A1: Current value (linear predictor)

\( {W}_i(t)={\displaystyle {\sum}_{k=1}^K{\alpha}_k{\mu}_{ik}(t)} \)

[17, 19, 21, 29, 37, 39, 42, 48, 49, 52, 56, 58, 60, 62, 67, 70]

A2: Current value (expected value)^{a}

\( {W}_i(t)={\displaystyle {\sum}_{k=1}^K{\alpha}_k{h}_k^{1}\left({\mu}_{ik}\right(t\left)\right)} \)

[62]

A3: Interaction^{b}

\( {W}_i(t)={\displaystyle {\sum}_{k=1}^K\left\{{\alpha}_k{\mu}_{ik}(t)+{\sum}_{l=1}^p{x}_{il}^{(2)}{\mu}_{ik}(t){\gamma}_{kl}\right\}} \)

[37]

A4: Lagged time^{c}

\( {W}_i(t)={\displaystyle {\sum}_{k=1}^K{\alpha}_k{\mu}_{ik}\left(tc\right)} \)

[46]

A5: General vector function^{d}

\( {W}_i(t)={a}^T\psi \left(t,,,{b}_i\right) \)

[38]

A6: Timedependent slopes^{e}

\( {W}_i(t)={\displaystyle {\sum}_{k=1}^K\left\{{\mu}_{ik}(t)+{\displaystyle {\sum}_{v=1}^V{\alpha}_{vk}\frac{d^v}{d{t}^v}{\mu}_{ik}(t)}\right\}} \)

[29, 56]

A7: Cumulative effects

\( {W}_i(t)={\displaystyle {\sum}_{k=1}^K{\alpha}_k{\displaystyle {\int}_0^t}{\mu}_{ik}(s)ds} \)

[56]

A8: Random effects^{f}

\( {W}_i(t)={\displaystyle {\sum}_{k=1}^K{\alpha}_k^T{b}_{ik}} \)

[18, 29, 53–55, 59, 62, 64, 65, 68]

A9: Generalised random effects + fixed effects^{g}

\( {W}_i(t)={\displaystyle {\sum}_{k=1}^K{\alpha}_k^Tr\left({b}_{ik} + {\tilde {\beta}}_k^{(1)}\right)} \)

[29, 50, 51, 59, 62]

A10: Correlated random effects^{h}

\( {W}_i(t)={\theta}_i{\textstyle}\mathrm{with}{\textstyle }{\left({b}_i^T,,,{\theta}_i\right)}^T\sim {\mathrm{F}}_{\mathrm{a}} \)

[29]
