation indicates that a more flexible imputation 
model (e.g. one which utilizes splines) or a better-tuned 
imputation model would improve likely the performance 
of all methods by attenuating this remaining source of 
bias; this is a promising avenue for future research and 
additional simulation studies.

Conclusions
In short, we have shown the MPV rule can be a use-
ful analytic tool for pooling GAM or B-spline results 
after multiple imputation for statisticians who need a 
straightforward, accurate, and easily implemented pool-
ing approach when dealing with missing data in MCAR, 
MAR, and MNAR situations. Not only does the MPV 
have adequate or superior power for detecting a variety 
of linear and non-linear relationships compared to its 
alternatives, but it also does a reasonable job of control-
ling the Type I error rate which seems to improve with 
the quality of the imputation model. While arguably the 
simplest method is to use the complete-case analysis 
and avoid the imputation procedure altogether, we have 
demonstrated that the MPV rule maintains simplicity 
while also leveraging all observed data to improve power 
and precision. Further research into the effectiveness of 
the MPV rule in additional settings such as nonpara-
metric analyses, exact tests, and penalized regression 
may continue to expand upon on its utility in multiple 
imputation.
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