Skip to main content

Table 3 Simulations results: empirical coverage rates of estimated 95% confidence intervals according to number of individuals, n, and to the censoring rate, τ, high separation setting

From: Joint latent class model: Simulation study of model properties and application to amyotrophic lateral sclerosis disease

n τ \(\hat {\beta }_{0g}\) \(\hat {\beta }_{1g}\) \(\hat {\zeta }_{1g}\) \(\hat {\zeta }_{2g}\)
   g=1 g=2 g=1 g=2 g=1 g=2 g=1 g=2
100 5 0.9664 0.9496 0.9328 0.9496 0.8824 0.8655 0.9580 0.9160
  10 0.9664 0.9496 0.9328 0.9412 0.8571 0.8655 0.9496 0.9076
  15 0.9664 0.9496 0.9412 0.9496 0.8824 0.8908 0.9412 0.9328
  25 0.9580 0.9496 0.9412 0.9580 0.8487 0.7899 0.9496 0.9076
  50 0.9328 0.9076 0.9748 0.9328 0.8403 0.7899 0.8824 0.8571
500 5 0.9667 0.9667 0.9833 0.9500 0.9250 0.9167 0.9333 0.9500
  10 0.9667 0.9750 0.9833 0.9417 0.9583 0.9250 0.9250 0.9500
  15 0.9667 0.9667 0.9750 0.9750 0.9250 0.9083 0.9417 0.9333
  25 0.9583 0.9500 0.9750 0.9417 0.8667 0.7750 0.9083 0.9167
  50 0.8750 0.9167 0.9333 0.9083 0.9000 0.8333 0.9333 0.9250
1000 5 0.9833 0.9333 0.9500 0.9250 0.8667 0.8750 0.9500 0.9417
  10 0.9750 0.9167 0.9500 0.9333 0.8833 0.9417 0.9583 0.9417
  15 0.9750 0.9167 0.9333 0.9333 0.8833 0.8917 0.9833 0.9583
  25 0.9500 0.9000 0.9167 0.9083 0.8917 0.8917 0.9417 0.9000
  50 0.8667 0.8000 0.8917 0.9083 0.9000 0.7000 0.9083 0.9167
5000 5 0.9750 0.9083 0.9333 0.8750 0.8917 0.9000 0.9667 0.9500
  10 0.9833 0.9083 0.9417 0.8583 0.9000 0.9250 0.9500 0.9417
  15 0.9667 0.8667 0.9083 0.8333 0.8250 0.8750 0.9417 0.9333
  25 0.9333 0.7917 0.9000 0.8250 0.8167 0.8667 0.8917 0.9333
  50 0.5000 0.2833 0.8000 0.7167 0.7750 0.7750 0.8500 0.9000
  1. The results for the intercept and the slope from the longitudinal sub-model (\(\hat {\beta }_{0g}, \hat {\beta }_{1g}\) respectively) and for the Weibull scale and shape from the survival sub-model (\(\hat {\zeta }_{1g}\) and \(\hat {\zeta }_{2g}\) respectively) are presented. g: class identification