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Abstract 

Objective:  Our study aimed to identify predictors as well as develop machine learning (ML) models to predict the 
risk of 30-day mortality in patients with sepsis-associated encephalopathy (SAE).

Materials and methods:  ML models were developed and validated based on a public database named Medical 
Information Mart for Intensive Care (MIMIC)-IV. Models were compared by the area under the curve (AUC), accuracy, 
sensitivity, specificity, positive and negative predictive values, and Hosmer–Lemeshow good of fit test.

Results:  Of 6994 patients in MIMIC-IV included in the final cohort, a total of 1232 (17.62%) patients died following 
SAE. Recursive feature elimination (RFE) selected 15 variables, including acute physiology score III (APSIII), Glasgow 
coma score (GCS), sepsis related organ failure assessment (SOFA), Charlson comorbidity index (CCI), red blood cell 
volume distribution width (RDW), blood urea nitrogen (BUN), age, respiratory rate, PaO2, temperature, lactate, creati-
nine (CRE), malignant cancer, metastatic solid tumor, and platelet (PLT). The validation cohort demonstrated all ML 
approaches had higher discriminative ability compared with the bagged trees (BT) model, although the difference 
was not statistically significant. Furthermore, in terms of the calibration performance, the artificial neural network 
(NNET), logistic regression (LR), and adapting boosting (Ada) models had a good calibration—namely, a high accuracy 
of prediction, with P-values of 0.831, 0.119, and 0.129, respectively.

Conclusions:  The ML models, as demonstrated by our study, can be used to evaluate the prognosis of SAE patients 
in the intensive care unit (ICU). Online calculator could facilitate the sharing of predictive models.
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Introduction
Sepsis-associated encephalopathy (SAE) is character-
ized by diffuse cerebral dysfunction resulted from a 
dysregulated host response without central nervous 
system (CNS) infection [1]. It develops in 8–70% of 
septic patients, based on the sepsis severity, patients’ 
profile, and SAE diagnostic criteria [2–5]. Symp-
toms  in  the acute stage contain sickness behavior, delir-
ium, coma and so on. Further, survivors of the acute stage 
have a tendency to develop persistent neurocognitive 
impairment, including cognitive alterations, and even 
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overt dementia [6–8]. It is reported that SAE was associ-
ated with longer duration of mechanical ventilation (MV) 
and prolonged lengths of stay (LOS) in the intensive care 
unit (ICU) as well as poor overall prognosis [9, 10].

Also, it was related to higher severity of scoring sys-
tems, including the Glasgow coma score (GCS), sequen-
tial organ failure assessment score (SOFA), and the Acute 
Physiology and Chronic Health Evaluation (APACHE 
II) [7, 10]. Moreover, with a mortality rate of up to 63% 
[3], SAE can be detrimental to patients’ health as well as 
add a heavy burden to the financial system. Accordingly, 
early identification, especially individual and measur-
able prediction models, and prompt management are of 
vital importance for the survival and prognosis of SAE 
patients [11]. Recently, the advent of machine learning 
(ML) algorithms has enabled us to predict disease events 
dynamically based on complicated clinical information. 
ML, an artificial intelligence method, can develop mod-
els “learning” from existing data [12]. Moreover, without 
particular model assumptions, ML, may be adept at han-
dling intricate interactions between variables of one sort 
or another [13]. The present study aimed to investigate 
independent factors and then develop predictive models 
to quantitatively predict the likelihood of 30-day mortal-
ity in patients with SAE.

Methods
Data source
This retrospective study was conducted on the Medical 
Information Mart for Intensive Care (MIMIC)-IV version 
1.0 [14]. Specifically, the MIMIC-IV database contained 
comprehensive, de-identified data of patients who have 
been admitted to the ICUs at the Beth Israel Deaconess 
Medical Center in Boston, Massachusetts, between 2008 
and 2019, containing data from 383,220 admissions (sin-
gle center). One author (CP) has obtained access to both 
databases and was responsible for data extraction (Certi-
fication number: 41657645). This study was approved by 
the Institutional Review Boards of Beth Israel Deaconess 
Medical Center (Boston, MA). Requirement for indi-
vidual patient consent was waived due to the fact that all 
protected health information was deidentified.

Participant selection
Inclusion criteria were patients with a diagnosis of sep-
sis in accordance with the Third International Consensus 
Definitions for Sepsis (Sepsis-3) [15]. People with an age 
of younger than 16  years old, ICU stays less than 48  h, 
primary brain injury (traumatic brain injury, ischemic 
stroke, hemorrhagic stroke, epilepsy, or intracranial 
infection), pre-existing liver or kidney failure affecting 
consciousness, chronic alcohol or drug abuse, and severe 
electrolyte imbalances were excluded from the study. In 

addition, for patients with multiple ICU admissions, only 
data of the first ICU admission of the first hospitalization 
were included in the analysis.

Predictors of 30‑day mortality in SAE patients
In this study, the data extracted from MIMIC-IV included 
age, gender, race, and coexisting disorders. Hereafter, the 
Charlson comorbidity index (CCI) was calculated from 
its component variables [myocardial infarction, conges-
tive heart failure, peripheral vascular disease, cerebro-
vascular disease, dementia, chronic pulmonary disease, 
rheumatic disease, peptic ulcer disease, diabetes, paraple-
gia, renal disease, malignant cancer, severe liver disease, 
metastatic solid tumor and acquired immunodeficiency 
syndrome (AIDS)]. Additionally, we retrospectively 
extracted the following data: vital signs, laboratory find-
ings, injury types, different therapy strategies and scoring 
systems on the first day of ICU admission. Since values 
were missing at random, we used multiple imputation to 
deal with missing data. Details of missing data are shown 
in Supplementary Table 1 (Table S1).

Statistical analysis
Values were presented as means with standard deviations 
(if normal) or medians with interquartile ranges (IQR) (if 
non-normal) for continuous variables, and total numbers 
(%) for categorical variables. Continuous variables were 
compared by the t test or Wilcoxon rank sum test while 
proportions were compared using χ2 test or Fisher exact 
tests, if appropriate.

Recursive feature elimination (RFE), a resource selec-
tion method, was utilized to select the most relevant 
variables. In a word, RFE recursively fits into a model 
based on smaller resource sets until a specified termi-
nation criterion is reached. In each loop, characteristics 
are classified in accordance with their importance in the 
trained model. Ultimately, highly correlated and collinear 
variables were eliminated. The characteristics were then 
considered in groups of 15/25/35/45/ALL (ALL = 56 
variables, as represented in Fig. 1) organized by the ranks 
obtained after the method of selection of the characteris-
tics. In order to find the optimal hyperparameters, five-
fold cross-validation was used as the resampling method. 
In each iteration, every four folds were used as a train-
ing subset, and the remaining one-fold was processed 
to adjust the hyperparameters. This training-test pro-
cess was repeated thirty times. Thus, each sample would 
be involved in both the training model and the testing 
model, so that all data were used as much as possible.

In this study, we employed nine different ML algo-
rithms to develop models, including artificial neural net-
work (NNET), bayes naive (NB), logistic regression (LR), 
gradient boosting machine (GBM), adaptating boosting 
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(Ada), random forest (RF), bagged trees (BT), eXtreme 
Gradient Boosting (XGB) and CatBoost. Firstly, the 
population was divided into development set and valida-
tion set. As for internal validation, bootstrap resampling 
technique with 100 iterations was employed. Median 
and 95% confidence intervals of area under the curve 
(AUC) were calculated. Other evaluation indicators, 
such as, accuracy, sensitivity, specificity, negative predic-
tive value and positive predictive value were also calcu-
lated. Moreover, the calibration curve was employed by 

the Hosmer–Lemeshow test of good adaptation. More 
precisely, the chi-square value was calculated based on 
the actual observed and predicted value of the model for 
each group and, subsequently, the corresponding p value 
was obtained. Ultimately, the “Shiny” package in R was 
used to build a visual data analysis platform. All analy-
ses were performed by the statistical software packages 
R version 4.0.2 (http://​www.R-​proje​ct.​org, The R Founda-
tion). In our study, we also used the “Caret” R packages 
and “Shiny” R packages to achieve the process. P values 

Fig. 1  Overview of the methods used for data extraction, training, and testing. ICU, intensive care unit; MIMIC, Medical Information Mart for 
Intensive Care; ML, machine learning; NNET, artificial neural network; NB, naïve bayes; LR, logistic regression; GBM, gradient boosting machine; Ada, 
adapting boosting; RF, random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting

http://www.R-project.org
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less than 0.05 (two-sided test) were considered as statisti-
cally significant.

Results
Baseline characteristic
In accordance with the inclusion and exclusion criteria, 
6994 patients were finally included in the dataset. The 
process of data extraction, training preparation, data test-
ing by diverse ML algorithms is demonstrated in Fig. 1. 
The characteristics of the participants are depicted in 
Table  1. People who died were more likely to be older, 
with more comorbidities (myocardial infarction, conges-
tive heart failure, chronic pulmonary disease, rheumatic 
disease, mild liver disease, renal disease, malignant can-
cer, severe liver disease, metastatic solid tumor), higher 
heart rate, higher respiratory rate, higher white blood cell 
(WBC), higher mean corpuscular volume (MCV), higher 
red blood cell volume distribution width (RDW), longer 
activated partial thromboplastin time (APTT), longer 
prothrombin time (PT), higher international normal-
ized ratio (INR), higher lactate, higher buffer excess (BE), 
higher anion gap, higher potassium, higher creatinine 
(CRE), higher blood urea nitrogen (BUN), higher vaso-
pressor, higher sepsis related organ failure assessment 
(SOFA), higher acute physiology score III (APSIII), and 
higher systemic inflammatory response syndrome (SIRS). 
Furthermore, they were more likely to have lower tem-
perature, lower mean artery pressure (MAP), lower red 
blood cell (RBC), lower mean corpuscular hemoglobin 
concentration (MCHC), lower platelet (PLT), lower hem-
atocrit (HCT), lower pH, lower bicarbonate, lower PaO2, 
lower chloride, lower sodium, and lower Glasgow coma 
score (GCS).

Variable importance
Based on the threshold measure of importance, a total of 
15 important predictors were selected by the RFE algo-
rithm. (Fig.  2) These variables included APSIII, GCS, 
SOFA, CCI, RDW, BUN, age, respiratory rate, PaO2, tem-
perature, lactate, CRE, malignant cancer, metastatic solid 
tumor, and PLT. Then, these 15 variables were used in all 
the subsequent analysis for all models in both training 
and testing sets.

Comparisons among different ML models
The discriminatory abilities of all models for the predic-
tion of 30-day mortality in SAE patients are shown in 
Fig.  3 and Table  2. Within the training set, the NNET, 
NB, LR, GBM, Ada, RF, BT, XGB, and CatBoost models 
were established, and the testing set obtained AUCs of 
0.833, 0.816, 0.833, 0.824, 0.834, 0.825, 0.804, 0.830, and 
0.830, respectively. Comparatively, the BT had the lowest 
discriminative ability (AUC 0.804, 95% CI 0.786 to 0.820) 

while the other eight models had a relatively higher dis-
criminative ability (Table S2). In terms of the calibration 
performance, the NNET, LR, Ada models had a good 
calibration—namely, a high accuracy of prediction, with 
P-values of 0.831, 0.119, and 0.129, respectively (Fig. 4).

In the Fig.  5, fifth predictor variables in the ML are 
demonstrated. Each variable incorporated in the study 
had varying importance over SAE depending on the ML 
approach. In general, APSIII was the variable with great-
est importance across all ML algorithms, followed by 
GCS, RDW, and so forth.

Application of model
The Shiny package analyzed the entire training set, dem-
onstrating the impact of each variable on predicting 
SAE (Fig. 6). For example, the information of one patient 
was input into the model: no metastatic solid tumor, no 
malignant cancer, APSIII (121), GCS (3), CCI (6), SOFA 
(16), age (92), temperature (32 ℃), respiratory rate (19 
per/min), RDW (17.5%), PLT (158 × 109/L), lactate 
(4.6  mmol/L), BUN (20  mg/dL), CRE (1.1  mg/dL), PaO2 
(85 mmHg). The model analyzed that the risk of in-hospi-
tal mortality in this patient was 84.20%, indicating that the 
30-day mortality for this SAE patient was relatively high, 
and precaution measures were recommended. In order 
to better apply this model, we also made a web-based cal-
culator (https://​pengc​hi2009.​shiny​apps.​io/​Morta​lity_​of_​
sepsis_​assoc​iated_​encep​halop​athy/).

Discussion
Herein, nine ML models were developed and further 
validated to predict 30-day mortality of SAE patients. In 
terms of the discrimination and calibration performance, 
the NNET, LR and Ada model outperformed the remain-
ing models. To make it easier for surgeons to use the 
model, a web-based calculator was then developed. Only 
by inputting the variable values can the 30-day death rate 
be shown. Both physicians and patients could perform an 
individualized prediction of the 30-day mortality of SAE, 
which is consistent with the personalized medicine trend. 
Undoubtedly, this calculator is conducive to correct clini-
cal decisions, and more importantly, timely treatment 
strategy.

A study of 69 cases of sepsis patients demonstrated 
that in patients with no encephalopathy (n = 20), mild 
encephalopathy (n = 17), severe encephalopathy (n = 32), 
the mortality rate was 0, 35%, and 53%, respectively, 
showing that mortality was correlated to the severity of 
SAE [16]. In this study, fifteen variables were identified 
as risk factors, involving APSIII, GCS, SOFA, CCI, RDW, 
BUN, age, respiratory rate, PaO2, temperature, lactate, 
CRE, malignant cancer, metastatic solid tumor, and PLT.

https://pengchi2009.shinyapps.io/Mortality_of_sepsis_associated_encephalopathy/
https://pengchi2009.shinyapps.io/Mortality_of_sepsis_associated_encephalopathy/
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Table 1  Baseline characteristic of the MIMIC-IV cohorts

Variables Survival
(n = 5762)

Death
(n = 1232)

P Value

Demographics
  Age (y), median [Q1, Q3] 70.00 (58.00,81.00) 77.00 (66.00,85.25)  < 0.001

  Male, n (%) 3181 (55.21) 659 (53.49) 0.286

  Race, n (%) 0.001

  Black 490 (8.50) 93 (7.55)

  White 4000 (69.42) 824 (66.88)

  Hispanic 174 (3.02) 31 (2.52)

  Asian 193 (3.35) 31 (2.52)

  Others 905 (15.71) 253 (20.54)

Coexisting disorders, n (%)
  Myocardial infarction 1006 (17.46) 265 (21.51) 0.001

  Congestive heart failure 1977 (34.31) 540 (43.83)  < 0.001

  Peripheral vascular disease 696 (12.08) 174 (14.12) 0.054

  Cerebrovascular disease 259 (4.49) 51 (4.14) 0.636

  Dementia 300 (5.21) 81 (6.57) 0.064

  Chronic pulmonary disease 1728 (29.99) 421 (34.17) 0.004

  Rheumatic disease 234 (4.06) 79 (6.41)  < 0.001

  Peptic ulcer disease 229 (3.97) 64 (5.19) 0.063

  Mild liver disease 709 (12.30) 242 (19.64)  < 0.001

  Diabetes without complication 1308 (22.70) 255 (20.70) 0.135

  Diabetes with complication 507 (8.80) 105 (8.52) 0.798

  Paraplegia 124 (2.15) 17 (1.38) 0.101

  Renal disease 1349 (23.41) 387 (31.41)  < 0.001

  Malignant cancer 839 (14.56) 342 (27.76)  < 0.001

  Severe liver disease 225 (3.90) 93 (7.55)  < 0.001

  Metastatic solid tumor 343 (5.95) 205 (16.64)  < 0.001

  AIDS 41 (0.71) 10 (0.81) 0.849

  CCI, median [Q1, Q3] 6.00 (4.00,8.00) 7.00 (6.00,9.00)  < 0.001

Vital signs (1st 24 h)
  Temperature (°C), median [Q1, Q3] 36.90 (36.60,37.30) 36.70 (36.40,37.10)  < 0.001

  MAP (mmHg), median [Q1, Q3] 75.00 (70.00,82.00) 73.00 (68.00,80.00)  < 0.001

  Heart rate (min), median [Q1, Q3] 88.00 (77.00,100.00) 91.00 (80.00,104.00)  < 0.001

  Respiratory rate (min), median [Q1, Q3] 20.00 (17.00,23.00) 22.00 (19.00,25.00)  < 0.001

Laboratory findings (1st 24 h)
  RBC (× 109/L), median [Q1, Q3] 3.41 (3.02,3.92) 3.28 (2.88,3.80)  < 0.001

  WBC (× 109/L), median [Q1, Q3] 11.80 (8.60,16.03) 12.62 (8.77,17.50) 0.002

  MCH (pg), median [Q1, Q3] 30.20 (28.73,31.50) 30.12 (28.70,31.63) 0.925

  MCHC (%), median [Q1, Q3] 33.00 (31.85,34.00) 32.40 (31.30,33.50)  < 0.001

  MCV (fL), median [Q1, Q3] 91.00 (87.00,95.00) 92.75 (88.00,97.33)  < 0.001

  PLT (× 109/L), median [Q1, Q3] 197.00 (139.00,268.50) 189.33 (116.71,272.75) 0.001

  RDW (%), median [Q1, Q3] 14.77 (13.73,16.27) 16.00 (14.58,18.00)  < 0.001

  HCT (%), median [Q1, Q3] 31.30 (27.78,35.70) 30.38 (26.80,35.07)  < 0.001

  APTT (s), median [Q1, Q3] 31.90 (27.80,39.80) 35.70 (29.30,49.50)  < 0.001

  PT (s), median [Q1, Q3] 14.27 (12.85,16.50) 15.70 (13.40,20.00)  < 0.001

  INR, median [Q1, Q3] 1.30 (1.15,1.50) 1.40 (1.20,1.85)  < 0.001

  pH, median [Q1, Q3] 7.37 (7.32,7.42) 7.36 (7.31,7.42)  < 0.001

  Bicarbonate (mmol/L), median [Q1, Q3] 23.00 (20.50,26.00) 21.90 (19.00,25.50)  < 0.001

  Lactate (mmol/L), median [Q1, Q3] 1.65 (1.20,2.28) 1.95 (1.40,2.89)  < 0.001

  BE (mEq/L), median [Q1, Q3] -0.50 (-3.50,1.43) -1.33 (-5.00,1.00)  < 0.001
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Table 1  (continued)

Variables Survival
(n = 5762)

Death
(n = 1232)

P Value

Aniongap (mmol/L), median [Q1, Q3] 14.00 (12.00,16.50) 15.50 (13.00,18.21)  < 0.001

  PaO2 (mmHg), median [Q1, Q3] 112.00 (76.00,173.00) 92.00 (68.00,131.00)  < 0.001

  PaCO2 (mmHg), median [Q1, Q3] 41.00 (37.00,47.00) 41.00 (35.00,48.00) 0.014

  Chloride (mmol/L), median [Q1, Q3] 104.50 (100.50,108.20) 103.00 (98.75,107.50)  < 0.001

  Calcium (mmol/L), median [Q1, Q3] 8.20 (7.73,8.63) 8.10 (7.63,8.65) 0.097

  Sodium (mmol/L), median [Q1, Q3] 138.60 (136.00,141.00) 138.00 (134.82,141.43) 0.001

  Potassium (mmol/L), median [Q1, Q3] 4.15 (3.83,4.55) 4.28 (3.88,4.78)  < 0.001

  Glucose (mmol/L), median [Q1, Q3] 128.50 (108.33,156.24) 131.00 (107.00,163.54) 0.130

  CRE (mg/dL), median [Q1, Q3] 1.05 (0.75,1.68) 1.35 (0.85,2.30)  < 0.001

  BUN (mg/dL), median [Q1, Q3] 22.29 (15.00,37.67) 32.58 (20.67,52.35)  < 0.001

Therapy (1st 24 h), n (%)
  Vasopressor 1799 (31.22) 538 (43.67)  < 0.001

Scoring system
  GCS 13.00 (9.00,14.00) 8.00 (3.00,12.00)  < 0.001

  SOFA 6.00 (4.00,9.00) 9.00 (6.00,12.00)  < 0.001

  APSIII 55.00 (41.00,72.00) 80.50 (63.00,102.00)  < 0.001

  SIRS 3.00 (2.00,3.00) 3.00 (2.75,4.00)  < 0.001

AIDS Acquired Immunodeficiency Syndrome, CCI Charlson Comorbidity Index, MAP Mean Artery Pressure, RBC Red Blood Cell, WBC White Blood Cell, MCH Mean 
Corpuscular Hemoglobin, MCHC Mean Corpuscular Hemoglobin Concentration, MCV Mean Corpuscular Volume, PLT Platelet, RDW Red blood cell volume Distribution 
Width, HCT Hematocrit, APTT Activated Partial Thromboplastin Time, PT Prothrombin Time, INR International Normalized Ratio, pH potential of Hydrogen, BE Buffer 
Excess, CRE Creatinine, BUN Blood Urea Nitrogen, GCS Glasgow Coma Score, SOFA Sepsis related Organ Failure Assessment, APSIII Acute Physiology Score III, SIRS 
Systemic Inflammatory Response Syndrome

Fig. 2  Association between the number of variables allowed to be considered at each split and the prediction accuracy in the REF algorithm. REF, 
recursive feature elimination
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Published study conducted by Chen J et  al. [17] 
indicated that APACHE II and SOFA were inde-
pendent risk factors for 28-day mortality in SAE 
patients, which was similar to our findings. A range 
of previous studies also have found that the  mor-
tality rate  of  sepsis patients is  related to  higher  val-

ues of the GCS, SOFA, and the APACHE II score [10, 18, 
19]. As an established method of summarizing patient 
severity of illness on admission to the ICU, APSIII is a 
part of the APACHE system of equations for the predic-
tion of outcomes for ICU patients [20, 21]. In our study, 
APSIII and SOFA were variables with the relatively 

Fig. 3  AUC of ROC curve by ML models in the validation cohort. AUC, area under the curve; ROC, receiver operate characteristics; ML, machine 
learning; NNET, artificial neural network; NB, naïve bayes; LR, logistic regression; GBM, gradient boosting machine; Ada, adapting boosting; RF, 
random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting

Table 2  Analysis of sensitivity and specificity

PPV Positive Predictive Values, NPV Negative Predictive Values, AUC​ Area Under the Curve, CI Confidence Interval, NNET artificial Neural Network, NB Naïve Bayes, LR 
Logistic Regression, GBM Gradient Boosting Machine, Ada Adapting boosting, RF Random Forest, BT Bagged Trees, XGB eXtreme Gradient Boosting

Model Accuracy Sensitivity Specificity PPV NPV AUC​ Operating 
threshold

95% CI

NNET 0.840 0.802 0.733 0.391 0.946 0.833 0.164 (0.816, 0.849)

NB 0.833 0.767 0.800 0.450 0.941 0.816 0.058 (0.799, 0.833)

LR 0.843 0.808 0.731 0.391 0.947 0.833 0.162 (0.816, 0.848)

GBM 0.844 0.805 0.699 0.360 0.944 0.824 0.141 (0.807, 0.840)

Ada 0.846 0.786 0.737 0.390 0.942 0.834 0.148 (0.817, 0.849)

RF 0.840 0.856 0.642 0.338 0.954 0.825 0.150 (0.808, 0.841)

BT 0.836 0.715 0.745 0.375 0.925 0.804 0.240 (0.786, 0.820)

XGB 0.844 0.808 0.712 0.374 0.945 0.830 0.157 (0.814, 0.846)

CatBoost 0.842 0.789 0.741 0.394 0.943 0.830 0.165 (0.813, 0.846)
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higher weight in the importance plot, demonstrating that 
they had strong power to predict 30-day mortality of SAE 
patients. It is manifest that SAE patients with multiple 
organ dysfunction syndrome (MODS) are associated with 
an increased risk of mortality. Cascade immune response, 
circulatory abnormalities, mitochondrial dysfunction as 
well as hypoxia endothelial permeability increases may 
be responsible for such a complicated pathophysiological 
process [22–25]. Consequently, the treatment of SAE is 

based both on the management of sepsis and on the cor-
rection of potential neurotoxic factors.

Similar to previous study conducted by Yang Y et al. 
[26], RDW was an important predictor for 30-day 
death of SAE patients. Although the mechanism 
remains, to a wide extent, unclear, it is estimated that 
inflammation reaction and oxidative stress might 
invite an increase in RDW values, and simultaneously, 
these mechanisms may play a pivotal role in the poor 

Fig. 4  Calibration curve in the validation cohort. NNET, artificial neural network; NB, naive bayes; LR, logistic regression; GBM, gradient boosting 
machine; Ada, adapting boosting; RF, random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting
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prognosis of SAE [27–29]. Furthermore, in keeping 
with previous study, we also unearthed that age was 
independently associated with 30-day mortality [17]. 
It was probably attributable to the fact that elderly 
patients exhibit a higher risk and mortality from sep-
sis [30]. Further, our research offered insight into the 
fact that renal function (BUN, CRE), respiratory rate, 

PaO2, and PLT were identified as predictors for 30-day 
death in SAE patients. Previous study also found 
that sepsis patients  with  renal  or  multi-organ  fail-
ure were  more  frequently  affected  than  those  with-
out organ complications [3].

Additionally, renal function alteration is not only 
associated with biological alterations including severe 

Fig. 5  Variable importance in nine different ML models. ML, machine learning; NNET, artificial neural network; NB, naïve bayes; LR, logistic 
regression; GBM, gradient boosting machine; Ada, adapting boosting; RF, random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting;
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acidosis and uremia but also associated with neurotoxic 
substances accumulation, such as, antibiotics and hyp-
notics [10]. Notably, caused by the enhanced activation of 
cytokine expression and vascular endothelial cells, plate-
let abnormalities may proceed to disseminated intra-
vascular coagulation (DIC) [31, 32]. Accordingly, it is 
advisable that we properly improve respiratory and circu-
lation status, and correct coagulation function to reduce 
the mortality of SAE patients.

Result from previous study indicated that tempera-
ture and lactate were significantly correlated with 
mortality in SAE patients [33], these findings have 
also been confirmed in our research. As is well known, 
lactate was an important indictor which reflected the 
prognosis of sepsis patients [34, 35]. In other words, 
serum lactate was used to evaluate disease sever-
ity and guide treatment plan [34], thereby indicating 
that SAE patients experienced microcirculation obsta-
cles, which may induce tissue ischemia and hypoxia. 
Accordingly, for patients with lactate acidosis and 
hyperlactic acidosis, timely rehydration and other 
treatments are needed.

The strengths of this study lied in the fact that it applied 
modern ML approaches to predict 30-day mortality, 
ensured that surgeons can conduct triage of patients at 
risk timely. Another important point to note was that 
the use of cross-validation is instrumental in decreasing 
potential overfitting. Further, based on a real-world data 
with relatively large samples (n = 6994), this study under-
went a rigorous statistical test.

There were limitations in this study. First, although 
cohorts were divided into training set and validation set 
(70%: 30%), external verification is still a necessity. And 
compared to traditional models, the evaluation indicators 
including AUCs and accuracy of Ada have a slight edge. 
Second, as an administrative database, there exist inher-
ent limitations. For example, the neuroimaging data were 
not available. Third, as with all potential retrospective 
studies, there was a potential for unmeasured confound-
ers. Fourth, since it was based on ICU patients, this study 
could not be generalizable to other population. Lastly, 
although the shiny package was utilized to help visual-
ize the results, a more applicable model is still needed in 
clinical practice.

Fig. 6  Examples of website usage. Entering the input value determined the mortality and displayed how each value contributed to the prediction. 
CCI, Charlson Comorbidity Index
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Conclusions
On a whole, ML models, are able to individually predict 
30-day mortality in SAE patients. and thereby assisting 
in the early screening for SAE patients who are at risk. 
This  is particularly crucial as early treatment may facili-
tate  the  neurocognitive outcome. Future studies should 
be concentrated on investigating the long-term prognosis 
of SAE patients and the underlying mechanism of SAE.
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