Trelles O, Prins P, Snir M, Jansen RC: Big data, but are we ready?. Nat Rev Genet. 2011, 12: 224-
Article
CAS
PubMed
Google Scholar
Fontana JM, Alexander E, Salvatore M: Translational research in infectious disease: current paradigms and challenges ahead. Transl Res. 2012, 159: 430-453. 10.1016/j.trsl.2011.12.009.
Article
PubMed
PubMed Central
Google Scholar
Shah NH, Tenenbaum JD: The coming age of data-driven medicine: translational bioinformatics’ next frontier. J Am Med Informatics Assoc. 2012, 19: e2-e4. 10.1136/amiajnl-2012-000969.
Article
Google Scholar
Bougnères P, Valleron A-J: Causes of early-onset type 1 diabetes: toward data-driven environmental approaches. J Exp Med. 2008, 205: 2953-2957. 10.1084/jem.20082622.
Article
PubMed
PubMed Central
Google Scholar
Choi H, Pavelka N: When one and one gives more than two: challenges and opportunities of integrative omics. Front Genet. 2011, 2: 105-
Article
PubMed
Google Scholar
Murdoch TB, Detsky AS: The inevitable application of big data to health care. JAMA. 2013, 309: 1351-1352. 10.1001/jama.2013.393.
Article
CAS
PubMed
Google Scholar
Liao H, Lynn HS: A survey of variable selection methods in two Chinese epidemiology journals. BMC Med Res Methodol. 2010, 10: 87-10.1186/1471-2288-10-87.
Article
PubMed
PubMed Central
Google Scholar
Walter S, Tiemeier H: Variable selection: current practice in epidemiological studies. Eur J Epidemiol. 2009, 24: 733-736. 10.1007/s10654-009-9411-2.
Article
PubMed
PubMed Central
Google Scholar
Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR: A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996, 49: 1373-1379. 10.1016/S0895-4356(96)00236-3.
Article
CAS
PubMed
Google Scholar
Smyth P: Data mining: data analysis on a grand scale?. Stat Methods Med Res. 2000, 9: 309-327. 10.1191/096228000701555181.
Article
CAS
PubMed
Google Scholar
Data Mining and Knowledge Discovery Handbook. Edited by: Maimon O, Rokach L. 2010, New York: Springer
Google Scholar
Austin PC: A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Stat Med. 2007, 26: 2937-2957. 10.1002/sim.2770.
Article
PubMed
Google Scholar
Maroco J, Silva D, Rodrigues A, Guerreiro M, Santana I, DE Mendonca A: Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res Notes. 2011, 4: 299-10.1186/1756-0500-4-299.
Article
PubMed
PubMed Central
Google Scholar
Green M, Björk J, Forberg J, Ekelund U, Edenbrandt L, Ohlsson M: Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room. Artif Intell Med. 2006, 38: 305-318. 10.1016/j.artmed.2006.07.006.
Article
PubMed
Google Scholar
Regnier-Coudert O, McCall J, Lothian R, Lam T, McClinton S, N’dow J: Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers. Artif Intell Med. 2012, 55: 25-35. 10.1016/j.artmed.2011.11.003.
Article
PubMed
Google Scholar
Austin PC, Lee DS, Steyerberg EW, Tu JV: Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods?. Biometrical J. 2012, 54: 657-673. 10.1002/bimj.201100251.
Article
Google Scholar
Austin PC, Tu JV, Ho JE, Levy D, Lee DS: Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. J Clin Epidemiol. 2013, 66: 398-407. 10.1016/j.jclinepi.2012.11.008.
Article
PubMed
PubMed Central
Google Scholar
Tibshirani R: Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B. 1996, 58: 267-288.
Google Scholar
Xu C-J, van der Schaaf A, Schilstra C, Langendijk JA, van’t Veld AA: Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models. Int J Radiat Oncol Biol Phys. 2012, 82: e677-e684. 10.1016/j.ijrobp.2011.09.036.
Article
PubMed
Google Scholar
Avalos M, Adroher ND, Lagarde E, Thiessard F, Grandvalet Y, Contrand B, Orriols L: Prescription-drug-related risk in driving: comparing conventional and lasso shrinkage logistic regressions. Epidemiology. 2012, 23: 706-712. 10.1097/EDE.0b013e31825fa528.
Article
PubMed
Google Scholar
Lapidus N, De Lamballerie X, Salez N, Setbon M, Ferrari P, Delabre RM, Gougeon M-L, Vely F, Leruez-Ville M, Andreoletti L, Cauchemez S, Boëlle P-Y, Vivier E, Abel L, Schwarzinger M, Legeas M, Le Cann P, Flahault A, Carrat F: Integrative study of pandemic A/H1N1 influenza infections: design and methods of the CoPanFlu-France cohort. BMC Public Health. 2012, 12: 417-10.1186/1471-2458-12-417.
Article
PubMed
PubMed Central
Google Scholar
CDC protocol of realtime RTPCR for influenza A (H1N1). [http://www.who.int/csr/resources/publications/swineflu/realtimeptpcr/en/]
Reijans M, Dingemans G, Klaassen CH, Meis JF, Keijdener J, Mulders B, Eadie K, van Leeuwen W, van Belkum A, Horrevorts AM, Simons G: RespiFinder: a new multiparameter test to differentially identify fifteen respiratory viruses. J Clin Microbiol. 2008, 46: 1232-1240. 10.1128/JCM.02294-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
European Medicines Agency - Committee for proprietary medicinal products. Note for guidance on harmonization of requirements for influenza vaccines (CPMP/BWP/214/96). [http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003945.pdf]
Lapidus N, de Lamballerie X, Salez N, Setbon M, Delabre RM, Ferrari P, Moyen N, Gougeon M-L, Vely F, Leruez-Ville M, Andreoletti L, Cauchemez S, Boëlle P-Y, Vivier E, Abel L, Schwarzinger M, Legeas M, Le Cann P, Flahault A, Carrat F: Factors associated with post-seasonal serological titer and risk factors for infection with the pandemic A/H1N1 virus in the French general population. PLoS One. 2013, 8: e60127-10.1371/journal.pone.0060127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breiman L: Random Forests. Mach Learn. 2001, 45: 123-140. 10.1023/A:1010950718922.
Article
Google Scholar
Friedman JH: Greedy function approximation: a gradient boosting machine. North. 2001, 29: 1189-1232.
Google Scholar
Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2009, New York: Springer, 2
Book
Google Scholar
Friedman JH: Stochastic gradient boosting. Comput Stat Data Anal. 2002, 38: 367-378. 10.1016/S0167-9473(01)00065-2.
Article
Google Scholar
McCullagh P, Nelder JA: Generalized Linear Models. 1989, London: Chapman and Hall/CRC, 2
Book
Google Scholar
glmnet: Lasso and elastic-net regularized generalized linear models. [http://cran.r-project.org/web/packages/glmnet/]
Friedman J, Hastie T, Tibshirani R: Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010, 33: 1-22.
Article
PubMed
PubMed Central
Google Scholar
Hesterberg T, Moore DS, Monaghan S, Clipson A, Epstein R: Bootstrap Methods and Permutation Tests. Introd to Pract Stat. Volume 5. Edited by: Moore D, McCabe G. 2005, New York: WH Freeman & Co
Google Scholar
Altmann A, Toloşi L, Sander O, Lengauer T: Permutation importance: a corrected feature importance measure. Bioinformatics. 2010, 26: 1340-1347. 10.1093/bioinformatics/btq134.
Article
CAS
PubMed
Google Scholar
Steuer R, Kurths J, Daub CO, Weise J, Selbig J: The mutual information: detecting and evaluating dependencies between variables. Bioinformatics. 2002, 18 (Suppl 2): S231-S240. 10.1093/bioinformatics/18.suppl_2.S231.
Article
PubMed
Google Scholar
Liaw A, Wiener M: Classification and regression by randomForest. R News. 2002, 2/3: 18-22.
Google Scholar
Ridgeway G: Generalized boosted models: a guide to the gbm package. Compute. 2007, 1: 1-12.
Google Scholar
Touw WG, Bayjanov JR, Overmars L, Backus L, Boekhorst J, Wels M, van Hijum SAFT: Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?. Brief Bioinform. 2013, 14: 315-326. 10.1093/bib/bbs034.
Article
PubMed
Google Scholar
Tolosi L, Lengauer T: Classification with correlated features: unreliability of feature ranking and solutions. Bioinformatics. 2011, 27: 1986-1994. 10.1093/bioinformatics/btr300.
Article
CAS
PubMed
Google Scholar
Bender R, Lange S: Adjusting for multiple testing–when and how?. J Clin Epidemiol. 2001, 54: 343-349. 10.1016/S0895-4356(00)00314-0.
Article
CAS
PubMed
Google Scholar
Bender R, Lange S: Multiple test procedures other than Bonferroni’s deserve wider use. BMJ. 1999, 318: 600-601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou H, Hastie T: Regularization and variable selection via the elastic net. J R Stat Soc - Ser B Stat Methodol. 2005, 67: 301-320. 10.1111/j.1467-9868.2005.00503.x. [Series B (Statistical Methodology)]
Article
Google Scholar
Ng S, Fang VJ, Ip DKM, Chan K-H, Leung GM, Peiris JSM, Cowling BJ: Estimation of the association between antibody titers and protection against confirmed influenza virus infection in children. J Infect Dis. 2013, 208: 1320-1324. 10.1093/infdis/jit372.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riley S, Kwok KO, Wu KM, Ning DY, Cowling BJ, Wu JT, Ho L-M, Tsang T, Lo S-V, Chu DKW, Ma ESK, Peiris JSM: Epidemiological characteristics of 2009 (H1N1) pandemic influenza based on paired sera from a longitudinal community cohort study. PLoS Med. 2011, 8: e1000442-10.1371/journal.pmed.1000442.
Article
PubMed
PubMed Central
Google Scholar
Simmerman JM, Suntarattiwong P, Levy J, Jarman RG, Kaewchana S, Gibbons RV, Cowling BJ, Sanasuttipun W, Maloney SA, Uyeki TM, Kamimoto L, Chotipitayasunondh T: Findings from a household randomized controlled trial of hand washing and face masks to reduce influenza transmission in Bangkok, Thailand. Influenza Other Respi Viruses. 2011, 5: 256-267. 10.1111/j.1750-2659.2011.00205.x.
Article
Google Scholar
Kloepfer KM, Olenec JP, Lee WM, Liu G, Vrtis RF, Roberg KA, Evans MD, Gangnon RE, Lemanske RF, Gern JE: Increased H1N1 infection rate in children with asthma. Am J Respir Crit Care Med. 2012, 185: 1275-1279. 10.1164/rccm.201109-1635OC.
Article
PubMed
PubMed Central
Google Scholar
Chen MIC, Lee VJM, Barr I, Lin C, Goh R, Lee C, Singh B, Tan J, Lim WY, Cook AR, Ang B, Chow A, Tan BH, Loh J, Shaw R, Chia KS, Lin RTP, Leo YS: Risk factors for pandemic (H1N1) 2009 virus seroconversion among hospital staff, Singapore. Emerg Infect Dis. 2010, 16: 1554-1561. 10.3201/eid1610.100516.
Article
PubMed
PubMed Central
Google Scholar