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Abstract 

Background:  In binary logistic regression data are ‘separable’ if there exists a linear combination of explanatory 
variables which perfectly predicts the observed outcome, leading to non-existence of some of the maximum likeli-
hood coefficient estimates. A popular solution to obtain finite estimates even with separable data is Firth’s logistic 
regression (FL), which was originally proposed to reduce the bias in coefficient estimates. The question of conver-
gence becomes more involved when analyzing clustered data as frequently encountered in clinical research, e.g. 
data collected in several study centers or when individuals contribute multiple observations, using marginal logistic 
regression models fitted by generalized estimating equations (GEE). From our experience we suspect that separable 
data are a sufficient, but not a necessary condition for non-convergence of GEE. Thus, we expect that generalizations 
of approaches that can handle separable uncorrelated data may reduce but not fully remove the non-convergence 
issues of GEE.

Methods:  We investigate one recently proposed and two new extensions of FL to GEE. With ‘penalized GEE’ the GEE 
are treated as score equations, i.e. as derivatives of a log-likelihood set to zero, which are then modified as in FL. We 
introduce two approaches motivated by the equivalence of FL and maximum likelihood estimation with iteratively 
augmented data. Specifically, we consider fully iterated and single-step versions of this ‘augmented GEE’ approach. We 
compare the three approaches with respect to convergence behavior, practical applicability and performance using 
simulated data and a real data example.

Results:  Our simulations indicate that all three extensions of FL to GEE substantially improve convergence compared 
to ordinary GEE, while showing a similar or even better performance in terms of accuracy of coefficient estimates and 
predictions. Penalized GEE often slightly outperforms the augmented GEE approaches, but this comes at the cost of a 
higher burden of implementation.

Conclusions:  When fitting marginal logistic regression models using GEE on sparse data we recommend to apply 
penalized GEE if one has access to a suitable software implementation and single-step augmented GEE otherwise.
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Introduction
When modeling a binary outcome with a set of explan-
atory variables using logistic regression, one frequently 
encounters the problem of separation. With separable 
data a linear combination of explanatory variables per-
fectly predicts the observed outcomes, and then some 
of the regression coefficients do not exist and their esti-
mates diverge during the iterative fitting process [1]. 
The occurrence of separation is prevalent with unbal-
anced outcomes or binary covariates, small sample 
sizes and strong effects. One possibility to obtain finite 
estimates of regression coefficients even in the case of 
separation is to resort to Firth’s logistic regression (FL), 
which was originally proposed to reduce the bias in 
coefficient estimates compared to maximum likelihood 
estimation [2]. The question of convergence becomes 
more involved when we want to model clustered data, 
as frequently encountered in clinical research, e.g. data 
collected in several study centers or when individuals 
contribute multiple observations. With such multilevel 
data one has to decide whether the research question is 
better addressed by fitting a marginal or a conditional 
model, depending on the level of sampling (the clus-
ters or the observations) that is of main interest. In this 
paper, we will only deal with marginal logistic regres-
sion models fitted by generalized estimating equations 
(GEE). Lacking a formal proof, our experience suggests 
that separable data are a sufficient, but not a neces-
sary condition for non-convergence of GEE. Therefore, 
extensions of approaches that can deal with separation 
in uncorrelated data may not fully remove all non-con-
vergence issues in the setting of GEE. Still, they may 
considerably improve on ordinary GEE.

As FL efficiently solves estimation problems with sepa-
rable uncorrelated data, we investigated one recently pro-
posed and two new extensions of FL to GEE. While Paul 
and Zhang [3] as well as Mondol and Rahman [4] pro-
posed to treat GEE as score equations, i.e. as derivatives 
of a log-likelihood set to zero, which are then modified 
as in FL, we will introduce some approaches which are 
motivated by the equivalence of FL and maximum like-
lihood estimation with iteratively augmented data. Spe-
cifically, we will consider fully iterated and single-step 
versions of these data augmentation procedures, and we 
will compare these extensions with respect to conver-
gence behavior, practical applicability and performance 
in terms of estimation and prediction using simulated 
data. While FL was shown to give coefficient estimates 

of smaller bias than maximum likelihood estimation, it is 
beyond the scope of this paper to theoretically investigate 
similar properties for the three extensions of FL to GEE. 
Nevertheless, the following considerations justify the 
investigation of the methods:

•	 all three approaches generalize FL in the sense that 
they give the same coefficient estimates as FL in the 
special situation of an independent working cor-
relation, where the GEE can be interpreted as score 
equations,

•	 all three approaches improve on ordinary GEE in 
terms of convergence and accuracy of coefficient and 
prediction estimates in our simulations,

•	 penalized GEE is a published method pending inde-
pendent evaluation by the scientific community,

•	 under independence, all satisfactory solutions that 
preserve transformation invariance and do not need 
additional parameter tuning are based on the Jeffreys 
prior/Firth penalty.

In the next section we will discuss the issue of separa-
tion, review FL and GEE and introduce the approaches 
to extend FL to GEE. The subsequent section illustrates 
the application of these methods on data from a study 
in implant dentistry. Next, the methods are compared in 
a simulation study with clustered data. Finally, we sum-
marize our findings, discuss possible extensions and give 
recommendations for practical applications.

Methods
Separation and Firth’s logistic regression
Logistic regression models the probability that Yi = 1 for 
independent binary outcomes Yi, i = 1, …N, with values 
yi ∈ {0, 1}, given (p + 1)-dimensional row vectors of covar-
iate values xi = (1, xi1, …, xip) by assuming

where β = (β0, β1, …, βp)′ is a vector of regression coef-
ficients. Maximum likelihood estimates for β can be 
obtained by solving the score equations. Albert and 
Anderson found that finite maximum likelihood esti-
mates exist if and only if the data are not separable, i.e. 
if there exists no hyperplane defined by a linear combi-
nation of covariates that separates events and non-events 
[1]. There are two main drivers for the occurrence of sep-
aration: the presence of strong effects and a low amount 

P(Yi = 1|xi) = (1+ exp (−xiβ))
−1 = πi(β),

Keywords:  Clustered data, Firth’s logistic regression, Generalized estimating equations, Logistic regression, Non-
convergence, Separation
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of information available in the data, manifested, e.g., by 
a small sample size or rare occurrence of one of the two 
levels of the outcome variable or of a binary covariate. 
FL, which originally was proposed to reduce the bias of 
maximum likelihood estimates [2], has been propagated 
as a reliable alternative to maximum likelihood estima-
tion [5] as it always provides finite coefficient estimates. 
With FL, the likelihood is penalized by the Jeffreys invari-
ant prior, i.e. by the square root of the determinant of the 
Fisher information matrix |I(β)|1/2. On the level of score 
eqs. FL adds 1/2 trace(I(β)−1 (∂I(β)/∂β)) to the first deriv-
ative of the log-likelihood. By proving that the logarithm 
of the Jeffreys prior 12 log (I(β)) tends to −∞ if one of 
the components of β approaches ∞, Kosmidis and Firth 
showed that the penalized log likelihood is always maxi-
mized by finite β, i.e. FL always provides finite coefficient 
estimates [6]. Another convenient property of FL, which 
is for instance not shared by other proposals for penal-
ized likelihood logistic regression, is that FL is transfor-
mation invariant. This means that if G is an invertible 
(p + 1) × (p + 1)-matrix, β̂X the FL coefficient estimate for 
the design matrix X with rows xi, i = 1, …, N, and β̂XG the 
FL coefficient estimate for the design matrix X · G, then 
we have β̂XG = G−1 · β̂X.

FL is equivalent to maximum likelihood estimation 
with an appropriately augmented and weighted data set 
(

∼
y ,

∼
X

)

 containing 3N observations, basically obtained by 

stacking three copies of the original data set [7]. For 
j ∈ {1, …, 3N} we denote by ij the integer in {1, …, N} such 
that j ∈ {ij, N + ij, 2N + ij}. The covariate row vectors x̃j , 
outcomes ỹj and the weights w̃j , j ∈ {1, …, 3N}, of the aug-

mented data set 
(

∼
y ,

∼
X

)

 are defined by x̃j := xij ,

and

where hi denotes the i-th diagonal element of the hat 
matrix 

∼
H = W 1/2X

(

X ′WX
)−1

X ′W 1/2 , with X the 
N × (p + 1)- design matrix and W the diagonal matrix 
with elements πi(1 − πi).

Since the contribution of the data augmentation is 
asymptotically negligible, approximate standard errors 
of the estimates can be obtained as the square roots of 
the diagonal elements of (X′WX)−1, where the elements 
π̂i

(

1− π̂i

)

 in the N × N matrix W are obtained using the 
coefficient estimates from the final iteration.

ỹj :=

{

yij , if j = ij or j = N + ij ,

1− yij , if j = 2N + ij

w̃j :=

{

1, if j = ij ,
hij/2, if j = N + ij or j = 2N + ij ,

Generalized estimating equations
We will now slightly adapt our notation to the situa-
tion of clustered data. Let N be the number of clus-
ters and let ni be the number of observations in the 
i-th cluster. We denote by yi =

(

yi1, . . . , yini
)′ the ni-

dimensional vector of binary outcomes in the i-th clus-
ter, by xij = (1, xij1, …, xijp)′ the (p + 1)-dimensional vector 
of covariates for the j-th observation in the i-th cluster 
and by Xi the (ni × (p + 1))-dimensional matrix with 
rows xij, i = 1, …, N and j = 1, …, ni. The marginal logis-
tic regression model relates the conditional expectation 
P(Yij = 1| xij) to the vector of covariates by assuming  
P(Yij = 1| xij) = (1 + exp(xijβ))−1 for a (p + 1)-dimensional 
vector of parameters β = (β0, β1, …, βp)′ [8]. Using a work-
ing correlation structure expressed as a (ni × ni)-dimen-
sional matrix Ri(α) with some parameter vector α, Liang 
and Zeger [9] showed that the parameters β can be con-
sistently estimated by solving the generalized estimating 
equations

where πi is the ni-dimensional vector with components 
πij = (1 + exp(xijβ))−1 and Wi is the (ni × ni)-dimensional 
diagonal matrix with elements πij(1 − πij). Assuming 
an independent working correlation, i.e. setting Ri(α) to 
the identity matrix, the estimating eqs. (1) reduce to the 
score equations for logistic regression with independent 
observations.

Transferring Firth’s likelihood penalization to generalized 
estimating equations
The considerations on FL above imply three possible 
extensions of FL to GEE.

Penalized GEE (penGEE)
First, considering GEE as score equations leads to the fol-
lowing penalized GEE

where U(β, α) is the generalized estimating function given 
by the left hand side of eq. (1) and I(β, α)= −E

(

∂U(β ,α)
∂β

)

[3, 4]. As with ordinary GEE, a solution to eq. (2) can be 
obtained by iterating between solving for β by the first 
step of a Newton-Raphson fitting algorithm given a value 
α, and updating α using the method of moments-based 
estimators. This motivates the following ‘penalized GEE’ 
algorithm:

N
∑

i=1

Xi
′Wi

(

W
1/2
i Ri(α)W

1/2
i

)−1(

yi − πi
)

= 0, (1)

U∗(�, �) = U (�, �) +
1

2
trace

(

I(�, �)
−1
(

�I(�,�)

��

))

= 0, (2)
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1.	 As initial estimate β̂0 for β use the coefficient esti-
mate obtained by applying FL to the data ignoring 
the clustering structure.

2.	 Given the estimate β̂k for β, k ∈ ℕ, calculate the 
moment-based estimate α̂k+1 for α. For example, in 
the setting of an exchangeable working correlation 
structure set

where êij =
(

yij − π̂ij
)

/

√

(

π̂ij

(

1− π̂ij

))

 . See Molen-
berghs and Verbeke [10] (p.157) for the formulas for 
independent, AR(1) and unstructured working correla-
tion structure.

3.	 Update the coefficient estimate by

4.	 Repeat steps 2 and 3 until convergence is achieved.

Note that penalized GEE with independent work-
ing correlation structure results in the same coefficient 
estimates as FL.

Iterated augmented GEE (augGEE)
Second, we suggest extending FL to GEE by mimicking the 
data augmentation approach. The idea is to iterate between 
augmenting the data given the current estimates of β and α, 
and re-solving the GEE using the augmented data to obtain 
new estimates. This gives rise to the following ‘iterated aug-
mented GEE’ algorithm:

1.	 As initial estimate β̂0 for β use the coefficient esti-
mate obtained by applying FL to the data ignoring 
the clustering structure. As initial estimate α̂0 for α 
use the value corresponding to a working correlation 
structure R

(

α̂0
)

 equal to the identity matrix.
2.	 Given the current estimate β̂k of β and α̂k of α for k ∈ ℕ, 

calculate the block diagonal matrix Hk = diag
(

Hk
1
,… ,Hk

N

) 
with blocks Hk

i
= Ω

1∕2

i
Xi

(

X �
i
ΩXi

)−1
X �
i
Ω

1∕2

i
 , where 

Ωi = W
1∕2

i
Ri

(

𝛼̂k
)−1

W
1∕2

i
[11]. This block diagonal matrix 

generalizes the hat matrix ∼H defined for independent 
data in Section 2.1.

3.	 Similarly as in Section 2.1 create an augmented data set 
(

∼
y ,

∼
X

)

 , consisting of 
∼
N = 3N  clusters with ñl = nil 

observations in the l-th cluster, where il is the integer in 
{1, …, N } such that l ∈ {il, N + il, 2N + il}. The vector of 
covariates x̃lj , l = 1,… ,

∼

N , j = 1,… , ñl , for the j-th observa-

α̂k+1 =
1

N

N
∑

i=1

1

ni(ni − 1)

ni
∑

j �=k

êij êik ,

β̂k+1 = β̂k + I
(

β̂k
, α̂k

)−1

·U∗
(

β̂k
, α̂k

)

.

tion in the l-th cluster in the augmented data is set to 
xil j . The outcome ỹlj and the weights w̃lj for this aug-
mented data set are given by

and

where hij denotes the j-th diagonal element of the i-th 
block Hk

i  of Hk.

4.	 Solve the GEE on the augmented data set 
(

∼
y ,

∼
X

)

 . Set 

β̂k+1 to the coefficient estimate and α̂k+1 to the esti-
mated parameter for the working correlation structure.

5.	 Repeat steps 2, 3 and 4 until convergence is achieved. 
The final coefficient estimate β̂ and correlation 
parameter estimate α̂ are the estimates from the last 
iteration.

In step 3 of the iterated augmented GEE algorithm 
one might think of alternative ways of defining the 

clustering structure for the augmented data set 
(

∼
y ,

∼
X

)

 . 

For instance, one could combine the i-th, (N + i)-th 
and (2N + i)-th clusters, i ∈ {1, …, N}, resulting in an 
augmented data set consisting of only N instead of 3N 
clusters. However, creating two ‘pseudo clusters’ for 
each original cluster as suggested in the iterated aug-
mented GEE algorithm best reflects the data augmen-
tation approach in the situation of independent data, 
where the pseudo observations are also treated as 
independent observations representing the Jeffreys 
prior.

As the trace of the generalized hat matrix H calcu-
lated in step 2 of the iterated augmented GEE algorithm 
is always equal to p + 1  [11], i.e. the total weight of the 
‘pseudo observations’ is p + 1, we conclude that the rela-
tive contribution of the pseudo observations becomes 
negligible with increasing sample size and that the algo-
rithm yields consistent estimates.

Single‑step augmented GEE (augGEE1)
Third, we investigated a simpler version of the augmented 
GEE algorithm which can be easily implemented when-
ever fitting algorithms for FL and weighted GEE are avail-
able. This ‘single-step augmented GEE’ algorithm consists 
of the following steps:

ỹlj =

{

yil j , if l = il or l = N + il ,
1− yil j , if l = 2N + il

w̃lj =

{

1, if l = il ,
hil j/2, if l = N + il or l = 2N + il ,
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1.	 Apply FL to the data ignoring the clustering and con-

struct the corresponding augmented data set 
(

∼
y ,

∼
X

)

 

as described in section 2.1, i.e. using the ordinary hat 
matrix ∼H in defining the weights, not the hat matrix 
Hk as in the iterated augmented GEE algorithm.

2.	 Define the clustering on 
(

∼
y ,

∼
X

)

 by treating each of 

the three copies of the original data as independent 
data sets, similarly as in the iterated augmented GEE 

algorithm. In this way, the augmented data 
(

∼
y ,

∼
X

)

 

contains 3N (clusters)

3.	 Solve the GEE on the augmented data set 
(

∼
y ,

∼
X

)

 , this 

gives the final regression coefficient estimateβ̂ and 
correlation parameter estimate α̂.

In other words, single-step augmented GEE can be 
performed by stopping the iterated augmented GEE 
algorithm after the first outer iteration when using the 
ordinary hat matrix ∼H instead of H0. Note that applying 
iterated or single-step augmented GEE with an inde-
pendent working correlation structure gives the same 
coefficient estimates as FL. The consistency of the single-
step augmented GEE can be shown analogously to the 
consistency of the iterated algorithm.

Estimating the variance‑covariance matrix
With GEE a consistent estimate of the asymptotic vari-
ance-covariance matrix of the regression coefficients is 
given by the so-called sandwich estimate

where

di = X ′
i ŴiV̂

−1
i

(

yi − π̂i

)

 and Vi = W
1/2
i Ri(α)W

1/2
i  is 

the working variance-covariance matrix [10]. With small 
samples, the sandwich estimator is known to underesti-
mate the variance [12]. We will use the small-sample cor-
rection proposed by Morel et al. [13] to correct for this 
underestimation. The corrected variance-covariance 
matrix S∗

(

β̂

)

 is defined as

with

S
(

β̂

)

= I0

(

β̂

)−1
I1

(

β̂

)

I0

(

β̂

)−1
,

I0
(

𝛽
)

=

N
∑

i=1

X �

i
Ŵi V̂

−1

i
ŴiXi , I1

(

𝛽
)

=

N
∑

i=1

did
�

i
,

S∗
(

β̂

)

= I0

(

β̂

)−1

I∗1

(

β̂

)

I0

(

β̂

)−1

+ δ · φ · I0

(

β̂

)−1

N* = ∑ini the number of observations,� = min

(

0.5,
p+1

N−p−1

)

 

and φ = max



1,

trace

�

α·I0

�

β̂

�−1

I∗
1

�

β̂

�

�

p+1



 . We recommend 

to calculate the variance-covariance matrices for the two 
augmented GEE approaches by applying the sandwich 
estimator with small-sample correction to the original data 
(y, X) using the parameter estimates β̂ and α̂ . Note that this 
is different from the sandwich estimates of the variance-
covariance matrix which come with the last GEE fits in the 
two augmented GEE algorithms, as there the sandwich 
estimator is applied to the augmented data set 

(

∼

y,
∼

X

)

.

Any 95% confidence intervals reported in the following 
for ordinary GEE, penalized GEE, single-step and iter-
ated augmented GEE were calculated by multiplying the 
standard error derived from the small-sample corrected 
sandwich estimates of the variance covariance matrix 
with the 0.025-th and 0.975-th quantile of the t-distribu-
tion with the number of clusters as degree of freedom.

Implementation
For penalized GEE, we modified the R package ‘geef-
irthr’ available on GitHub at https://​github.​com/​
mhmon​dol/​geefi​rthr. The version of ‘geefirthr’ available 
on GitHub cannot handle clusters consisting of single 
observations and additionally estimates a scale parame-
ter. Our modified version of ‘geefirthr’, which can also 
deal with clusters containing one observation and with 
the scale parameter set to 1, can be found at https://​
github.​com/​heogd​en/​geefi​rthr. To implement the sin-
gle-step and the iterated augmented GEE algorithms, 
we combined the function logistf in the R package 
‘logistf ’ version 1.24.1 [14], which implements FL, and 
the function geem2 in the R package ‘mmmgee’ version 
1.20 [15], which implements weighted GEE. One should 
be aware that there are different ways of implementing 
weighted GEE. In the function geem2 the weights 
resemble a scale factor for each observation, similarly 
as implemented in PROC GEE in SAS© [16]. For the 
‘outer loop’ of the iterated augmented GEE approach 
we used the same convergence criterion as imple-
mented in the R package ‘geefirthr’, i.e. we declared the 
algorithm as converged if max

m=0,...p
| β̂k+1

m − β̂k
m |< 0.001 

I∗
1

(

𝛽
)

=
N ∗ − 1

N ∗ − p − 1
⋅

N

N − 1
⋅

N
∑

i=1

(

di − d
)(

di − d
)�

,

d =
1

N

N
∑

i=1

di,

https://github.com/mhmondol/geefirthr
https://github.com/mhmondol/geefirthr
https://github.com/heogden/geefirthr
https://github.com/heogden/geefirthr
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within k ≤ 20 iterations. We also used this convergence 
criterion for all GEE fits performed within the two aug-
mented GEE approaches, allowing for 30 iterations. To 
make the single-step augmented GEE algorithm faster 
and to facilitate its convergence, we used the FL coeffi-
cient estimate obtained in the first step of the algorithm 
as starting value for the GEE fit performed in the third 
step. Similarly, with iterated augmented GEE we used 
the coefficient estimate from the previous iteration as 
starting value for the GEE fit in the current iteration. R 
code for the single-step and iterated augmented GEE 
can be found at https://​github.​com/​Angel​ikaGe​roldi​
nger/​augGEE.

A study on postoperative complications in implant 
dentistry
We will use data from a clinical study in implant den-
tistry to illustrate the behavior of GEE and its modifi-
cations in the presence of separation and to discuss 
transformation invariance. The study was set up to 
investigate the relation of various patient and implant 
parameters with the occurrence of complications after 
implant dentistry [17]. For the purpose of illustration 
we restricted the study data to the 533 implantations 
in edentulous jaws, performed in 134 subjects. There 
were 28 haematological complications experienced by 
only 7 patients, corresponding to an event rate of 0.053, 
see Fig. S1. We used GEE to associate the occurrence 
of haematological complications with timing of implant 
placement (immediate/early/later), diabetes mellitus 

(yes/no), antiresorptive therapy (yes/no) and age (in 
decades). Timing of implant placement varies within 
patients, the other three risk factors are constant 
within patients. As we do not have information on the 
date of the implantations, we assumed an exchange-
able working correlation structure for all fitted GEE 
models. The data are separable as all 24 implantations 
for patients on antiresorptive therapy were performed 
without complication.

First, we checked how some of the functions for fit-
ting ordinary GEE in R and SAS deal with non-con-
vergence issues caused by separable data. When we 
modeled the occurrence of complications with age, 
diabetes, antiresorptive therapy and timing, four out 
of the five implementations we investigated (geem in 
package ‘geeM’ [18], geem2 in ‘mmmgee’ [15], gee in 
‘gee’ [19], PROC GEE in SAS software, version 9.4) 
gave an error message signaling that the fitting algo-
rithm had not converged. Only the function geeglm in 
the R-package ‘geepack’ [20] did not report an error, 
leaving it to the user to interpret a regression coeffi-
cient of −39.03 for the variable antiresorptive ther-
apy as an indicator for non-convergence of the fitting 
algorithm. Interestingly, while in logistic regression 
with independent data separation is usually character-
ized by large coefficient estimates and large standard 
errors in the last fitting iteration, the standard error 
for antiresorptive therapy reported by geeglm was 
only 0.65 resulting in a very small p-value. In contrast, 
penalized GEE, single-step and iterated augmented 

Fig. 1  Association of occurrence of haematological complications with timing of implant placement (immediate/early/later), diabetes mellitus 
(yes/no), antiresorptive therapy (yes/no) and age (in decades) estimated with multivariable single-step augmented generalized estimating 
equations (augGEE1),iterated augmented GEE (augGEE) and penalized GEE (pGEE). Symbols give the regression coefficients and the lines extend 
from the lower limits to the upper limits of the 95 % confidence intervals

https://github.com/AngelikaGeroldinger/augGEE
https://github.com/AngelikaGeroldinger/augGEE
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GEE gave plausible, finite regression coefficients with 
reasonable standard errors, see Fig. 1 and Table S1.

Finally, we would like to stress that all three consid-
ered modified GEE algorithms inherit the transformation 
invariance from ordinary GEE, in the sense that changing 
the scale of a metric variable or the coding of a categori-
cal variable does not alter the conclusions drawn from 
the analyses. For instance, for the multivariable model 
described in Fig.  1 and Table S1 single-step augmented 
GEE returned a regression coefficient of 0.0198 and a 
standard error of 0.267 for age in decades. If instead 
age is given in years, single-step augmented GEE yields 
a coefficient estimate of 0.00198 and a standard error of 
0.0267.

Simulation study
Set up
We describe the set-up of our simulation study using the 
framework by Morris et al [21].

Aims
First, we aimed to compare the prevalence of non-
convergence issues between the methods. Second, we 
investigated the performance with respect to effect and 
confidence interval estimation as well as prediction of 
event probabilities.

Data‑generating mechanisms
We considered 36 simulation scenarios, varying the num-
ber of clusters (N ∈ {20, 50, 100}), the size of the clusters 
(‘small’, ‘moderate’, ‘large’), the strength of the correlation 
of the binary outcome (‘moderate’, ‘high’) and the event 
rate ( y ∈ {0.1, 0.3}

)

 , in a full factorial design. For each 
scenario we created 1000 data sets.

For scenarios with ‘small’ cluster size, we determined 
the numbers of observations per cluster by sampling from 
a truncated Poisson distribution with mean 5, minimum 
1 and maximum 10. For ‘moderate’ or ‘large’ cluster sizes 
we used truncated Poisson distributions with mean 10 or 
20, minimum 1 and maximum 20 or 40, respectively.

For the generation of the five covariates X1, …X5 we fol-
lowed ideas by Binder et al. [22] in order to obtain real-
istic data. By first sampling from five standard normally 
distributed variables Z1, …Z5 with correlation structure 
as defined in Table S2 and then applying the transfor-
mations specified in Table S2 we obtained three binary 
variables X1, X2, X3, one ordinal variable X4 and one con-
tinuous variable X5. The covariates X1 and X2 were gener-
ated as ‘between-cluster’ covariates by requiring Z1 and 
Z2 to be constant within clusters, while the three other 
covariates were generated as ‘within-cluster’ covariates, 
i.e. they were allowed to vary between the observations of 

a cluster. To avoid extreme values in the metric covariate 
X5, we winsorized it at the third quartile plus three times 
the interquartile range and at the first quartile minus 
three times the interquartile range, where the quartiles 
were determined by applying the transformation given in 
Table S2 to the quartiles of the standard normally distrib-
uted variable Z5.

Finally, we generated the clustered binary outcome 
Y using the R-package ‘SimCorMultRes’ [23] assuming 
equal correlation between all pairs of outcomes within 
one cluster, corresponding to the assumption of an 
exchangeable working correlation structure. We required 
the outcome Y to satisfy P(Y = 1| x) = (1 + exp(xβ))−1, 
where x = (1, x1, …x5) is a realization of the covariates 
and β = (β0, β1, …β5) is the true vector of regression coef-
ficients with β1, …β5 specified in Table S2 and β0 cho-
sen such that the desired event rate was achieved. The 
package SimCorMultRes generates clustered categorical 
responses by sampling from a latent regression model 
with clustered continuous responses and then dichoto-
mizing them by applying thresholds. In particular, the 
desired dependence structure is expressed in terms of 
the correlation matrix of the latent responses. We used 
correlation coefficients of 0.7 and 0.9 at the level of latent 
responses for the scenarios with moderate and high cor-
relation, respectively. See Fig. S3 for the achieved correla-
tion at the level of binary outcomes.

Methods
We analyzed each data set using generalized estimat-
ing equations (GEE, as implemented in the R package 
‘mmmgee’), single-step augmented GEE (augGEE1), 
iterated augmented GEE (augGEE) and penalized GEE 
(pGEE), always applying an exchangeable working cor-
relation structure. In addition, we considered single-step 
augmented GEE with independent working correlation 
structure (augGEE1, ind), which always gives finite coeffi-
cient estimates and served as a back-up method. To get a 
better understanding of the convergence behavior of aug-
mented GEE, we also investigated single-step augmented 
GEE with the true coefficient estimates as starting val-
ues and single-step augmented GEE with the correlation 
parameter fixed at the true value with respect to conver-
gence. For all estimators confidence intervals were cal-
culated from the small-sample corrected [13] sandwich 
estimates of the variance-covariance matrix using the 
t-distribution. We used the R-package ‘detectseparation’ 
[24] to check for separation in the simulated data sets.

Estimands
The estimands in this study were the regression coeffi-
cients with special focus on the coefficient correspond-
ing to our binary main variable of interest X1 with a true 
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coefficient of 0.69, their standard errors and the pre-
dicted probabilities.

Performance measures
We assessed the methods’ rates of convergence by clas-
sifying a model fit as non-convergent if the fitting proce-
dure declared non-convergence or resulted in an error, 
if the estimated correlation parameter was outside of 
(−1, 1) or if the absolute distance between one of the 
coefficient estimates β̂j , j = 1, . . . , p and its true value βj 
was larger than ten times the square root of the j-th diag-
onal element of the sandwich variance estimate applied 
to the simulated data sets using the true coefficient esti-
mates and the true working correlation matrix, averaged 
over all 1000 simulation runs. For the point estimate of 
β1 and predictions, we evaluated bias and root mean 
squared error (RMSE). The mean squared error of pre-
dictions was first calculated as (N ∗)−1∑N∗

i=1

(

µ̂i − µi

)2 
for each data set, where µ̂i and μi are the estimated and 
true predicted probabilities for the i-th observation, 
respectively, and where N∗ is the number of observa-
tions, and then averaged over all generated data sets in 
a scenario. We report the root of this average as RMSE 
of predictions. For confidence intervals, we evaluated the 
coverage rates (nominal level 0.95) and power (probabil-
ity to exclude 0). Whenever ordinary GEE, augmented 

GEE or penalized GEE did not converge for a data set 
we replaced the non-convergent fit by the results from 
single-step augmented GEE with independent working 
correlation structure for calculating the performance 
measures. We summarized the simulation results graphi-
cally using nested loop plots [25].

Results
Convergence
The largest proportion of separable data sets (0.65) was 
observed for the scenario with 20 clusters, small cluster 
size, highly correlated outcome and an event rate of 0.1, 
see Fig. 2. The proportion of data sets where GEE ran into 
convergence issues was always equal to or higher than the 
proportion of separable data sets. As expected, the single-
step and the iterated augmented GEE approaches gener-
ally had fewer convergence issues than ordinary GEE. 
For instance, in the scenario with the highest number of 
separable data sets the proportion of non-convergence 
was only 0.25 and 0.26 for the single-step and the iterated 
augmented GEE, respectively, while it was 0.72 for GEE. 
Recall that single-step augmented GEE is performed by 
stopping the iterated augmented GEE algorithm after the 
first outer iteration and using the hat matrix ∼H for inde-
pendent data instead of the one generalized to clustered 
data from the iterated augmented GEE algorithm. Thus, 

Fig. 2  Nested loop plot for the proportion of non-convergence with logistic regression, generalized estimating equations (GEE), single-step 
augmented GEE (augGEE1), iterated augmented GEE (augGEE) and penalized GEE (pGEE) for the 36 scenarios. For scenarios with small, moderate or 
large cluster size, the numbers of observations per cluster were sampled from a truncated Poisson distribution with mean 5, 10 or 20, respectively. 
A moderate or large correlation refers to a correlation coefficient of 0.7 or 0.9 at the level of latent responses. ‘Event rate’ denotes the expected 
proportion of Y = 1 in a scenario
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it is not surprising that the proportion of non-conver-
gence for the single-step algorithm was never higher than 
for the iterated algorithm, but the differences were negli-
gible. The proportion of non-convergence for penalized 
GEE was often even lower than the one for augmented 
GEE, especially in scenarios with 20 clusters and an event 
rate of 0.1, but was higher than the proportion of non-
convergence for ordinary GEE in scenarios with 100 clus-
ters, large cluster size and strong correlation.

Contrary to what was stated by Mondol and Rah-
man [4], penalized GEE as well as the augmented GEE 
approaches do not guarantee finite estimates of the 
regression coefficients in the presence of separation. 
Generally, a larger number of clusters, weaker correlation 
and a higher event rate were associated with a lower pro-
portion of non-convergence.

Recall that we use the FL regression coefficients as 
starting values in the GEE fit performed in the single-
step augmented GEE algorithm. This choice of start-
ing values led to even better convergence behavior than 
using the true regression coefficients as starting values, 
which are not available in practice, see Fig. S2. The dis-
crepancy between the proportions of convergence with 

the two choices of starting values underlines the impor-
tance of sensible starting values with GEE. Fixing the 
correlation parameter in single-step augmented GEE to 
the true value, another option not possible in practice, 
substantially improved the convergence behavior but still 
resulted in a proportion of non-convergence of 0.35 in 
the worst scenario, see Fig. S2.

Correlation
Figure S3 illustrates that the true correlation of the binary 
outcome did not only depend on the correlation of the 
latent continuous variables used by the R-package ‘Sim-
CorMultRes’ [23] to generate the binary outcome but also 
on the event rate. The true correlation ranged from 0.39 
for scenarios with moderate correlation of the latent vari-
ables and event rate of 0.1 to 0.67 for scenarios with high 
correlation of latent variables and event rate of 0.3. All 
methods tended to underestimate the true correlation but 
this effect was especially pronounced with ordinary GEE 
and penalized GEE when the data sets consisted of only 
20 clusters and the event rate was small. Generally, the 
methods gave estimated correlation parameters closer to 
the true value if the number of clusters was larger.

Fig. 3  Root mean squared error (RMSE) of β1 multiplied by the square root of the number of clusters (N) divided by 10 with generalized estimating 
equations (GEE), single-step augmented GEE (augGEE1), iterated augmented GEE (augGEE), single-step augmented GEE with independent working 
correlation structure (augGEE1, ind) and penalized GEE (pGEE) for the 36 scenarios. Regression coefficient β1 corresponds to the binary main 
variable of interest with a true value of 0.69. In the calculation of the RMSE, non-convergent fits by ordinary GEE, augmented GEE or penalized 
GEE were replaced by the results from single-step augmented GEE with independent working correlation structure. For scenarios with small, 
moderate or large cluster size, the numbers of observations per cluster were sampled from a truncated Poisson distribution with mean 5, 10 or 20, 
respectively. A moderate or large correlation refers to a correlation coefficient of 0.7 or 0.9 at the level of latent responses. ‘Event rate’ denotes the 
expected proportion of Y = 1 in a scenario
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Point estimates for regression coefficients
Single-step and iterated augmented GEE almost always 
gave estimates for the five regression coefficients of 
lower RMSE than ordinary GEE but the differences 
were small, cf. Figure  3 for the results for β1 and Fig. 
S4 for the results for the other coefficients. Penalized 
GEE was the method which most often resulted in the 
smallest RMSE. As expected, the RMSE of the regres-
sion coefficients was smaller for scenarios with larger 
number of clusters and higher event rate. We could not 
identify a systematically superior behavior of any esti-
mator in regard to the bias of regression coefficients, 
see Fig. S5 for the results for β1. Generally, the bias was 
small compared to the RMSE.
Confidence intervals for regression coefficients
Applying the small-sample correction to the sandwich-
covariance estimates as proposed by Morel et  al. [13] 
substantially improved the performance of all considered 
estimators in terms of coverage of the confidence inter-
vals. However, the 95 % confidence intervals still were 
often too anti-conservative for our binary main variable 
of interest X1, especially for the single-step augmented 
GEE with independent working correlation structure, 
see Fig. 4 for the overall coverage and Fig. S6 for the left- 
and right-tailed coverage. For the other four covariates 
the results were similar, see Fig. S7. For the sake of com-
pleteness Fig. S8 shows the power of the 95 % confidence 
intervals but this measure is difficult to interpret when 
actual coverage probabilities were lower than the nomi-
nal level.

Predictions
Similarly as for the regression coefficients, the aug-
mented GEE approaches and penalized GEE performed 
better than ordinary GEE with regard to the RMSE of 
predictions in 35 and 30, respectively, out of the 36 sim-
ulation scenarios, see Fig.  5. Ignoring the correlation of 
the binary outcome by assuming an independent working 
correlation structure with single-step augmented GEE 
resulted in predicted probabilities of larger RMSE than 
with any other method for all scenarios.

Logistic regression with independent data gives pre-
dicted probabilities that sum up to the number of events 
[7]. This property does not transfer to the situation of 
clustered data: in our simulations, ordinary GEE tended 
to overestimate event rates for scenarios with an event 
rate of 0.1 and lower number of clusters, see Fig. S9. This 
tendency for overestimation was even more severe for 
penalized GEE, single-step and iterated augmented GEE. 
One might suspect that the overestimation of predicted 
probabilities by ordinary GEE observed in Fig. S9 could 
be an artefact caused by our strategy of replacing non-
convergent fits by results from single-step augmented 

GEE with independent working correlation structure 
for the calculation of the RMSE of prediction. However, 
calculating the RMSE only from the convergent fits gave 
very similar results.

Discussion
In this paper we have investigated methods that trans-
fer FL to GEE. In addition to the evaluation of penal-
ized GEE, a recently published procedure, we proposed 
to transfer FL to GEE by exploiting the equivalence of FL 
to maximum likelihood estimation with an augmented 
data set. Under independence, penalized GEE as well as 
single-step and iterated augmented GEE give the same 
coefficient estimates as FL. Moreover, they substantially 
improve convergence compared to ordinary GEE accord-
ing to our simulations, while showing a solid perfor-
mance in terms of accuracy of coefficient estimates and 
predictions. As there was little difference in the perfor-
mance between the two augmented GEE approaches, for 
practical purposes we recommend the simpler one, the 
single-step augmented GEE. It can be easily implemented 
in any statistical software where implementations of FL 
and weighted ordinary GEE are available, see Box S1 for a 
worked example using R code. Moreover, the idea of aug-
mented GEE could be easily transferred to other settings, 
for instance to clustered count data analyzed by marginal 
Poisson regression models. While in our simulations the 
performance of penalized GEE often was slightly superior 
to the performance of the augmented GEE approaches, a 
major drawback is the burden of implementation. Penal-
ized GEE transfers FL to GEE by treating the GEE as 
score equations and requires fundamental modifications 
of the GEE fitting algorithm. Thus, data analysts who are 
interested in applying penalized GEE but are not will-
ing to spend a considerable amount of time and effort in 
coding are reliant on available software implementations, 
which up to now are scarce. To the best of our knowl-
edge there is only one implementation of penalized GEE, 
which is based on R and is available on GitHub. We pro-
vide a modified version of this implementation (https://​
github.​com/​heogd​en/​geefi​rthr) which fixes some minor 
issues such as the handling of clusters consisting of only 
one observation. In summary, for fitting marginal logis-
tic regression models on sparse data we recommend to 
use penalized GEE if one has access to a suitable soft-
ware implementation and single-step augmented GEE 
otherwise.

The idea to augment the data by pseudo data with bal-
anced outcome in order to improve convergence of GEE 
was already touched upon by Woods and van de Ven 
[26] in an engineering context. They proposed to give 
equal weight to the pseudo observations, while with our 
approach the weights of the pseudo observations are set 

https://github.com/heogden/geefirthr
https://github.com/heogden/geefirthr
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proportional to the diagonal elements of the general-
ized hat matrix. In the approach by Woods and van de 
Ven there is no canonical choice of the number of added 
pseudo observations and they called for future research 
to tackle this issue before the method can be applied in 
practice.

An early attempt to improve the convergence behav-
ior of GEE is the ‘one-step GEE algorithm’ proposed by 
Lipsitz et al. [27], which is obtained by performing only 
a single step of the ordinary GEE algorithm using the 
regression coefficients from logistic regression as start-
ing values. One shortcoming of this one-step estimator is 
that it only exists if logistic regression gives finite coef-
ficient estimates, i.e. if the data are non-separable, but 
this could be easily overcome by using regression coef-
ficients from FL as starting values. However, while the 
idea of the one-step estimator sounds convincingly sim-
ple, in practice users face the problem that the various 
available implementations of GEE (e.g. geeglm in the R 
package ‘geepack’, gee in the package ‘gee’) give different 
solutions when being stopped after one iteration. Admit-
tedly, the authors specified the one-step GEE algorithm 
in detail but left it to the users either to start coding 
themselves or to check which, if any, of the existing GEE 

implementations result in the required algorithm when 
being stopped after one iteration.

While non-convergence in logistic regression is widely 
understood and can be appealingly characterized in 
terms of simple properties of the data set using the con-
cept of separation, the issue is more complicated with 
GEE. For instance, to the best of our knowledge, it has 
not even been proven yet that GEE do not give finite 
coefficient estimates for separable data sets as suggested 
by simulations. With GEE, the non-convergence is not 
always related to coefficient estimates diverging to infin-
ity during model fitting but can also be related to a corre-
lation structure approaching singularity [27]. It is unclear 
whether a simple characterization of the data sets where 
GEE do not converge can be given, paralleling the con-
cept of separation for logistic regression. Interestingly, we 
observed that omitting observations might cause GEE to 
converge even when the estimator does not converge on 
the full data set, a phenomenon which cannot occur for 
logistic regression.

FL can be modified to give average predicted probabil-
ities equal to the observed event rate by using the data 
augmentation representation and adding a binary covari-
ate that is equal to 0 for the original observations and 

Fig. 4  Coverage of 95% confidence intervals for β1 with generalized estimating equations (GEE), single-step augmented GEE (augGEE1), iterated 
augmented GEE (augGEE), single-step augmented GEE with independent working correlation structure (augGEE1, ind) and penalized GEE (pGEE) 
for the 36 scenarios. The coverage was calculated as the relative frequency of data sets where the confidence intervals included the true regression 
coefficient β1 = 0.69. In the calculation of the coverage, non-convergent fits by ordinary GEE, augmented GEE or penalized GEE were replaced by 
the results from single-step augmented GEE with independent working correlation structure. The grey band (0.935 to 0.963) represents the Monte 
Carlo error (95 % confidence interval) at an observed probability of 0.95 with 1000 repetitions. For scenarios with small, moderate or large cluster 
size, the numbers of observations per cluster were sampled from a truncated Poisson distribution with mean 5, 10 or 20, respectively. A moderate or 
large correlation refers to a correlation coefficient of 0.7 or 0.9 at the level of latent responses. ‘Event rate’ denotes the expected proportion of Y = 1 
in a scenario
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equal to 1 for the pseudo observations [7]. This modifi-
cation, called FL with added covariate (FLAC) by Puhr 
et al., could be straightforwardly applied to the two aug-
mented GEE approaches. However, we have not pursued 
this approach further as some preliminary simulations 
indicated that the small reduction in the bias of pre-
dicted probabilities might come at the cost of a slightly 
increased RMSE of coefficient estimates and more non-
convergence issues.

In this paper we focused on the example of clustered 
data where an exchangeable working correlation struc-
ture is the most plausible one, but all the considered 
methods can handle any correlation structure. However, 
future research is needed to investigate the performance 
of the augmented GEE approaches with correlation 
structures other than exchangeable. In general, all three 
extensions of FL to GEE will have to prove themselves in 
applications and comprehensive simulation studies, espe-
cially as they lack strict theoretical foundation.
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