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Abstract
Background: Mendelian randomization (MR) is a useful approach to causal inference from observational studies
when randomised controlled trials are not feasible. However, study heterogeneity of two association studies required
in MR is often overlooked. When dealing with large studies, recently developed Bayesian MR can be computationally
challenging, and sometimes even prohibitive.
Methods: We addressed study heterogeneity by proposing a random effect Bayesian MR model with multiple
exposures and outcomes. For large studies, we adopted a subset posterior aggregation method to overcome the
problem of computational expensiveness of Markov chain Monte Carlo. In particular, we divided data into subsets and
combined estimated causal effects obtained from the subsets. The performance of our method was evaluated by a
number of simulations, in which exposure data was partly missing.
Results: Random effect Bayesian MR outperformed conventional inverse-variance weighted estimation, whether the
true causal effects were zero or non-zero. Data partitioning of large studies had little impact on variations of the
estimated causal effects, whereas it notably affected unbiasedness of the estimates with weak instruments and high
missing rate of data. For the cases being simulated in our study, the results have indicated that the “divide (data) and
combine (estimated subset causal effects)” can help improve computational efficiency, for an acceptable cost in terms
of bias in the causal effect estimates, as long as the size of the subsets is reasonably large.
Conclusions: We further elaborated our Bayesian MR method to explicitly account for study heterogeneity. We also
adopted a subset posterior aggregation method to ease computational burden, which is important especially when
dealing with large studies. Despite the simplicity of the model we have used in the simulations, we hope the present
work would effectively point to MR studies that allow modelling flexibility, especially in relation to the integration of
heterogeneous studies and computational practicality.
Keywords: Mendelian randomization, Bayesian inference, Study heterogeneity, Data partitioning

Background
Mendelian randomization (MR) [1–3] is a useful approach
to causal inference from observational studies when ran-
domised controlled trials are not feasible. It uses genetic
variants as instrumental variables (IVs) to explore puta-
tive causal relationship between an exposure and an out-
come. Conventional MR methods [4–11] have mainly
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used summary statistics of IV-exposure association and
IV-outcome association analyses, from a single study
(one-sample) or two independent studies (two-sample).
Among recent developments of MR methods, a Bayesian
approach [8, 12] has been proposed to tackle overlapping
samples in which a subset of participants are common
in the two association studies. This comes from the idea
that overlapping- and two- sample settings can be treated
as cases of missing data which can be imputed through
Markov chain Monte Carlo (MCMC) while estimating
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causal effects of interest. This way, we take full advan-
tage of all the observed and imputed data. Bayesian MR
also offers great flexibility of modelling complex data
structure and explicitly quantifies uncertainties of model
parameters.
It is not uncommon that studies from different research

groups are designed to address similar (but not exactly the
same) scientific questions. For example, in a genome-wide
association study (Study 1), data of genetic variants and
hypertension status (outcome) are collected to identify
outcome-associated genetic variants. In another indepen-
dent study (Study 2), besides this aim, the investigator is
also interested in causal effect of blood pressure medi-
cation (exposure) on hypertension. Therefore, exposure
information is also recorded. To investigate the exposure-
outcome causal relationship, a conventional option would
be one-sample MR using data from Study 2 only. Another
option would be a two-sample MR which will use genetic
variants and the outcome data from Study 1, and genetic
variants and the exposure data from Study 2. In other
words, the outcome data of Study 2 will be discarded.
Both of the options involve removal of data which, in our
view, is not necessary. In fact, we can combine observed
data from the two studies, and impute exposure data for
Study 1 in a Bayesian MR model. However, it is well pos-
sible that the two studies are not homogenous, which
should be taken into consideration in our modelling.
Another important aspect of Bayesian MR analysis (in

fact, all kinds of data analysis) is tractability of compu-
tation, as we are in the era of big data. MCMC requires
a large number of iterations and a complete scan of data
for each iteration [13]. Thus, it can be computationally
challenging, and sometimes even prohibitive. An intuitive
solution would be dividing data into a number of subsets
and enabling data analysis in parallel.
This paper aims to address study heterogeneity and

data partitioning for large studies in Bayesian MR. First,
we build a Bayesian MR model including multiple IVs,

exposures and outcomes based on two independent stud-
ies, of which one has exposure data completely missing.
To account for study heterogeneity, we propose a random
effect model. Second, a data partitioning and subset pos-
terior aggregation method [13] is adopted for analysis of
large studies. Third, simulation experiments are carried
out for different configurations of IV strength and miss-
ing rate of exposure data, followed by evaluation of our
proposed method.

Methods
Bayesian MR with study heterogeneity
Let X denote the exposure, Y the outcome, and U a
scalar variable summarising the set of unobserved con-
founders of the relationship between X and Y. Traditional
MR [9] requires that an IV (denoted by Z) is : i) asso-
ciated with the exposure X, ii) not associated with the
confounders U, and iii) associated with the outcome Y
only through the exposure X. These three assumptions
can be graphically expressed as Fig. 1 in which our inter-
est is whether X causes Y (the X → Y arrow). For
the purpose of illustration, we consider the data gener-
ating process shown in Fig. 2. Z1, Z2 and Z3 are vectors
consisting of L,K and M independent IVs respectively.
Random scalar variables X1 and X2 represent two expo-
sures. Random scalar variables Y1 and Y2 represent two
outcomes.
In a two-sample (or equivalently, two-study) MR set-

ting with or without overlapping individuals, it has been
shown that, compare to conventional MR analysis, a
Bayesian approach may lead to more precise estimates of
the causal effect by treating it as a case of incomplete
data which may be dealt with through iterative imputa-
tions using MCMC [12]. Here, we further generalize the
approach by allowing for some degree of heterogeneity
between different studies.
Suppose we have data collected from two independent

studies:

Fig. 1 Schematic representation of the three assumptions required in Mendelian randomization
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Fig. 2 Graphical model of Mendelian randomisation with outcomes Y1 and Y2, exposures X1 and X2 and unobserved confounder U. Z1 consists of L
instrumental variables of X1 and Z2 consists of K instrumental variables of X2. In addition, Z3 consists ofM instrumental variables shared between X1
and X2. The instrumental variables are assumed to be mutually independent

• Study A - observed data for IVs, exposures and
outcomes {Z1,Z2,Z3,X1,X2,Y1,Y2}.

• Study B - observed data for IVs and outcomes
{Z1,Z2,Z3,Y1,Y2} only.

Study A includes fully observed data for MR, whereas
Study B has exposure data completely missing. We shall
include random effect terms in our MR model to capture
study heterogeneity. By assuming standardised observed
variables and linear additivity, according to Fig. 2, our
models are constructed as follows.
For Study A,

U ∼ N(0, 1), (1)
X1|Z1,Z3,U ∼ N

(
α1Z1 + α31Z3 + δX1U , σ 2

X1A

)
, (2)

X2|Z2,Z3,U ∼ N
(
α2Z2 + α32Z3 + δX2U , σ 2

X2A

)
, (3)

Y1|X1,U ∼ N
(
β1X1 + δY1U , σ 2

Y1A
)
, (4)

Y2|X2,U ∼ N
(
β2X2 + δY2U , σ 2

Y2A
)
. (5)

For Study B,

U ∼ N(0, 1), (6)
X1|Z1,Z3,U ∼ N

(
VX1+α1Z1+α31Z3+δX1U , σ 2

X1B

)
, (7)

X2|Z2,Z3,U ∼ N
(
VX2+α2Z2+α32Z3+δX2U , σ 2

X2B

)
, (8)

Y1|X1,U ∼ N
(
VY1 + β1X1 + δY1U , σ 2

Y1B
)
, (9)

Y2|X2,U ∼ N
(
VY2 + β2X2 + δY2U , σ 2

Y2B
)
. (10)

In the above pre-specified models, αs are instrument
strength parameters, and δs are effects of U on Xs or
Y s. Causal effects of Xs on Y s are denoted by βs. The
study heterogeneity is accounted for by V s. Note that
X1 and X2 do not have observed data in Study B, but
they are part of data generating process, and thus, should
be included in the model. U is a sufficient scalar sum-
mary of the unobserved confounders. We assume that
U ∼ N(0, 1).
The combined dataset of Studies A and B (D, say) will

contain fully observed data for the instruments and the
outcomes. However, all participants in Study B have miss-
ing data of X1 and X2 which will be treated as unknown
quantities and imputed from their conditional distri-
butions given the observed data and current estimated
parameters using MCMC. Let X∗ be imputed values of
X. Our approach involves the following sequence of five
steps.

1. Specify initial values for unknown parameters and
the number of Markov iterations T.

2. At the tth iteration, where 0 ≤ t < T , let missing
values of X1 and X2 in Study B be filled with X∗

1 drawn
from N

(
V (t)
X1

+ α
(t)
1 Z1 + α

(t)
31Z3 + δ

(t)
X1
U , σ 2

X1B
(t)

)

and X∗
2 drawn from

N
(
V (t)
X2

+ α
(t)
2 Z2 + α

(t)
32Z3 + δ

(t)
X2
U , σ 2

X2B
(t)

)
,
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respectively. Z1, Z2 and Z3 are observed values of IVs
in Study B.

3. Create a single complete dataset including both the
observed and the imputed data.

4. Estimate model parameters using MCMC based on
the complete dataset and set t ← t + 1.

5. Repeat Steps 2-4 until t = T .

Now we specify priors in the Bayesian model (2)-
(10). Previous GWAS studies show that individual SNPs
explain a tiny proportion of exposure variance [14–16],
corresponding to small magnitudes of the α parameters
in our model. In accord with this finding and previous
MR simulation studies [17], we set IV strength param-
eters αs to be independent and identically distributed
with mean zero and a small variance: α1 ∼ NL

(
0, 0.32I

)
,

α2 ∼ NK
(
0, 0.32I

)
, α31 ∼ NM

(
0, 0.32I

)
, and α32 ∼

NM
(
0, 0.32I

)
. The priors of both β1 and β2 are set to a

same distribution N(0, 102). Finally, we assign the priors
of the standard deviations σ s to a same inverse-gamma
distribution Inv-Gamma(3, 2), and random effects V s to
N(0, 1) in the Model (7)-(10) for Study B.

Bayesian MR for large studies
Advantages of an MCMC-powered Bayesian approach
to MR are counterpoised by a relatively higher compu-
tational burden and a possibly large memory require-
ment. A natural way of dealing with this problem would
be to divide data D into a number (J, say) of subsets
D1,D2, ...,DJ that we assume to contain an equal number
(q, say) of individuals for simplicity. By running sepa-
rate Bayesian MR analyses in parallel on the subsets, we
will obtain J subset-specific posteriors which can then
be aggregated in various ways. In this study, we adopt
a “divide-and-combine” approach proposed by Xue and
Liang [13] .
Let θ denote the entire set of unknown quantities in

the model. For subset Dj, where j = 1, 2, ..., J , let π(θ |Dj)
denote the joint posterior distribution of θ and μ̂j =
Ê(θ |Dj) the corresponding estimated mean vector. Let
μ̂ = 1

J
∑J

j=1 μ̂j be the average of the μ̂js. According to
[13], the posterior based on full data, π(θ |D), can be esti-
mated as the average of the recentred subset posteriors.

π̃(θ |D) = 1
J

J∑

j=1
π̃(θ − μ̂ + μ̂j|Dj). (11)

And it has been proved that ([13])

Eπ̃ (θ) − Eπ (θ) = Op
(
q−1) , (12)

and

Varπ̃ (θ) − Varπ (θ) = op
(
n−1) , (13)

where q is the sample size of the subsets and n the sample
size of the full dataset. Eπ̃ (θ) and Eπ (θ) are expectations of
the posteriors of θ aggregated from subsets and obtained
from full data respectively. Varπ̃ (θ) and Varπ (θ) are their
variances. It is easily seen that the difference in expecta-
tion depends on the sample size of the subsets and the
difference in variation depends on the sample size of the
full dataset.

Simulations - Bayesian MR with study heterogeneity
We used simulated data to evaluate our Bayesian MR
model with study heterogeneity in comparison with a con-
ventional MR method. In particular, we considered 12
configurations including

• 3 missing rates of the exposures: 20%, 50%, 80%
• 2 degrees of the IV strength (α1, α2, α31, α32): 0.1

and 0.3
• Zero and non-zero causal effects of the exposures on

the outcomes (β1,β2): 0 and 0.3.

The number of IVs was set to 15, 15 and 5 for Z1,Z2
and Z3 respectively. Data of each IV were randomly drawn
from a binomial distribution B(2, 0.3) independently. The
specified values of the effects of U on the exposures
(δX1 , δX2 ) and on the outcomes (δY1 , δY2 ) were set to 1.
Standard deviations σ s were set to 0.1. We simulated 200
datasets for each configuration.
For each dataset, we

• simulated a dataset of sample size nA which contains
observations of the IVs, exposures and outcomes
(dataset A, denoted by DA);

• simulated a dataset of sample size nB which contains
observations of the IVs, exposures and outcomes,
then included data of the IVs and outcomes only as if
the exposure data were missing (dataset B, denoted
by DB).

Sample size of D, the combined data of DA and DB,
was set to 400 in all configurations, i.e., n = nA + nB =
400. The missing rate of the exposures was defined as
nB
n ×100%. For example, if missing rate was 50%, we simu-
latedDA of sample size 200 andDB of sample size 200. To
allow for different degrees of study heterogeneity in differ-
ent datasets, random effects V s in study B were randomly
drawn from a uniform distribution U(−0.5, 0.5) indepen-
dently. Imputations of missing data and estimations of
model parameters were then performed simultaneously
using MCMC in Stan [18, 19]. R̂ was used to check
convergence of the Markov chains [20].
Estimated causal effects obtained from our BayesianMR

and two-sample inverse-variance weighted (IVW) estima-
tion [6] were compared using 4 metrics: mean, standard
deviation (sd), coverage (proportion of the times that
the 95% credible/confidence intervals contained the true



Zou et al. BMCMedical ResearchMethodology          (2022) 22:162 Page 5 of 9

value of the causal effect) and power (proportion of the
times that the 95% credible/confidence intervals did not
contain zero when the true causal effect was non-zero,
only applicable when β1 = β2 = 0.3 by defination).
Higher power indicates lower chance of getting false neg-
ative results. In IVW estimation, we used observed IV and
exposure data from DA and observed IV and outcome
data fromDB.

Simulations - Bayesian MR with study heterogeneity for
large studies
We also assessed the performance of dividing a big dataset
into subsets in our Bayesian MR with study heterogene-
ity in simulation experiments. The simulation scheme was
the same as above. However, the sample size of D was set
to a much larger value 50,000. For each configuration, a
single dataset was simulated by combiningDA andDB.We
randomly divided data into 5 subsets of equal sample size,
separately, for DA (DA1 , ...,DA5 ) and for DB (DB1 , ...,DB5 ).
Subset Di was then constructed by combining DAi and
DBi , where i = 1, ..., 5. This is to ensure that subsetDi had
the same missing rate as that of the full data D. Causal
effects were estimated using D, and using the 5 subsets in
Bayesian MR. To explore the impact of different data par-
titioning strategies on estimated causal effects, we carried
out the same analysis by also dividing data into 50 subsets
of sample size 1,000.

Results
R̂ values of all the parameters in the models (2)-(5) and
(7)-(10) were greater than 1 and less than 1.1 across the
simulations.

Simulation results - Bayesian MR with study heterogeneity
Table 1 displays simulation results when the true causal
effects were non-zero (β1 = β2 = 0.3). Each row of
the table corresponds to a configuration of a specified
missing rate and a degree of IV strength α. Columns
correspond to the estimated causal effects of X1 on Y1
(β̂1) and of X2 on Y2 (β̂2) from our Bayesian method
and from the IVW method evaluated using the four met-
rics. Unsurprisingly, the estimated causal effect of X1 on
Y1 was very similar to that of X2 on Y2 in each con-
figuration from Bayesian MR, because their true values
were set to be the same and the model had a symmet-
ric structure as shown in Fig. 2. This was also observed
in the results from the IVW method. However, Bayesian
MR outperformed IVW uniformly across all the config-
urations, with less bias, higher precision, coverage and
power. The impact of low missing rate was positive on
coverage but negative on power in IVW. However, such
impact was negligible in Bayesian MR. This was mainly
due to much higher variations of the estimates, and con-
sequently, much wider confidence intervals in IVW esti-

mation. Weaker IVs had little influence on unbiasedness
of the estimates and power, but resulted in slightly lower
precision and coverage in Bayesian MR. However, there
was a remarkable decrease in unbiasedness, precision and
power in IVW as IV strength decreased.
Table 2 presents simulation results when the true causal

effects were zero (β1 = β2 = 0). Again, the results of β̂1
was very similar to those of β̂2 in each configuration, sep-
arately, from Bayesian MR and from IVW. Overall, both
methods performed well. However, Bayesian MR still out-
performed IVW across all the configurations, with higher
coverage and precision and less biased estimates. In both
MRmethods, missing rate did not have a notable effect on
the estimates, whereas weaker IVs led to lower precision.

Simulation results - Bayesian MR with study heterogeneity
for large studies
Figure 3 depicts the joint posterior distributions of β̂1
(horizontal axis) and β̂2 (vertical axis) based on simulated
data when the true causal effects were non-zero. Columns
corresponds to three missing rates and rows two levels of
IV strength. In each panel, the black dot denotes the values
of true causal effects (β1 = β2 = 0.3). The red, orange and
blue contours are 2-dimensional Gaussian kernel density
estimation of the joint posterior (GKDEJP) from the full
dataset, aggregated GKDEJP from five subsets and aggre-
gated GKDEJP from fifty subsets respectively. When IVs
were strong in Bayesian MR analysis (top panels), esti-
mated causal effects were close to their true values, with or
without data partitioning. When IVs became weaker (bot-
tom panels), the results from the full data were concordant
with those from 5 subsets, but notably different from
those based on 50 subsets. The impact of data partitioning
was substantial with weak IVs and high missing rate. This
could be explained by Equation (12), in which difference in
mean of the GKDEJPs depends on the subset sample size
q. Difference in variance of the GKDEJPs was, however,
not evident in the three sets of contours in each configu-
ration, because it only depends on the sample size of the
full data (Equation (13)) which was a fixed value 50,000.
Our simulation results suggest that, in Bayesian MR with
a large sample size, there is a trade-off between data parti-
tioning for more efficient computations, and large enough
sample size of each subset for preventing estimates from a
decrease in unbiasedness.
The same plots were presented in Fig. 4 when the true

causal effects were zero. The performances of the three
data partition strategies were very similar to those when
the true causal effects were non-zero.

Discussion and conclusions
Numerous MR methods have been developed in recent
years. To the best of our knowledge, little attention has
been focused on study heterogeneity. In this study, we
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Table 2 Causal effects estimated from 200 simulated datasets for each configuration from two MR methods (Bayesian, IVW) when
β1 = β2 = 0, using four metrics: mean, standard deviation (sd), coverage and power. The six configurations were generated from three
missing rates of the exposures (80%, 50%, 20%) and two levels of IV strength (α = 0.3 and 0.1). β̂1: estimated causal effect of X1 on Y1,
β̂2: estimated causal effect of X2 on Y2

Missing rate α

̂β1 ̂β2

Bayesian IVW Bayesian IVW

mean sd coverage mean sd coverage mean sd coverage mean sd coverage

80% 0.3 -0.001 0.005 0.960 0.007 0.061 0.955 -0.001 0.005 0.955 -0.005 0.062 0.960

0.1 0.004 0.016 0.960 -0.010 0.112 0.965 0.004 0.015 0.960 -0.001 0.130 0.960

50% 0.3 0.000 0.005 0.975 -0.014 0.087 0.935 0.000 0.005 0.955 -0.002 0.090 0.955

0.1 0.004 0.013 0.970 0.005 0.188 0.960 0.004 0.013 0.955 -0.011 0.202 0.950

20% 0.3 0.000 0.004 0.950 0.010 0.148 0.930 0.000 0.004 0.965 -0.003 0.152 0.935

0.1 0.003 0.012 0.965 0.012 0.394 0.920 0.003 0.012 0.965 0.020 0.361 0.945

further elaborated our Bayesian MR method [8, 12] by
including random effects to explicitly account for study
heterogeneity. We also adopted a subset posterior aggre-
gation method [13] to address the computational chal-
lenge of MCMC, which is important especially when
dealing with large studies. For the cases being simulated
in our study, the results have indicated that the “divide
(data) and combine (estimated subset causal effects)” can

help improve computational efficiency, for an acceptable
cost in terms of bias in the causal effect estimates, as
long as the size of the subsets is reasonably large. How-
ever, when instruments are weak and data missing rate
is high, the results obtained using data partitioning are
noticeably different from those obtained using full data.
Hence, there is room for further development of robust
and computationally efficient methods for Bayesian MR.

Fig. 3 Joint posterior distributions of causal effects of X1 on Y1 (β̂1, horizontal axis) and X2 on Y2 (β̂2, vertical axis) obtained from 2-dimensional
Gaussian kernel density estimation in Bayesian Mendelian randomisation when the true causal effects β1 = β2 = 0.3. Results were based on full
data (red), 5 subsets with equal sample size (orange) and 50 subsets with equal sample size (blue). α: instrument strength
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Fig. 4 Joint posterior distributions of causal effects of X1 on Y1 (β̂1, horizontal axis) and X2 on Y2 (β̂2, vertical axis) obtained from 2-dimensional
Gaussian kernel density estimation in Bayesian Mendelian randomisation when the true causal effects β1 = β2 = 0. Results were based on full data
(red), 5 subsets with equal sample size (orange) and 50 subsets with equal sample size (blue). α: instrument strength

Despite the simplicity of the model we have used in
the simulations, we hope the present work would effec-
tively point to MR studies that allow modelling flexibility,
especially in relation to the integration of heterogeneous
studies and computational practicality.
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