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Abstract

Background: Separation or monotone likelihood may exist in fitting process of the accelerated failure time (AFT)
model using maximum likelihood approach when sample size is small and/or rate of censoring is high (rare event) or
there is at least one strong covariate in the model, resulting in infinite estimates of at least one regression coefficient.

Methods: This paper investigated the properties of the maximum likelihood estimator (MLE) of the regression
parameters of the AFT models for small sample and/or rare-event situation and addressed the problems by
introducing a penalized likelihood approach. The penalized likelihood function and the corresponding score equation
is derived by adding a penalty term to the existing likelihood function, which was originally proposed by Firth
(Biometrika, 1993) for the exponential family models. Further, a post-hoc adjustment of intercept and scale
parameters is discussed keeping them out of penalization to ensure accurate prediction of survival probability. The
penalized method was illustrated for the widely used log-location-scale family models such as Weibull, Log-normal
and Log-logistic distributions and compared the models and methods uisng an extensive simulation study.

Results: The simulation study, performed separately for each of the log-location-scale models, showed that Firth’s
penalized likelihood succeeded to solve the problem of separation and achieve convergence, providing finite
estimates of the regression coefficients, which are not often possible by the MLE. Furthermore, the proposed
penalized method showed substantial improvement over MLE by providing smaller amount of bias, mean squared
error (MSE), narrower confidence interval and reasonably accurate prediction of survival probabilities. The methods
are illustrated using prostate cancer data with existence of separation, and results supported the simulation findings.

Conclusion: When sample size is small (≤50) or event is rare (i.e., censoring proportion is high) and/or there is any
evidence of separation in the data, we recommend to use Firth’s penalized likelihood method for fitting AFT model.
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Background
It is now well established in generalized linear model
literature that maximum likelihood estimation provides
consistent estimates of the regression parameters when
sample size is large. However, it may fail to provide a finite
or unbiased estimate for at least one regression parameter
of the model if sample size is small [10]. The small-sample
consequences arise frequently and become worse if there
exists separation in the data [12]. The problem of sep-
aration or monotone likelihood, first introduced by [1]
in binary regression model is a special condition in a
dataset which breakdown the standard maximum likeli-
hoodmethod during fitting process of the model resulting
in non-existence (or infinite values) of the maximum like-
lihood estimates. The situation of separation or monotone
likelihoodmay arise when dataset is small in size as well as
if event or non-event of interest can be separated mostly
by a binary covariate or a linear combination of several
covariates [1, 3, 12, 13]. In the presence of separation,
the traditional maximum likelihood estimation approach
may provide highly biased, even infinite estimates for
the regression coefficients of one or more covariates and
hence provide Wald confidence intervals of infinite width
[11, 12, 17, 25]. A number of studies discussed finite sam-
ple bias correction in the maximum likelihood estimate of
the regression coefficient and provided solution to sepa-
ration [6, 7, 18, 24]. To address the problem of separation
and infinite estimates, Firth’s preventive method [10] is
widely used in statistical inference as it eliminates the first
order termO(n−1) in the asymptotic bias of the estimated
parameters by solving the modified estimating equation
resulted from the addition of a Jeffrey’s invariant prior
based penalty term to the original likelihood function.
The performance of Firth’s approach in proving the bias
reduced estimates and resolving the problem of separation
has been demonstrated for the logistic regression model
[13] and other models under exponential family of the
distributions [4, 15, 19].
The separation or monotone likelihood issue in the con-

text of survival data were first introduced by [12], where
it was argued that the pattern of such problem and its
consequences in survival data is very similar as in the
binary data. However, one may visualize it differently for
survival data context. For example, for a single covariate,
this occurs when, at each failure time, the covariate value
for the failed subjects is the largest of all covariate val-
ues in the risk set at that time, or when it is always the
smallest. It also occurs when the same is true for a lin-
ear combination of covariates. As discussed by Heinze and
Schemper, the problem of separation is likely to occur if
the sample size is small, percentage of censoring is high,
and/or there are one or more strong covariates, particu-
larly binary covariates. The chance of separation increases
with the degree of imbalance in the distribution of binary

covariate. However, the separation is rarely occur with
the continuous covariate and uncensored data. Whatever
the reasons for occurring separation in survival data, the
situation is by no means negligible as it creates several
consequences. To overcome the problems due to small
sample, or rare events, or separation in analyzing sur-
vival data, [12] suggested a penalized likelihood function
for semi-parametric Cox proportional hazard model [8]
by incorporating the Firth’s bias preventive principle into
the partial likelihood function. However, an appropriately
fitted parametric survival model with correctly specified
distribution always yields consistent and more efficient
estimates of the parameters of interest than the esti-
mates obtained from a semi-parametric model [9, 20] and
have intuitive interpretation through a direct connection
with the failure time. Moreover, the estimation technique
under a parametric model is computationally more flexi-
ble and provides precise estimates since both the survival
and censoring times are used directly to construct the
likelihood function. To provide bias corrected estimate in
the small sample situation, [21] applied Firth’s penalized
approach to exponential survival model, which, however,
has limited use in practice because of inapplicability of
constant failure rate assumption in most real world appli-
cations. Therefore, under the parametric framework, it
is obvious to focus on widely used accelerated failure
time (AFT) model, which is a general framework of a
range of parametric survival models under log-location
scale family of distributions. However, the performance
of maximum likelihood estimation technique to estimate
the parameters of the AFT models has not been investi-
gated yet when sample size is small or event of interest is
rare or if there exists separation in the survival data. In
this study, an attempt has been made to examine perfor-
mance of maximum likelihood estimators in such situa-
tions through conducting extensive simulation studies. To
address the problems in the MLEs, this paper proposed
penalized likelihood estimation for AFT survival models
by incorporating the Firth’s penalty term to the original
likelihood function, as motivated by [12]. The empirical
performance of the newly proposed approach was studied
through simulations, where penalized likelihood function
was optimized by using quasi-Newton-algorithm.
Though the main purpose of the AFT survival mod-

els is to examine how the covariates influence the sur-
vival times, estimate of scale parameter is of interest as
estimates of both regression and scale parameters are
required to predict the survival quantities such as sur-
vival probabilities and hazard functions. However, impos-
ing Jeffrey’s prior for penalization may result in further
shrinkage of the estimate of scale and intercept parame-
ters, which may lead to biased estimates of survival quan-
tities. This is motivated by the recent study of [22] who
identified that Firth’s penalization for logistic regression



Alam et al. BMCMedical ResearchMethodology          (2022) 22:169 Page 3 of 15

resulted in inaccurate prediction of overall probability and
proposed a correction in the intercept term to ensure
accurate prediction. Following the first modification of
Firth’s procedure suggested by [22] in logistic regression,
this paper also proposed a post-hoc adjustment of the
intercept and scale parameters estimated by the penalized
likelihood method in the AFT model by keeping them out
of penalization.
The paper is organized as follows. “Methodology”

section describes the methodology starting with a brief
discussion on AFT model and maximum likelihood esti-
mation procedure, which is followed by the application of
Firth’s principle to derive the penalized likelihood func-
tion for AFT model and optimization procedure and
ended by the post-hoc adjustment of the scale parameters.
Comprehensive simulation studies conducted under dif-
ferent scenarios to compare the performance of estimates
obtained through the maximum likelihood and penal-
ized likelihood functions are given in “Simulation study”
section. An illustration of the proposed methods using
data on prostate cancer patients [5] is discussed in
“Illustration using prostate cancer data” section. This
paper concludes with a brief discussion on findings, lim-
itations, and further scope of this study in “Discussion”
section.

Methodology
AFTmodel
Let us consider a censored random sample containing data
(yi, δi, xi), i = 1, . . . , n, where yi = log(ti) is a log-lifetime
or log-censoring-time if the censoring indicator δi = 1 or
δi = 0, respectively and xi = (1, xi1, . . . , xir , . . . , xip)T is
a (p + 1)-dimensional vector of covariates. The location-
scale family model describes the relationship between the
survivor function S(yi|xi) and a set of covariates x as

S(yi|xi) = S0
(yi − u(xiβ)

b

)
, −∞ < y < +∞

where S0(z) is the survivor function of a standard-
ized random variable, u(xi,β) = βTxi denotes loca-
tion parameter and b the scale parameter, and β =
(β0,β1, . . . ,βr , . . . ,βp)T is a vector of regression coeffi-
cients [16]. The model can also be written in the following
form to describe the relationship between covariate and
log-survival time:

yi = u(xiβ) + bZi, (1)

where Zi is a random variable with a standard distri-
bution in (−∞,∞). The covariate effectively alters the
log-time scale in additive form (or original time-scale
in multiplicative form) and hence the model is referred
to as accelerated failure time (AFT) model. The above
equation represents as a family of models for which Z

belong to a standard location-scale family of distributions
(i.e., extreme value, logistic, normal distribution) while the
survival time T belonging to the log-location scale fam-
ily of distributions (i.e., Weibull, log-logistic, log-normal),
respectively.

Maximum likelihood estimation for AFT model
The maximum likelihood method is commonly used to
estimate the parameter of the model given in Eq. (1).
Setting zi = (yi − ui)/b with p.d.f f0(z) = −S′

0(z); ui =
u(xi;β) and m = ∑n

i=1 δi, the log-likelihood function for
the location-scale family model (1) can be written as:

�(β , b) = −m log b +
n∑

i=1

[
δi log f0(zi) + (1 − δi) log S0(zi)

]
.

(2)

Let θ = (βT , b)T be the (p + 2)-dimensional vector of
parameters. The maximum likelihood estimate of θ is the
solution of the estimating equations U(β , b) = 0 simul-
taneously, where U(β , b) is the score function defined
as

U(β , b) =∂�(θ)/∂θ

=[U0(β , b),U1(β ,b), . . .,Ur(β , b), . . .,Up(β , b),Ub(β , b)]T .

If X is an n × (p + 1) matrix having rows xTi =
(1, xi1, . . . , xir , . . . , xip), then ∂zi/∂βr = −xirb−1; ∂zi/∂b =
−zib−1. The r-th and last components of the score func-
tions are given by,

Ur(β, b) = − 1
b

n∑
i=1

[
δi

∂ log f0(zi)
∂zi

+ (1 − δi)
∂ log S0(zi)

∂zi

]
xir ,

(3)

Ub(β, b) = − r
b

− 1
b

n∑
i=1

[
δi

∂ log f0(zi)
∂zi

+ (1 − δi)
∂ log S0(zi)

∂zi

]
zi.

(4)

The (p + 2) × (p + 2) observed information matrix is
given by:

I(β , b) =
(

−∂2l/∂β∂βT −∂2l/∂β∂b
−∂2l/∂b∂β −∂2l/∂b2

)

= 1
b2

(
−∑n

i=1 AixixTi −∑n
i=1(Aizi + Bi)xi

−∑n
i=1(Aizi+Bi)xTi −[m+∑n

i=1(Aiz2i + 2Bizi)]

)
,

where

Ai = δi
∂2 log f0(zi)

∂z2i
+ (1 − δi)

∂2 log S0(zi)
∂z2i

,

Bi = δi
∂ log f0(zi)

∂zi
+ (1 − δi)

∂ log S0(zi)
∂zi

.
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Firth’s penalized likelihoodmethod for AFT model
In order to remove the first order bias O(n−1) in the MLE
of the regression parameter, say θ , of the generalized
linear models, [10] introduced a penalized log-likelihood
function by adding a penalty term 1/2 log |I(θ)| to the
original log-likelihood function �(θ). Without loss of
generality, Firth’s procedure can be directly applied to the
likelihood function of the AFTmodels given in Eq. (2). For
the AFT model (Eq. 1) with a (p+ 2)-dimensional param-
eter vector θ = (βT , b)T , the penalized log-likelihood
function with Firth’s penalty term is given by

�∗(β , b) = �(β , b) + 1
2
log |I(β , b)|, (5)

where |I(β , b)|1/2 is the Jeffreys invariant prior, whose
influence is asymptotically negligible. By adding the
penalty term with the original likelihood function given
in Eq. (2) one can derive an explicit form of the penal-
ized likelihood function. In addition, according to Firth’s
principle, corresponding modified score functions for the
r-th regression βr and scale parameter b can be written
by adding the penalty term in Eqs. (3) and (4) respectively
as follows :

U∗
r (β , b) = Ur(β , b) + 1

2
tr

[
I(β , b)−1

(∂I(β , b)
∂βr

)]

= Ur(β , b) + ∂

∂βr

[1
2
log |I(β , b)|

]
, (6)

and

U∗
b (β , b) = Ub(β , b) + 1

2
tr

[
I(β , b)−1

(∂I(β , b)
∂b

)]

= Ub(β , b) + ∂

∂b

[1
2
log |I(β , b)|

]
. (7)

By expanding the above two Eqs. (6–7) one can
derive an explicit analytical form of the score equations
which ensure finite estimates of both the β and b
while solving them usingNewton-Raphsonmethod. How-
ever, in numerical optimization, the Newton-Raphson’s
method can be computationally tedious and ineffi-
cient for expansive and complex non-linear problems
if the Hessian (second order derivative of the objec-
tive function) is directly calculated iteratively. More-
over, Newton-Raphson’s method might not work prop-
erly if the Hessian is singular at any iteration. Therefore,
rather than solving the modified score equation by the
Newton-Raphson algorithm, we directly optimized the
penalized likelihood function given in Eq. (7) using a
quasi-Newton method referred to the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, which also ensures
finite estimates of both the β and b. It is computationally
cheaper andmore efficient than the Newton’s method and
approximates the Hessian matrix using the gradient (first
order derivative of the objective function) at each step

rather than iteratively computing it [2]. Thus the penal-
ized likelihood estimates θ∗ = (β∗, b∗) can be obtained
from the optimization as follows:

θ∗ = argmax
β∗,b∗

�∗(β , b).

The corresponding standard error of the estimator can
be obtained from the approximated Hessian matrix.

Intercept and scale parameter correction
Firth’s penalized likelihood method is known to reduce
first order bias in the estimate of the model parameter by
shrinking the estimate towards the true value. However,
incorporating the penalty term in the likelihoodmay cause
greater shrinkage of the intercept and scale parameter,
which in turn may provides bias in the estimated survival
probabilities given by

S(t) = S0
(
log t − u(x;β∗)

b∗

)
= S0

(
log t − β∗Tx

b∗

)
.

Therefore, a post-hoc adjustment of the intercept and
scale parameter estimates in the AFTmodel has been per-
formed by keeping these parameters out of penalization.
The adjustment was performed by following the proce-
dure described in a recent study by [22] for correcting the
intercept term in the Firth’s logistic regression. The inter-
cept and scale parameter corrections in AFT models can
be administered as follows:

(i) Estimate the coefficients as
θ̂F = (β̂F ,0, β̂F ,1, . . . , β̂F ,p, b̂F) by Firth’s penalization.

(ii) Calculate the linear predictors
η̂i = β̂F ,1xi1 + β̂F ,2xi2 + · · · + β̂F ,pxip, omitting the
intercept.

(iii) Determine the ML estimate β̂0 of the intercept and b̂
of the scale parameter for the AFT model
Y = β0 + η̂i + bZ, containing only a single predictor
η̂i with regression coefficient equal to one. This can
be achieved by including an offset in a standard
procedure or by direct maximum likelihood
estimation.

(iv) The resulting estimate θ̂C = (β̂0, β̂F ,1, . . . , β̂F ,p, b̂) is
then considered as the corrected Firth’s estimate
with the intercept and scale parameter replaced by β̂0
and b̂ respectively in the original estimates θ̂F .

This post-hoc adjustment is only required if the interest
is to use the model for survival prediction, which is often
a primary objective of many studies in clinical prediction
research. In the following sub-section, the performance of
the Firth’s estimates of the model parameters is investi-
gated using an extensive simulation study and compared
the results to those obtained for the standard maximum
likelihood techniques.
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Simulation study
Simulation design
Let us consider survival time Ti for the ith observation
(i = 1, . . . , n) which follows a probability distribution
belonging to log-location scale family of distributions
(e.g., Weibull, log-normal and log-logistic) and right cen-
sored time Ci which is independent of covariates. We
considered two covariates of which one is continuous (Xc)
and the other is binary (Xb). The continuous covariate
was generated from a standard normal distribution and
the binary covariate was generated from a Bernoulli dis-
tribution with probability of event π . Then the survival
time from the log-location scale family of distributions has
been generated as follows:

Ti = exp(β0 + βcXic + βbXib + bZi)

where, β0 denotes the intercept, βc and βb represent the
regression coefficients associated with the continuous and
binary covariates, respectively, b is the scale parameter
and Zi is the error term generated from location-scale
family of distributions (e.g., Gumbel, normal and logistic
distributions). To generate survival times Ti fromWeibull,
or log-normal or log-logistic distribution (which one we
needed), we considered generating Zi from Gumbel, or
Normal or Logistic distribution, respectively. Further the
censoring times (Ci) were generated independently from
the same distribution from where the survival time were
generated but by replacing the βxi by a constant term, say
λ, referred to the parameter of the censoring distribution.
The value of λ control the desired percentage of censor-
ing in the observed data. The observed time-to-event was
then defined as ti = min(Ti,Ci) and the indicator as
δi = I(Ti ≤ Ci).
Three simulation series were performed separately by

considering three different (but widely used) survival dis-
tributions such as Weibul, log-normal and log-logistic.
Under each distribution (model), the data were gener-
ated as described above. The true values of regression
and scale parameters were fixed at β = (β0,βb,βc) =
(3, 1.2, 0.7) and b = 0.67 respectively for Weibull and
log-logistic distribution. A small change was made in the
regression parameters β = (β0,βb,βc) = (1, 1.2, 0.7) in
case of log-normal, considering the same scale parame-
ter. As the data were generated randomly, the percentage
of censoring was not exactly the same for all simulated
datasets. In order to generate data with a specified cen-
soring proportion,the parameter of the censoring times
distribution were determined by iterative algorithm so
that the specified censoring proportion would be achieved
for the selected parameter values [23]. In the simulation,
we reported average of the censoring percentages over
1000 simulations.
For each of the three models, several simulation scenar-

ios were considered by varying the sample size n as 30,

50, and 100 and the percentage of censoring as 10, 20,
30, 40, 50, 60, 70, and 80 for each sample size scenario,
except for n = 30 for which it was administered up to
60 because extremely high percentage censoring for very
small sample raised serious convergence problem in fit-
ting procedure of the model due to lack of event. Again,
fixing the censoring percentage at 20%, we varied the sam-
ple size as 15, 30, 45, 60, 75, 90, 105 and 120 to examine
the finite sample properties of the estimates under a fixed
proportion of censoring.
Further simulation was performed considering a sce-

nario with separation, caused by an influential covariate in
the model. In order to create separation, a comparatively
larger value of βb (1.9) was attributed to the binary covari-
ate Xb than the continuous covariate Xc (0.5) to increase
its influence so that it can create separation. As discussed
by [12], separation have been considered in a survival
dataset if, at each failure time, the covariate value for the
subjects who were failed is the greatest (or always small-
est) among all the all covariate values in the risk set at that
time point. It may happen at most failure time points if
the influence of the covariate is strong. If separation hap-
pens for a binary covariate, according to the definition by
Heinze and Schemper, the covariate value separate (fully
or partially) the event from non-event (censored) in the
data, resulting in a large difference in both survival curves
and median survival times between two groups of sub-
jects with respect to covariate values (1/0). Therefore, to
explore the existence of separation in a simulated dataset,
we tried to mimic the situation by producing a 2 × 2
contingency table of the censoring status and the binary
covariate Xb and we considered as separated data if there
is at least one cell with 0 frequency and/or the median sur-
vival times between the subjects with Xb = 0 and those
with Xb = 1 is significantly different with p-value < 0.01.
However, not all datasets over the number of simulations
have such condition, but a number of datasets have at
least one of the cells contains frequency less than or equal
to 5 and/or the median survival times between these two
groups of subjects is significant with p-value lies between
0.01 and 0.05, which we termed as “near-to-separation"
(i.e., partially separated data). The condition of the near-
to-separation was discussed in other studies for binary
data [19]. We examined the effect of separation or near-
to-separation for sample size 50 and censoring percentage
20, 50 and 80.

Model fitting and evaluating the performance
Under each scenario, we fitted model using both max-
imum likelihood and Firth’s penalized approaches and
evaluated the properties such bias, mean-squared error
(MSE) and length of confidence interval (CI).We reported
the estimates of the parameters of the model as the aver-
age of 1000 simulations. The bias was calculated as the
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difference between the estimate and true value and the
mean squared error as the mean of the squared differ-
ences between the estimates in each simulated data and
the true value. We also reported both the analytical stan-
dard error as the mean of the standard error obtained
during model fitting in each simulated data over the num-
ber of simulation sets and simulation standard error as the
standard deviation of the estimates obtained in each sim-
ulation over the number of simulations. All computations
were conducted with R statistical software of the version
3.5.3. The standard AFT models with MLE were fitted
using the survreg function of the survival package
and a self-written function aft.firth was applied to
optimize the penalized likelihood function. The R-code of
the aft.firth function is available as supplementary
document of the article.

Simulation results
For the Weibull AFT model, the results suggests that
both the coefficients associated with continuous (βc) and

binary (βb) covariates are overestimated, in general, by
MLE (Table 1). The degree of overestimation increases
with the increasing percentage of censored observation.
On the contrary, Firth’s penalized method showed some
improvements by reducing bias and MSE for the esti-
mates of both βc and βb (Figs. 1 and 2). The mean width
of Wald based confidence interval is also narrower for
Firth’s estimates in all cases, providing more precision in
high censored situations. Table 2 shows that the intercept
and scale parameter are generally underestimated by the
MLE in most cases, except for intercept in high censored
cases where it is highly overestimated. After making the
post-hoc adjustment to the intercept and scale parame-
ter, the Firth’s penalized method showed improvement by
providing estimates relatively closer to the true value.
When the performance of the methods were examined

for the scenario with existence of separation, the results
depicts that the MLE provides infinitely large estimates in
the presence of separation particularly for the regression
coefficient (βb) associated with the binary covariate that

Table 1 Results of both MLE and Firth’s Penalized Likelihood Estimation for both βb and βc under Weibull Distribution. Each cell
represents mean and standard deviation of estimates over number of valid cases (removing the simulations that were failed to achieve
convergence) out of 1000 simulations. The maximum number of convergence failure for MLE is 60 when sample sizze is 50 and
censoring rate 80%

MLE Firth

Sample Size (n) Cens.% True Coefficients Estimate SE Sim.SE Width Estimates SE Sim.SE Width

(95% CI) (95% CI)

30 20 βc = 1.2 1.198 0.155 0.171 0.606 1.190 0.142 0.170 0.557

40 1.344 0.193 0.219 0.758 1.185 0.174 0.216 0.681

60 1.528 0.266 0.334 1.04 1.174 0.225 0.325 0.880

20 βb = 0.7 0.689 0.272 0.307 1.067 0.681 0.245 0.304 0.960

40 0.686 0.321 0.362 1.259 0.663 0.279 0.350 1.095

60 0.948 56.262 1.203 220.325 0.639 0.340 0.461 1.332

50 20 βc = 1.2 1.210 0.120 0.121 0.469 1.205 0.114 0.120 0.446

50 1.222 0.170 0.180 0.665 1.202 0.157 0.176 0.616

80 1.781 0.311 7.080 1.218 1.190 0.268 0.640 1.049

20 βb = 0.7 0.695 0.212 0.224 0.832 0.690 0.199 0.223 0.780

50 0.704 0.276 0.291 1.082 0.684 0.250 0.284 0.979

80 3.026 124.560 26.619 486.810 0.983 0.378 8.814 1.482

100 20 βc = 1.2 1.200 0.083 0.083 0.325 1.197 0.081 0.082 0.317

50 1.209 0.117 0.120 0.458 1.199 0.112 0.119 0.440

80 4.807 0.210 48.926 0.824 1.175 0.193 0.217 0.756

20 βb = 0.7 0.703 0.150 0.150 0.587 0.701 0.145 0.150 0.568

50 0.708 0.193 0.197 0.758 0.698 0.184 0.194 0.720

80 3.855 0.327 65.946 1.274 0.668 0.290 0.305 1.137

βc = Coefficient of continuous covariate and βb = Coefficient of binary covariate
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a

b

Fig. 1 Bias associated with the estimates of regression coefficients (βc for continuous covariates and βb for binary covariates) obtained from both
MLE and Firth procedure for Weibull AFT model
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a

b

Fig. 2 MSE associated with the estimates of regression coefficients (βc for continuous covariates and βb for binary covariates) obtained from both
MLE and Firth procedure for Weibull AFT model
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Table 2 Results of both β0 and b from Maximum Likelihood Estimation and Firth’s Penalized Likelihood Estimation under Weibull
Distribution. Each cell represents mean and standard deviation of estimates from valid cases out of 1000 simulations. The maximum
number of convergence failure for MLE is 60 when sample sizze is 50 and censoring rate 80%

MLE Firth

Sample Size (n) Cens.% True Coefficients Estimates SE Sim.SE Estimates SE Sim.SE

30 20 β0 = 3 2.989 0.187 0.213 2.989 0.129 0.212

40 3.452 0.216 0.246 2.984 0.144 0.242

60 3.726 0.292 0.354 2.976 0.176 0.333

20 b = 0.67 0.618 0.100 0.107 0.616 0.096 0.107

40 0.607 0.113 0.123 0.603 0.108 0.122

60 0.597 0.136 0.159 0.585 0.123 0.153

50 20 β0 = 3 2.987 0.146 0.154 2.988 0.104 0.153

50 2.987 0.189 0.197 2.983 0.127 0.194

80 5.893 6.859 22.755 3.649 0.207 11.591

20 b = 0.67 0.642 0.079 0.083 0.641 0.077 0.083

50 0.635 0.097 0.103 0.631 0.093 0.102

80 0.598 0.146 0.177 0.584 0.169 0.348

100 20 β0 = 3 2.988 0.104 0.107 2.989 0.075 0.107

50 2.988 0.134 0.139 2.986 0.092 0.137

80 21.583 0.276 385.896 3.512 0.152 12.415

20 b = 0.67 0.654 0.057 0.058 0.653 0.055 0.058

50 0.649 0.070 0.072 0.647 0.067 0.071

80 0.633 0.106 0.122 0.626 0.115 0.112

β0 = Intercept and b = Scale parameter of the location-scale distribution

created separation (Table 3). Conversely, Firth’s penal-
ized method showed significant improvement by provid-
ing finite estimates of both the coefficient and its SE. It
is notable that the values for MLEs are extremely large
for high censoring, whereas the Firth’s procedure suc-
ceeds to provide finite estimates in such an extreme case.
The amount of improvement is greater for the regres-
sion coefficient (βb) associated with the binary covariates
than those associated with the continuous covariate. The
simulation results for the near-to-separation scenario is
similar to that of the separation, but with lower amount
of bias. It is also reported that, in the presence of sep-
aration, the MLE failed to achieve convergence proving
infinitely large value. The rate convergence-failure was
26% when sample size was 50 and censoring was 80%,
and the rate decreased to 10% when sample size was 100
with the same level of censoring percentage (results not
shown). The convergence-failure rate also decreased with
the decreasing censoring percentage and it is very low
(often negligible) while there was near-to-separation. In
contrast, Firth’s penalized method achieved convergence

in all simulation scenarios. Further, the penalized method
with ad-hoc adjustment of the intercept and scale parame-
ter outperformed theMLEwhen it was used for prediction
for the survival probabilities (Table 4, Fig. 3). The penal-
ized method provided very close prediction of the true
survival probability at the 1st, 2nd, and 3rd quartiles of the
survival time (Table 4) and over the whole follow-up time
(Fig. 3) in comparison with the MLE.
Similar findings were found for the log-logistic AFT

model, where Firth’s penalized method showed improve-
ment over the MLE by reducing bias and MSE and pro-
viding narrower confidence interval, particularly when
censoring percentage is high, for both the regression coef-
ficients βc and βb in the model (Supplementary Table S1,
Fig. 4). Similarly, for the intercept (β0) and scale parameter
(b), Firth’s method with ad-hoc correction showed better
performance than the MLE, particularly for high censor-
ing situation (Supplementary Table S2). The correction
procedure renders better performance in rare event sit-
uations under log-logistic distribution. In the presence
of separation, Firth’s penalized method outperforms the
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Table 3 Estimates, standard error (SE) and simulation standard error (Sim.SE) of β0 and b from Maximum Likelihood Estimation and
Firth’s Penalized Likelihood Estimation under Weibull Distribution in case of separation and near-to separation. Maximum convergence
failure by MLE is 26.6% when separation occur over 1000 simulations in case of 80% censoring

MLE Firth

Sample Size (n) Cens.% True Coefficients Estimates Bias SE Sim.SE Estimates Bias SE Sim.SE

Separation

50 20 βc = 0.5 0.481 -0.019 0.109 0.115 0.479 -0.021 0.103 0.115

50 0.587 0.087 0.151 0.195 0.575 0.075 0.138 0.184

80 0.568 0.068 0.259 0.831 0.492 -0.008 0.223 0.397

20 βb = 1.9 1.943 0.043 0.211 0.197 1.928 0.028 0.198 0.195

50 14.187 12.287 6,559.531 1.566 3.071 1.171 0.879 0.175

80 104.371 102.471 7020.086 700.557 2.764 0.864 0.813 9.344

Near-to-Separation

50 20 βc = 0.5 0.503 0.003 0.111 0.117 0.500 0.000 0.105 0.117

50 0.494 -0.006 0.146 0.149 0.485 -0.015 0.134 0.146

80 1.682 1.182 0.244 23.939 0.484 -0.016 0.203 0.264

20 βb = 1.9 1.904 0.004 0.216 0.229 1.890 -0.010 0.202 0.227

50 2.030 0.130 0.354 0.348 1.934 0.034 0.309 0.315

80 2.855 0.955 0.636 21.649 1.433 -0.467 0.468 0.459

βc = Coefficient of continuous covariate and βb = Coefficient of binary covariate

MLE by reducing bias to some extent and providing nar-
rower confidence interval (Supplementary Table S3). Sim-
ilar findings can also be observed for survival prediction
for the log-logistic AFT model (results not shown).
For the log-normal AFT model, Firth’s penalized

method also showed similar performance by providing
lower MSE and narrower confidence intervals than MLE
(Supplementary Table S4, Fig. 5). The amount of improve-
ment by Firth’s penalized method is also greater for the
regression coefficient (βb) associated with binary covari-
ates. For the intercept and scale parameters, the correc-

Table 4 Estimates of survival probabilities (mean over 500
simulations) at the 1st , 2nd and 3rd quantile of survival times of
Weibull distribution with different values of binary covariates and
the mean value of continous covariate for sample size 50 and
censoring 50%

Binary covariate Quartiles True MLE Firth

X2 = 0 1st 0.750 0.780 0.769

2nd 0.500 0.543 0.529

3rd 0.250 0.294 0.278

X2 = 1 1st 0.750 0.757 0.751

2nd 0.500 0.498 0.499

3rd 0.250 0.247 0.249

tion of Firth’s procedure provides an improvement over
the MLE (Supplementary Table S5). Similarly, greater
performance were also achieved by the Firth’s penalized
method when it was used for prediction of the survival
probabilities (results not shown).

Fig. 3 Estimated mean survival probabilities over 500 simulations by
both MLE and Firth procedures under Weibull distribution for sample
size 30 with censoring percentage C=50%
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Fig. 4MSE associated with the estimates of regression coefficients (βc for continuous covariates and βb for binary covariates) obtained from both
MLE and Firth procedure for Log-logistic AFT model

Illustration using prostate cancer data
The methods are illustrated using prostate cancer data,
which were previously used in a study by [5] and are
publicly accessible (https://hbiostat.org/data/). They con-
ducted an exploratory analysis on the data from a clinical
trial of estrogen treatment for a total of 502 prostatic can-
cer patients several survival status (1 - alive, 2 - dead
from prostatic cancer, 3 - dead from heart or vascular dis-
ease, 4 - dead from cerebrovascular accident, 5 - dead
from pulmonary embolus, 6 - dead from other cancer, 7
- dead from respiratory disease, 8 - dead from other spe-
cific non-cancer cause, 9 - dead from other unspecified
non-cancer cause and 10 - dead from unknown cause).
In this study, we firstly focus on the effectiveness of the
treatment on the survival of patient with prostatic cancer
and hence observe the time-to-death due to prostatic can-
cer or not (censoring percentage 53.82). An exploratory
analysis with a 2 × 2 contingency table showed that the
original data does not suffer from the problem of separa-
tion. Therefore, for an illustrative purpose of the method

discussed, a random sub-sample of patients who are either
alive or died from prostatic cancer was taken from the
original data in order to create separation and near-to-
separation. Furthermore, since the number of patients
who died from respiratory disease and pulmonery embo-
lus were very small in the original data (16 and 14 respec-
tively) making these events rare, we also considered two
more scenarios with the data: one with patients who are
alive or died from respiratory disease and another with
patients who are alive or died from pulmonery embolus.
Each of these two scenarios created near-to-separation
(non-zero cells with few observations).
The covariates of interest are: treatment (0, low; 1, high-

dose), age (0, < 75 years; 1, 75 to 80 years; 2, ≥ 80 years),
weight index caluctaed as weight (kg) - height(cm) + 200
(0,≥ 100; 1, 80-99; 2, < 80), performance rating (0, normal;
1, limitation of activity), history of cardiovascular disease
(0, no; 1, yes), serum haemoglobin (0, ≥ 12g/100 ml; 1, 9-
12g/100 ml; 2, < 9g/100 ml), size of primary lesion (0, < 30
cm2; 1, ≥ 30 cm2), and Gleason stage/grade category (0, ≥
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Fig. 5MSE associated with the estimates of regression coefficients (βc for continuous covariates and βb for binary covariates) obtained from both
MLE and Firth procedure for Log-normal AFT model

10; 1, > 10). The variables are denoted as AG (patient age),
WT(weight index), PF(performance rating), HX (history
of cardiovascular disease), HG (serum haemoglobin), SZ
(size of primary lesion) and SG (Geason stage/grade cat-
egory). For each scenario, we considered a Weibull AFT
model with the covariates selected based on the analysis
discussed in literature [5, 14].

log(Ti) = β0 + β1Treatmenti + β2AGi + β3WTi + β4PFi+
β5HXi + β6HGi + β7SZi + β8SGi + bzi, i = 1 . . . , n.

The above Weibull AFT model was fitted for both the
cases of separation and near-to separation with patients
died from prostatic cancer and the near-to separation
case with patients died from respiratory disease and pul-
monary embolus.

Analysis and results of prostate cancer data
As mentioned, for illustrative purpose, a random sample
of size 30 was taken from the original sample to create
separation and near-to-separation in the data, respec-
tively. A 2 × 2 contingency table (Table 5) between the

Table 5 Contingency tables between dichotomous covariates
(treatment) and response (prostate cancer status) showing
separation and near-to-separation

Separation Near-to-Separation

Status Status

Treatment alive(0) dead(1) alive(0) dead(1)

low-dose(0) 12 8 9 6

high - dose (1) 10 0 12 3

Status Status

Age alive(0) dead(1) alive(0) dead(1)

≤ 75 years(0) 17 8 14 7

75-80g/ 100 ml(1) 5 0 6 2

≥ 80g/ 100 ml(2) −− −− 1 0

Status Status

Serum haemoglobin (HG) alive(0) dead(1) alive(0) dead(1)

≥ 12g/ 100 ml(0) 20 7 18 9

9-12g/ 100 ml(1) 2 0 3 0

< 9g/ 100 ml(2) 0 1 −− −−
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Table 6 Estimates of regression parameters and their standard error obtained from MLE and Firth’s procedure by fitting Weibull AFT
model for prostate cancer data under separation and near-to-separation

Separation Near-to-Separation

MLE Firth MLE Firth

Predictors Estimates SE Estimates SE Estimates SE Estimates SE

Treatment 11.842 9,561.118 1.129 0.409 1.146 0.600 0.846 0.271

Age 11.475 0.00 1.013 0.428 0.380 0.804 0.132 0.565

WT 0.309 0.502 − 0.112 0.199 − 1.316 0.597 − 0.598 0.213

PF -0.895 0.888 -0.981 0.388 -1.138 1.417 -0.854 0.720

HX 0.534 0.615 0.503 0.251 1.547 1.057 0.905 0.616

HG -1.141 0.731 -1.063 0.313 13.101 7,825.785 1.587 0.684

SZ -0.537 0.778 -0.054 0.259 0.506 0.918 0.389 0.591

SG -1.966 0.872 -0.321 0.092 -2.071 0.743 -0.345 0.080

Intercept 5.218 0.728 7.671 0.181 5.924 1.006 8.171 0.252

scale (b) 0.518 0.182 0.398 0.096 0.694 0.219 0.608 0.145

WT = weight index, PF= performance rating, HX= history of cardiovascular disease, HG= serum haemoglobin, SZ= size of primary lesion, SG= Gleason stage/grade category

estrogen treatment and patient status shows two dif-
ferent forms of separation. Moreover, patient’s age and
haemoglobin level have also created separation in the out-
come variable. Table 6 reveals that the MLE of regression
coefficient of the treatment status responsible to create
separation in the sub-sample is very large comparative to
that of the Firth’s estimate of the coefficient making MLE
uninterpretable. Under the separation scenario, the MLE
fails to deliver a standard error for the regression coeffi-
cient of age resulting in a disrupted inference. Conversely,
Firth’s procedure produces a finite estimate and standard
error for the corresponding covariate. Although, the MLE
becomes smaller with increased degrees of overlapping in
the near-to-separation for the treatment status, the Firth’s
procedure provides both smaller estimate and standard
error for this covariate. In terms of standard error, the
penalized estimates are more efficient than MLE in each
separation scenarios.

Analysis and results of respiratory disease and pulmonary
embolus
The contingency Table 7 between the estrogen treatment
and patient’s survival status (death from respiratory
disease and pulmonary embolus) shows the existence of
near-to-separation in the data. Furthermore, performance
rating, serum haemoglobin level and size of primary
lesion have also created separation in outcome variable in
both cases of respiratory disease and pulmonary embolus.
Here, total sample size consists of 148 alive with only 16
(Respiratory disease) and 14 (Pulmonary embolus) events
or failure and near-to-separation can be observed. The
censoring percentage is 91.92% (Respiratory disease) and
93.08% (Pulmonary embolus) respectively. The Table 8
reveals that similar to the scenario with prostatic cancer,

the Firth’s estimates of coefficient of treatment are smaller
in magnitude and have smaller standard error than MLE
in each case. Moreover, zero or extremely large standard
errors estimated by MLE for some covariates (perfor-
mance rating, serum haemoglobin and size of primary
lesion) indicate convergence failure during estimation.
In contrary, Firth’s procedure succeeds to deliver finite

Table 7 Contingency tables between dichotomous covariates
(treatment) and response (respiratory disease and pulmonary
embolus status)

Respiratory disease Pulmonary embolus

Status Status

Treatment alive(0) dead(1) alive(0) dead(1)

low-dose(0) 61 10 61 4

high - dose (1) 87 6 87 10

Status Status

Performance rating (PF) alive(0) dead(1) alive(0) dead(1)

normal(0) 142 16 142 12

limitation of activity(1) 6 0 6 2

Status Status

Serum haemoglobin (HG) alive(0) dead(1) alive(0) dead(1)

≥ 12g/ 100 ml(0) 131 15 131 11

9-12g/ 100 ml(1) 16 1 16 3

< 9g/ 100 ml(2) 1 0 1 0

Status Status

Size of primary lesion (SZ) alive(0) dead(1) alive(0) dead(1)

<30 cm2(0) 141 15 141 12

≥30 cm2(1) 5 1 5 2
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Table 8 Estimates of regression parameters and their standard error obtained from MLE and Firth’s procedure by fitting Weibull AFT
model for time-to-event data with outcome both respiratory disease and pulmonary embolus

Respiratory disease Pulmonary embolus

MLE Firth MLE Firth

Predictors Estimates SE Estimates SE Estimates SE Estimates SE

Treatment 0.204 0.478 0.124 0.284 -0.588 1.086 -0.292 0.575

Age -1.131 0.419 -0.755 0.243 -1.481 0.900 -0.913 0.471

WT -0.535 0.351 -0.307 0.202 0.218 0.821 0.070 0.445

PF 14.193 ∞ -0.259 0.750 26.677 ∞ -0.676 1.518

HX 0.001 0.488 − 0.037 0.289 -0.646 1.121 − 0.463 0.625

HG 14.733 6,113.595 0.857 0.751 − 0.672 1.284 − 0.585 0.672

SZ 14.605 ∞ − 0.309 0.731 − 3.777 1.697 − 2.472 0.895

SG 0.083 0.463 0.025 0.076 -0.503 1.077 − 0.029 0.146

Intercept 6.772 0.904 5.931 0.336 10.031 2.075 8.942 0.969

scale (b) 0.779 0.262 0.646 0.073 1.657 3.438 1.423 0.159

AG = age, WT = weight index, PF= performance rating, HX= history of cardiovascular disease, HG= serum haemoglobin, SZ= size of primary lesion, SG= Gleason stage/grade
category

estimates and smaller standard error for all covariates in
each case.

Discussion
The AFT model is being widely used to analyze survival
data from health and reliability engineering because of
its intuitive interpretation connecting directly with failure
time. For the rare event survival data or data with small
in size, separation or monotone likelihood often exists
in the fitting process of the AFT model using maximum
likelihood estimation technique. The paper investigated
the performance of the MLE of the AFT model in such
data condition and addressed these issues by introduc-
ing a penalized likelihood approach by adding a Firth-type
penalty term to the original likelihood. Further a post-hoc
correction was made by keeping the intercept and scale
parameter out of penalization to improve the estimates of
predicted survival probabilities. The performance of the
proposed method was evaluated using an extensive simu-
lation study considering AFT model under three different
(but widely used) distributions of the log-location scale
family separately. For each of the models, the proposed
penalized method has been shown to provide superior
performance over MLE by solving the problem of mono-
tone likelihood reflected by achieving convergence and
providing estimates with lower bias and MSE and nar-
rower confidence interval, in most simulation scenarios.
In particular, when sample size is small and/or per-

centage of censoring is high, the regression coefficient
estimates (both binary and continuous) from penalized
likelihood are generally shown to have lower bias andMSE
with narrower confidence interval than that for MLE.
Again, in the presence of any form of separation, the
simulation results revealed that the MLE provided large

amount of bias and MSE (often infinitely large value indi-
cating frequent convergence failure) for the estimates of
the regression coefficient, particularly those associated
with the binary covariates that created separation. On
the contrary, the penalized method showed improvement
over MLE by achieving convergence and reducing bias
and MSE to some extent and providing narrower confi-
dence interval. However, comparable results are observed
for both methods for the regression coefficient associated
with continuous covariates that didn’t make separation.
Simulation study also showed that the performance of the
penalized likelihood estimation tends to be better than
the MLE in separation than that for near-to-separation,
indicating the effectiveness of the proposed method in
extreme situations of separation. Furthermore, the post-
hoc adjustment of the intercept and scale parameters
under the penalized method has been shown to gener-
ate improved intercept and scale parameter estimates over
MLEs by lowering the bias and consequently to provide
relatively accurate estimates of the survival probabilities at
different quartiles of the survival times. Simulation results
of this study are quite similar to those with the other
studies in the recent years which discussed Firth-type
penalized estimates of regression models such as logistic
regression [13, 22] and Cox regression [12] .
An illustration of the methods using prostate cancer

data supported the simulation findings by providing esti-
mates with intuitive interpretation. However, demonstra-
tion of a rigorous application of this approach to a data
with existence of high rate of censoring and/or existence
of separation was not possible here to due to lack of
access to such data, which may be useful for the practical
users of this method. The proposed penalized method for
AFT model underestimated the true SE for some scenar-
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ios (small smaple with high rate of censoring) and hence
provided biased estimate of confidence interval, hence
further studymay be required with profile likelhood based
confidence interval to address this problem. Further study
may also be required to compare the performance of the
Firth’s penalization for the Cox proportional hazard and
AFT medals to address such problems related to small
sample, high censoring and separation, because of a phys-
ical difference between of theses two models. In addition,
one may compare the performance of Firth’s penalized
AFT model with other penalized methods such as Ridge
regression, LASSO etc.

Conclusion
The findings of the paper suggest that if the sample size is
small and/or the percentage of censoring is high, the per-
formance ofMLE becomes unreliable as it provides biased
estimates and creates separation leading to monotone
likelihood with frequent convergence failure. The pro-
posed penalized approach showed superior performance
overMLE by reducing bias andMSE and solving the prob-
lem of separation. Therefore, if sample size is relatively
small (e.g., n ≤ 50) or there is evidence of high censoring
and/or separation in the data, it is recommended to apply
Firth’s penalized method for fitting AFT models.
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