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Abstract 

Background:  Estimations of causal effects from observational data are subject to various sources of bias. One 
method for adjusting for the residual biases in the estimation of treatment effects is through the use of negative 
control outcomes, which are outcomes not believed to be affected by the treatment of interest. The empirical calibra-
tion procedure is a technique that uses negative control outcomes to calibrate p-values. An extension of this tech-
nique calibrates the coverage of the 95% confidence interval of a treatment effect estimate by using negative control 
outcomes as well as positive control outcomes, which are outcomes for which the treatment of interest has known 
effects. Although empirical calibration has been used in several large observational studies, there is no systematic 
examination of its effect under different bias scenarios.

Methods:  The effect of empirical calibration of confidence intervals was analyzed using simulated datasets with 
known treatment effects. The simulations consisted of binary treatment and binary outcome, with biases resulting 
from unmeasured confounder, model misspecification, measurement error, and lack of positivity. The performance 
of the empirical calibration was evaluated by determining the change in the coverage of the confidence interval and 
the bias in the treatment effect estimate.

Results:  Empirical calibration increased coverage of the 95% confidence interval of the treatment effect estimate 
under most bias scenarios but was inconsistent in adjusting the bias in the treatment effect estimate. Empirical 
calibration of confidence intervals was most effective when adjusting for the unmeasured confounding bias. Suitable 
negative controls had a large impact on the adjustment made by empirical calibration, but small improvements in the 
coverage of the outcome of interest were also observable when using unsuitable negative controls.

Conclusions:  This work adds evidence to the efficacy of empirical calibration of the confidence intervals in observa-
tional studies. Calibration of confidence intervals is most effective where there are biases due to unmeasured con-
founding. Further research is needed on the selection of suitable negative controls.
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Introduction
Observational studies are often used when a randomised 
controlled trial design is unethical, costly, or time-con-
suming [1]. The trade-off is the loss of randomisation of 

treatment assignment, which is not guaranteed in obser-
vational studies. This lack of randomisation can introduce 
confounding, which can lead to biases in the estimate of 
the treatment effect [2, 3]. Thus, treatment effect estima-
tion in observational studies should include adjustments 
for confounders, for example, using inverse probability 
score weighting.

Not all confounding can be accounted for. Residual 
confounding occurs when confounding variables are 
not measured, are measured incorrectly, or when the 
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relationships between the confounders and the out-
come are incorrectly modelled [2, 3]. One technique 
to account for residual confounding is through the 
use of negative control outcomes, which are outcomes 
not believed to be affected by the treatment of inter-
est. Estimates of treatment effect from negative control 
outcomes can be used to adjust for the biases in the 
estimate of treatment effect on the outcome of interest, 
with the assumption that the negative controls and out-
come of interest share the same casual structure [4].

Initially, empirical calibration was proposed to cali-
brate the p-values of treatment effects through an 
empirical null distribution derived from the negative 
controls [5]. The empirical calibration of p-values uses 
a Gaussian model of the negative controls to shift and 
scale the test statistics used to calculate the p-values 
[6]. This idea was extended to the empirical calibration 
of the confidence intervals of treatment effects by using 
negative controls and positive controls—synthetically 
generated outcomes with known treatment effects [7]. 
Empirical calibration of confidence intervals has been 
applied in several observational studies [8–12], where 
the calibration increased the coverage of the confidence 
intervals—to the “nominal” 95% coverage for 95% con-
fidence intervals. While a prior study examined the 
limitations of empirical calibration of p-values [6], no 
study to date has assessed the effectiveness of empirical 
calibration of confidence intervals under different bias 
scenarios.

In this paper, we systematically examine the effect of 
empirical calibration of  the confidence interval by simu-
lating different types of residual confounding. The simula-
tions were carried out in the context of binary treatment 
and binary outcome with biases resulting from unmeas-
ured confounder, model misspecification, measurement 
error, and lack of positivity. The simulations examined 
the effect of empirical calibration in terms of the bias-
variance trade-off for each type of bias. Our work has 
implications for observational studies estimating the com-
parative effectiveness of treatment strategies that plan to 
use empirical calibration to address residual confounding.

Methods
Empirical calibration procedure
Two types of treatment-outcome relationships are cen-
tral to the empirical calibration procedure. In the calibra-
tion of p-values, an empirical null distribution is created 
using negative controls. To calibrate confidence intervals, 
both negative and positive controls are used to build an 
empirical systematic error model. Parameters from these 
empirical models are then incorporated into the calcula-
tion of p-values or confidence intervals.

Negative controls
A negative control outcome is an outcome not believed 
to be affected by the treatment of interest [4, 7, 13]. For 
example, Jackson et  al. [14] used hospitalisation due to 
injury or trauma as a negative control outcome when 
examining the effect of influenza vaccination because 
injury or trauma was not considered to be plausibly 
linked to an effect of influenza vaccination. Similarly, 
Schuemie et al. [7] used ingrown nails as a negative con-
trol outcome when comparing the adverse effect of using 
the drug dabigatran or warfarin on patients with atrial 
fibrillation; since neither dabigatran nor warfarin were 
considered to cause or contribute to ingrown nails.

In the empirical calibration of p-values, treatment 
estimates on negative controls are used to construct an 
empirical null distribution. The estimated parameters 
of the empirical null distribution are then incorporated 
into test statistics used for hypothesis testing. In practice, 
potential negative controls are identified from the litera-
ture or from existing negative and positive control refer-
ence sets [7]. Ideally, negative controls should have the 
same potential confounding mechanism as the outcome 
of interest (bias-comparable) [4, 6, 13]. In practice, this 
may not be possible because the treatment of interest is 
likely to affect the various outcomes differently.

Positive controls
The empirical calibration of confidence intervals also 
relies on positive control outcomes, which are outcomes 
for which the treatment of interest has known effects. 
Unlike negative control outcomes, obtaining suitable 
positive controls is challenging. Even if there is a known 
positive control outcome, an estimate of its effect size 
may be highly uncertain [11]. If the effect size of a posi-
tive control is obtained from a randomised controlled 
trial, factors such as inclusion/exclusion criteria may not 
match that of the study with the outcome of interest. A 
secondary issue is that there may not be a wide range of 
positive control outcomes with different corresponding 
effect sizes available. This is because: (1) there tends to be 
insufficient target effect sizes for specific research con-
texts, (2) if target effect sizes are found, the magnitude of 
the effect size is unknown or it may be dependent on the 
population from which it was obtained [15].

To sidestep the challenges of obtaining a range of posi-
tive controls, synthetic positive control outcomes are 
generated from the negative controls. In a previous study 
[7], negative control outcomes are first modelled using 
penalised regression with incidence rate ratios as the unit 
for the treatment effect. From this model, subjects with 
the highest predicted probability of experiencing the out-
come are then re-sampled and added to the treated group 
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(in a binary treatment setup), resulting in a positive con-
trol with the desired treatment effect.

In this study, following previous simulation studies of 
bias adjustment [16, 17], the treatment effect was meas-
ured in terms of the log odds ratio. We generated positive 
controls by reusing the estimated regression coefficients 
from negative controls and setting the treatment effect 
to an adjusted target log odds ratio. The adjustment 
took into account non-zero treatment effects from the 
negative controls indicative of potential biases [13]. For 
simplicity, we assumed a linear relationship between con-
founders and the logit of the control outcomes.

To calibrate confidence intervals, the empirical cali-
bration procedure constructs a systematic error model 
using both types of controls. Similar to the calibration of 
p-values, parameters from the systematic error model are 
incorporated into the calculation of the confidence inter-
val [7, 15].

Simulations
We conducted a set of simulation experiments to deter-
mine the effect of empirical calibration when bias is 

present due to four common sources [2]: unmeasured 
confounding, model misspecification (due to missing 
quadratic or interaction term), lack of positivity, and 
measurement error.

For each type of bias, the performance of empirical cal-
ibration was assessed under three data generation condi-
tions: (1) the limit (“ideal”) scenario in which the negative 
controls share identical potential confounder effects as 
the outcome of interest; (2) the other limit (“worse”) 
case scenario in which the negative controls do not share 
the same potential causal pathway with the outcome of 
interest; and (3) the more realistic scenario in which con-
founders affect all outcomes (negative controls and out-
come of interest) in various degrees, here simulated using 
beta parameters selected at random. Conditions (1) and 
(3) emulate cases where suitable negative controls are 
selected, i.e. they are bias-comparable to the outcome of 
interest. Condition (2) emulates cases where unsuitable 
negative controls are selected, i.e. the negative controls 
are not bias-comparable to the outcome of interest.

The simulation process consisted of three steps: (1) 
generating a set of potential confounders X; (2) generat-
ing the binary treatment values Z; and (3) generating the 
binary outcomes consisting of the outcome of interest Y⋆ 

and S negative control outcomes Y−. We assumed that 
the outcome of interest and the negative control out-
comes are all measured as part of the same large obser-
vational dataset. For simplicity, and following previous 
literature [16, 18], we used logistic linear regression as 
our base treatment and outcome models.

Generating confounders
We included ten measured confounders (m = 10) sampled from 
a normalised Gaussian distribution Xm ∼ N µ = 0, σ 2 = 1  
in a large sample size (N = 50,000). Across the simulations, the 
number of confounders and the sample size were kept constant 
as the focus of the study was to assess the effect of empirical 
calibration under different bias-inducing scenarios. Supple-
mentary material 1 shows the directed acyclic graph of this 
simulation setup with one negative control outcome and two 
measured confounders.

Generating the treatment variable
The treatment assignment probability was modelled as 
a logistic function that depended on the linear combina-
tions of the confounders parametrised by α = {α0 , α1, ...  αm}. 
Treatment values were then sampled from a Bernoulli dis-
tribution with probabilities given by:

where X = {X1, X2, …, Xm}

Generating the outcome of interest and the negative controls
To generate the outcome of interest and negative con-
trols, the probability of outcome Y = 1 was modelled as 
a logistic function depending on confounders and the 
treatment variable. The combination of confounders 
that the logistic function depended on varied accord-
ing to  the types of bias we wanted to introduce. The 
reference logistic function was a linear combination of 
independent variables:

with 
{

β⋆0, β
⋆
1, . . . , β

⋆
m

}

 as the regression parameters. Dif-
ferent bias scenarios were simulated by modifying this 
reference outcome model to include non-linear or inter-
active terms in eq. 6.

The negative control outcome probabilities were 
also generated from a logistic model, but without the 
dependency on the treatment:

Pr (Z = 1 ∣ X) = logistic
(

α0 + α1X1 + α2X2 +⋯ + αmXm

)

,=
1

1 + exp
[

−
(

α0 + α1X1 + α2X2 +⋯ + αmXm

)] , Z ∼ Bern[Pr (Z = 1 ∣ X)]

(6)
Pr

(

Y⋆ = 1 ∣ X
)

= logistic
(

β⋆
0
+ β⋆

z
Z + β⋆

1
X1 + β⋆

2
X2 +⋯ + β⋆

m
Xm

)

Y⋆ ∼ Bern
[

Pr
(

Y⋆ = 1 ∣ X, Z
)]

,

(7)
Pr

(

Y−
s
= 1 ∣ X

)

= logistic
(

β−
s0
+ β−

s1
X1 + β−

s2
X2 +⋯ + β−

sm
Xm

)

Y −
s
∼ Bern

[

Pr
(

Y−
s
= 1 ∣ X

)]

,
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Table 1  Bias scenarios with covariate dependencies in the data generation and estimation functions. For each bias scenario, two 
experiment groups explore the effect of suitable negative controls (having the same potential confounding mechanism as the 
outcome of interest) and unsuitable negative controls. The third column shows the covariate dependencies of the data generating 
functions: f⋆ for the outcome of interest and f− for the negative controls. X is the set of measured confounders

Bias Scenario Experiment Group Outcome generation function

Reference case 1 f⋆ and f− depend on X

Unmeasured confounder (U) 2.1 f⋆ and f− depend on X and U

2.2 Only f⋆ depends on X and U

Model misspecification:
Quadratic term ( X2

1
)

3.1 f⋆ and f− depend on X and X2
1

3.2 Only f⋆ depends on X and X2
1

Model misspecification:
Interaction between two confounders (X1X2)

4.1 f⋆ and f− depend on X and X1X2

4.2 Only f⋆ depends on X and X1X2

Lack of positivity
Lack of overlap between treatment groups in terms of propensity 
score.

5.1 f⋆ and f− depend on X.

5.2 Only f⋆ depends on X.

Measurement error in confounder 6 f⋆ and f− depend on X.
One of the confounders with large 
effect have random measurement 
error.
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Fig. 1  Bias of treatment estimates and the coverage of their standard errors by the 95% confidence interval in the unmeasured confounding 
scenario. In the “ideal” case the effect of confounders on the outcomes are the same, and in the “random coefficients” case these effects are 
randomised. Within each cell, the left funnel plot shows the estimates calibrated with negative controls only and the right funnel plot shows 
estimates calibrated with negative and positive controls
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where {β−
s0
, β−

s1
, β−

s2
,… , β−

sm

} are the regression parameters for the 
s-th negative control outcome. For brevity, f ⋆s  denotes 
the data generating function for the outcome of interest 
and f −s  denotes the data generating function (and out-
come model) for the s-th negative control.

Simulating bias
The bias scenarios simulated in this study are sum-
marised in Table  1 and encompass: unmeasured con-
founding, model misspecification, lack of positivity, and 
measurement error. Each bias scenario consisted of 500 
simulation iterations with N = 50,000 subjects, result-
ing in 500 comparisons between the calibrated and 
uncalibrated estimates of the treatment effect. The rela-
tively large sample size of 50,000 was chosen in the ref-
erence scenario to avoid biases associated with sample 
size effects. Within each simulation iteration, the treat-
ment, outcome, and control model parameters were 
randomly sampled from a uniform distribution extend-
ing from log(0.5) = − 0.693 to log(2) = 0.6931.

Unmeasured confounding  Refers to confounding not 
measured or not controlled for in the analysis [3]. This 

was introduced in our experiments by adding an extra 
confounder U to the simulated outcome models f⋆ and 
fs−, without making the confounder available at the time 
of treatment effect estimation. In one experiment (2.1) 
the negative controls shared the same unmeasured con-
founder as the outcome of interest. In the first instance, 
we simulated an ideal case in which the parameter asso-
ciated with the unmeasured confounding in the outcome 
of interest (f⋆) is replicated in all negative control models 
fs−. We then relaxed this constraint and allowed all the 
confounder parameters to be independently generated. 
In a second experiment (2.2), the extra confounder U was 
added to the outcome of interest (f⋆), but not to the nega-
tive controls (fs−).

Model misspecification  Refers to biases associated with 
various forms of misspecification in the outcome mod-
els. In our experiments, we introduced a quadratic term 
X
2
1 (experiment group three) and an interaction term 

between confounders X1X2 (experiment group four). In 
the first group of experiments (3.1 and 4.1), the negative 
controls shared the same misspecification as the outcome 
of interest, first with identical parameters and then with 
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Fig. 2  Bias of treatment estimates and the coverage of their standard errors by the 95% confidence interval in the model misspecification – missing 
quadratic term scenario. In the “ideal” case the effect of confounders on the outcomes are the same, and in the “random coefficients” case these 
effects are randomised. Within each cell, the left funnel plot shows the estimates calibrated with negative controls only and the right funnel plot 
shows estimates calibrated with negative and positive controls
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parameters chosen at random. In the second group of 
experiments (3.2 and 4.2), model misspecification was 
only present in the outcome of interest.

Lack of positivity  Refers to the lack of overlap between the 
treatment groups (in terms of propensity score), also known 
as structural violation of the positivity assumption. This was 
introduced in experiments 5.1 and 5.2 by modifying regions 
of the propensity score distribution as described in [19].

Measurement error  Refers to confounders contain-
ing a systematic error or being subject to noise. This 
was introduced in experiment 6 by adding an error term 
E ∼ N

(

µǫ, σ
2
ǫ

)

 to the confounder with the largest effect 
size. The mean (greater than zero) and standard deviations 
were chosen at random for each simulation iteration.

Applying the empirical calibration procedure to the simulated data
The systematic error model for empirical calibration can 
be derived using regression estimates from (1) all the neg-
ative and positive controls or (2) only the negative con-
trols (referred to as the null error model). The null error 
model assumes the systematic error is the same for all 

true effect sizes, whereas using all negative and positive 
controls models the systematic error as a function of the 
true effect size. Treatment effect estimates for the nega-
tive and positive controls are calculated using a stand-
ard inverse propensity score weighted logistic regression 
(referred to as estimation function). The systematic error 
model is then constructed using these estimates. The esti-
mation function is also applied to the outcome of inter-
est to estimate the treatment effect and its model-robust 
‘sandwich’ standard error. This estimate is then calibrated 
using the systematic error model resulting in calibrated 
estimates and their corresponding standard errors. See 
Supplementary material 2 for additional details on model-
ling the systematic error in empirical calibration.

For brevity, we refer to empirical calibration with the 
systematic error model as “default empirical calibration.” 
Sensitivity analysis included comparing default empiri-
cal calibration with empirical calibration with the null 
model. Five negative controls were used for empirical cal-
ibration, but sensitivity analysis included calibration with 
30 negative controls to examine the effect of increasing 
the number of negative controls.

We used version R v4.0.3 [20] on the x86_64 architec-
ture. Stabilised weights in the estimation function were 
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Fig. 3  Bias of treatment estimates and the coverage of their standard errors by the 95% confidence interval in the model misspecification – missing 
interaction term scenario. In the “ideal” case the effect of confounders on the outcomes are the same, and in the “random coefficients” case these 
effects are randomised. Within each cell, the left funnel plot shows the estimates calibrated with negative controls only and the right funnel plot 
shows estimates calibrated with negative and positive controls
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obtained using version 0.10.0 of the WeightIt package 
[21], and their sandwich standard errors were obtained 
using the v4.0 survey package [22]. Calibration of the 
estimates was performed using version v2.1.0 of the 
EmpiricalCalibration package [7]. Our simulation soft-
ware is licensed under GPLv3 and is available at https://​
github.​com/​clini​cal-​ai/​assess-​empca​lib/.

Funnel plots were used to represent the biases in the 
estimates of the treatment effect on the outcome of inter-
est with and without calibration across each confounding 
scenario (Table 1). For each experiment, the funnel plots 
were generated for default empirical calibration with 
five negative controls. The funnel plots also include the 
results from sensitivity analysis: (1) empirical calibration 
with the null model, and (2) empirical calibration with 30 
negative controls.

Results
Calibration of treatment effect on the outcome of interest
Figures  1, 2, 3, 4 and 5 show funnel plots representing 
the biases in the estimates of the treatment effect on the 
outcome of interest with and without calibration across 
the bias scenarios outlined in Table  1 (experiments 2 
to 6). The corresponding differences in coverage by the 

95% confidence interval and bias of the outcome of inter-
est after applying empirical calibration are presented in 
Table  2. The average width of the confidence intervals 
after calibration are shown in Table  4. Supplementary 
material 3 contains coverage plots of the calibrated con-
trols in this study (presented as a diagnostic of empirical 
calibration performance in [7]). Running an experiment 
without any introduced confounding (experiment 1) 
resulted in zero bias (see Supplementary material).

Empirical calibration increased the coverage of the 
confidence intervals of the  treatment effect estimation 
in 8/10 cases when negative controls were suitable (bias-
comparable to the outcome of interest), with coverage 
increasing in the range of + 1% to + 60%. Empirical cali-
bration increased coverage when bias was due to unmeas-
ured confounding, model misspecification (quadratic 
term), non-positivity, and measurement error, though the 
increase for non-positivity (+ 2%) and measurement error 
(+ 1%) was small. When unsuitable negative controls (not 
bias-comparable) were used for empirical calibration, cov-
erage increased in 4/4 cases, though the increase in cov-
erage was modest by comparison (+ 1% - 8%). The small 
increase in coverage for non-positivity and measurement 
error was due to uncalibrated confidence intervals already 
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Fig. 4  Bias of treatment estimates and the coverage of their standard errors by the 95% confidence interval in the non-positivity scenario. In the 
“ideal” case the effect of confounders on the outcomes are the same, and in the “random coefficients” case these effects are randomised. Within 
each cell, the left funnel plot shows the estimates calibrated with negative controls only and the right funnel plot shows estimates calibrated with 
negative and positive controls
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having coverage of the outcome of interest close to 95% 
(Table  3). In bias-comparable scenarios where empirical 
calibration increased the coverage, the average width of 
the confidence intervals also increased (Table 4).

Empirical calibration decreased bias in the  treat-
ment effect estimation in 8/10 cases when negative 
controls were suitable, in the scenarios of unmeasured 
confounder, model misspecification (interaction term), 
and measurement error. For non-positivity and model 
misspecification (quadratic term), the effect in bias was 

inconsistent. When unsuitable negative controls were 
used, calibration decreased bias in 3/4 cases.

Empirical calibration with the null model
Empirical calibration with the null model decreased cov-
erage in 9/10 cases when compared with default empiri-
cal calibration when suitable negative controls were 
used (coverage decrease ranging from − 1% to − 52%). 
Calibration decreased coverage for model misspecifica-
tion (quadratic and interaction term), non-positivity, and 
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Fig. 5  Bias of treatment estimates and the coverage of their standard errors by the 95% confidence interval in the measurement error scenario. In 
the “ideal” case the effect of confounders on the outcomes are the same, and in the “random coefficients” case these effects are randomised. Within 
each cell, the left funnel plot shows the estimates calibrated with negative controls only and the right funnel plot shows estimates calibrated with 
negative and positive controls
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measurement error. For unmeasured confounding, the 
change in coverage was inconsistent (− 6% and + 9%). 
With unsuitable negative controls, coverage decreased in 
4/4 cases when compared with default empirical calibra-
tion (− 3% to − 8%).

With suitable negative controls, empirical calibration with 
the null model increased bias in the treatment effect esti-
mation  in 8/10 cases when compared with default empiri-
cal calibration. Bias increased for model misspecification 
(quadratic and interaction term) and measurement error. 
For unmeasured confounder and non-positivity, the change 

in bias was inconsistent. With unsuitable negative controls, 
bias increased in 2/4 cases.

Empirical calibration with a higher number of negative 
controls
Increasing the number of negative controls from five to 30 
increased coverage in 7/10 cases when suitable negative 
controls were used, the increase ranging from + 1% to + 6%. 
Coverage increased for unmeasured confounder, model mis-
specification (interaction term), and non-positivity. When 
using unsuitable negative controls, coverage increased in 2/4 

Table 2  Differences in coverage of the treatment effect on the outcome of interest by the 95% confidence interval and difference in 
mean of standardised absolute biases of the treatment effect on the outcome of interest. Default empirical calibration was performed 
with five negative controls and using the all-controls systematic error model

Difference Coverage Difference in Mean of Standardised Absolute Bias

Ideal—Suitable 
negative 
controls

Random— 
Suitable negative 
controls

Random—
Unsuitable 
negative controls

Ideal—Suitable 
negative 
controls

Random—
Suitable negative 
controls

Random—
Unsuitable 
negative controls

No calibration vs default empirical calibration
  Unmeasured 
confounder

0.48 0.60 0.05 −0.46 −0.23 0.00

  Model misspeci-
fication Quadratic 
term

0.24 0.27 0.08 −0.05 0.03 −0.01

  Model misspeci-
fication Interaction 
term

−0.09 0.04 0.02 −0.19 −0.09 − 0.02

  Non-positivity 0.02 0.00 0.01 −0.02 0.07 −0.01

  Measurement 
error

0.01 0.01 NA −0.02 −0.02 NA

Default empirical calibration vs empirical calibration with the NULL systematic error model
  Unmeasured 
confounder

0.09 −0.06 −0.04 0.55 −1.56 0.00

  Model misspeci-
fication Quadratic 
term

−0.09 −0.13 − 0.08 0.20 0.35 0.02

  Model misspeci-
fication Interaction 
term

−0.52 −0.06 − 0.03 0.29 0.00 0.01

  Non-positivity −0.02 −0.01 − 0.03 −0.01 0.09 −0.01

  Measurement 
error

−0.04 −0.02 NA 0.02 0.01 NA

Default empirical calibration (5 negative controls) vs empirical calibration with 30 negative controls
  Unmeasured 
confounder

0.05 0.06 0.01 0.85 −8.31 −0.36

  Model misspeci-
fication Quadratic 
term

0.00 0.00 −0.05 0.04 −0.11 0.08

  Model misspeci-
fication Interaction 
term

0.02 0.02 0.02 0.06 0.06 −0.60

  Non-positivity 0.02 0.03 0.00 −0.02 0.43 0.12

  Measurement 
error

0.01 −0.01 NA −0.11 −0.06 NA
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cases. Increasing the number of negative controls had an 
inconsistent effect on the bias, decreasing bias in 5/10 cases 
when suitable negative controls were used and decreasing 
bias in 2/4 cases when unsuitable negative controls were used.

Discussion
Main findings
This paper examined the impact of empirical calibra-
tion across different types of biases introduced in sim-
ulation scenarios. In the majority of the simulations, 
empirical calibration increased coverage of the 95% 
confidence interval and decreased the bias of the esti-
mated treatment effect. Across bias scenarios, empirical 
calibration performed best in bias due to unmeasured 
confounders. Both suitable and unsuitable negative 
controls resulted in increased coverage and decreased 
bias, though the increase in coverage was lower when 
unsuitable negative controls were used for calibration. 
This suggests that when suitable negative controls are 
chosen for calibration, it benefits both the coverage 
and reduction of bias of the estimated treatment effect, 
while calibration with unsuitable negative controls pro-
vides small benefits. This largely agrees with prior work 
suggesting that negative control outcomes should share 

the same potential causal mechanism as the outcome of 
interest in order to be effective [4, 6, 13]. Nevertheless, 
our work demonstrates small gains even when less than 
ideal negative controls are employed.

While the performance of empirical calibration was 
mostly positive, its performance was at times inconsist-
ent in how it affected coverage and bias, with cases in 
which coverage was increased at the expense of increased 
bias. This suggests further examination of empirical cali-
bration in controlled simulated datasets and in real-world 
datasets, particularly in selecting appropriate controls.

Our results showed minimal gains from running 
empirical calibration with 30 negative controls instead 
of five negative controls. A previous study [11] used 
76 negative controls, with each one obtained by exam-
ining the literature. Depending on the domain, this 
may not be feasible or  it may be too time-consuming. 
Our results confirm findings from prior work, show-
ing gains when the number of negative controls is 
increased [7]. Still, if a few negative controls are cho-
sen with proper evidence, they can be sufficient for 
robust performance of empirical calibration.

Empirical calibration with the null model (using only 
negative controls) yielded lower coverage gains than 

Table 3  Coverage of the outcome of interest by the 95% confidence interval without calibration and with empirical calibration

Ideal—Suitable negative controls Random—Suitable negative controls Random—Unsuitable negative 
controls

Calibrated Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated

Unmeasured Confounder 0.79 0.31 0.91 0.31 0.36 0.31

Model misspecification
Quadratic term

0.99 0.75 0.99 0.72 0.82 0.74

Model misspecification
Interaction term

0.87 0.96 0.98 0.94 0.96 0.94

Non-positivity 0.96 0.94 0.94 0.94 0.96 0.95

Measurement error 0.96 0.95 0.96 0.95 NA NA

Table 4  Average width of 95% confidence intervals with and without calibration for reference simulation (five negative controls, 
random Gaussian noise for measurement error)

Ideal—Suitable negative 
controls

Random—Suitable negative 
controls

Random—Unsuitable 
negative controls

Calibrated Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated

Unmeasured Confounder 0.44 0.10 0.50 0.10 0.13 0.10

Model misspecification Quadratic term 0.61 0.11 0.62 0.11 0.13 0.11

Model misspecification Interaction term 0.39 0.11 0.44 0.11 0.13 0.11

Non-positivity 0.22 0.18 0.21 0.18 0.22 0.18

Measurement error 0.18 0.15 0.17 0.15 NA NA
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default empirical calibration (using negative and positive 
controls). That is, the assumptions made by null model 
calibration decreased the effectiveness of empirical cali-
bration. However, the small gains in coverage of the 95% 
confidence interval should encourage practitioners to 
apply empirical calibration with the null model in cases 
where it is unfeasible or too complex to derive positive 
controls from the negative controls.

A major issue with applying empirical calibration 
of the confidence interval is the suitability of nega-
tive controls. A higher number of negative controls 
increases the chance of having at least one negative 
control that shares the same causal structure as the 
outcome of interest. A null (zero) treatment effect esti-
mate is necessary but insufficient for the negative con-
trol to be suitable, as capturing the bias from the same 
causal structure as the outcome of interest is what 
enables effective empirical calibration. Our results 
emphasize the importance of having suitable negative 
controls, as results show that empirical calibration of 
confidence interval works most effectively when using 
negative controls that share a similar causal structure 
as the outcome of interest. A prior study also identi-
fied this issue when analysing empirical calibration of 
p-values [6]. Given the importance of negative controls 
to the empirical calibration procedure, an important 
area of future work is investigating ways of selecting 
suitable negative controls which are bias-comparable 
to the outcome of interest.

Once negative controls are identified, empirical cali-
bration software [7] can synthetically generate posi-
tive controls and perform the calibration of confidence 
intervals. Calibrated confidence intervals can be pre-
sented with noncalibrated intervals to enable readers 
to assess the uncertainty attributable to systematic 
error [7]. One method of assessing the impact of the 
empirical calibration in practice (where true treat-
ment effects are not available) is to apply the calibra-
tion procedure to the negative and positive controls, 
comparing the changes to the null (zero) and synthetic 
positive treatment effects before and after calibration. 
This method is detailed in prior work [11].

There are alternative methods to adjust biased treat-
ment effect estimates. For example, instrumental vari-
ables (IV) can be used as part of a sensitivity analysis 
to address potential unmeasured confounding [23]. 
Simulation-extrapolation (SIMEX) is a technique for 
biases introduced due to measurement error in covari-
ates [24]. These techniques can be used in place of or 
in combination with empirical calibration. However, a 
comparison of these methods with empirical calibra-
tion is left for future work.

Limitations
Our simulations explored five common bias scenarios, but 
real-world data is likely to result in combinations of dif-
ferent types of biases. The data generation and estimation 
functions were linear models, with non-linear and non-
parametric functions to be explored in future work. The 
confounders in our simulations were independent, and the 
number of measured confounders was fixed, which limited 
the data simulations explored. The treatment effect in our 
analysis was the log of an odds ratio (regression coefficient 
of logistic regression). Future work needs to analyse how 
other treatment effects, such as relative risk and the cor-
responding generation of positive controls, may affect the 
performance of empirical calibration.

Conclusions
Our work adds evidence to prior studies that empirical 
calibration can increase coverage of the 95% confidence 
interval and decrease bias of the outcome of interest. This 
is relevant for observational studies estimating the com-
parative effectiveness of treatments. Empirical calibration 
performed best when adjusting bias due to unmeasured 
confounder. Caution must be taken to select suitable neg-
ative controls, as unsuitable negative controls lessen the 
efficacy of empirical calibration.
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