Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223. doi:10.1016/s0140-6736(12)61689-4.
Article
PubMed
Google Scholar
Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382(9904):1575–86. doi:10.1016/s0140-6736(13)61611-6.
Article
PubMed
Google Scholar
Price M, Yuen EK, Goetter EM, Herbert JD, Forman EM, Acierno R, et al. mHealth: A Mechanism to Deliver More Accessible, More Effective Mental Health Care. Clin Psychol Psychother. 2014;21(5):427–36. doi:10.1002/cpp.1855.
Article
PubMed
Google Scholar
Patrick K, Griswold WG, Raab F, Intille SS. Health and the mobile phone. Am J Prev Med. 2008;35(2):177–81. doi:10.1016/j.amepre.2008.05.001.
Article
PubMed
PubMed Central
Google Scholar
Benhamou PY, Melki V, Boizel R, Perreal F, Quesada JL, Bessieres-Lacombe S, et al. One-year efficacy and safety of Web-based follow-up using cellular phone in type 1 diabetic patients under insulin pump therapy: the PumpNet study. Diabetes Metabol. 2007;33(3):220–6. doi:10.1016/j.diabet.2007.01.002.
Article
Google Scholar
Kim SI, Kim HS. Effectiveness of mobile and internet intervention in patients with obese type 2 diabetes. Int J Med Informat. 2008;77(6):399–404. doi:10.1016/j.ijmedinf.2007.07.006.
Article
Google Scholar
Newton KH, Wiltshire EJ, Elley CR. Pedometers and text messaging to increase physical activity: randomized controlled trial of adolescents with type 1 diabetes. Diabetes Care. 2009;32(5):813–5. doi:10.2337/dc08-1974.
Article
PubMed
PubMed Central
Google Scholar
Anhoj J, Moldrup C. Feasibility of collecting diary data from asthma patients through mobile phones and SMS (short message service): response rate analysis and focus group evaluation from a pilot study. J Med Internet Res. 2004;6(4), e42. doi:10.2196/jmir.6.4.e42.
Article
PubMed
PubMed Central
Google Scholar
Ryan D, Cobern W, Wheeler J, Price D, Tarassenko L. Mobile phone technology in the management of asthma. J Telemed Telecare. 2005;11 Suppl 1:43–6. doi:10.1258/1357633054461714.
Article
PubMed
Google Scholar
Ostojic V, Cvoriscec B, Ostojic SB, Reznikoff D, Stipic-Markovic A, Tudjman Z. Improving asthma control through telemedicine: a study of short-message service. Telemed J e Health. 2005;11(1):28–35. doi:10.1089/tmj.2005.11.28.
Article
PubMed
Google Scholar
Johansen B, Wedderkopp N. Comparison between data obtained through real-time data capture by SMS and a retrospective telephone interview. Chiropract Osteopathy. 2010;18:10. doi:10.1186/1746-1340-18-10.
Article
Google Scholar
Kent P, Kongsted A. Identifying clinical course patterns in SMS data using cluster analysis. Chiropract Manual Ther. 2012;20(1):20. doi:10.1186/2045-709x-20-20.
Article
Google Scholar
Macedo LG, Maher CG, Latimer J, McAuley JH. Feasibility of using short message service to collect pain outcomes in a low back pain clinical trial. Spine. 2012;37(13):1151–5. doi:10.1097/BRS.0b013e3182422df0.
Article
PubMed
Google Scholar
Brabyn S, Adamson J, MacPherson H, Tilbrook H, Torgerson DJ. Short message service text messaging was feasible as a tool for data collection in a trial of treatment for irritable bowel syndrome. J Clin Epidemiol. 2014;67(9):993–1000. doi:10.1016/j.jclinepi.2014.05.004.
Article
PubMed
Google Scholar
Haapala I, Barengo NC, Biggs S, Surakka L, Manninen P. Weight loss by mobile phone: a 1-year effectiveness study. Public Health Nutr. 2009;12(12):2382–91. doi:10.1017/s1368980009005230.
Article
PubMed
Google Scholar
Patrick K, Raab F, Adams MA, Dillon L, Zabinski M, Rock CL, et al. A text message-based intervention for weight loss: randomized controlled trial. J Med Internet Res. 2009;11(1), e1. doi:10.2196/jmir.1100.
Article
PubMed
PubMed Central
Google Scholar
Rodgers A, Corbett T, Bramley D, Riddell T, Wills M, Lin RB, et al. Do u smoke after txt? Results of a randomised trial of smoking cessation using mobile phone text messaging. Tobac Contr. 2005;14(4):255–61. doi:10.1136/tc.2005.011577.
Article
CAS
Google Scholar
Whitford HM, Donnan PT, Symon AG, Kellett G, Monteith-Hodge E, Rauchhaus P, et al. Evaluating the reliability, validity, acceptability, and practicality of SMS text messaging as a tool to collect research data: results from the Feeding Your Baby project. J Am Med Informat Assoc. 2012;19(5):744–9. doi:10.1136/amiajnl-2011-000785.
Article
Google Scholar
Christie A, Dagfinrud H, Dale O, Schulz T, Hagen KB. Collection of patient-reported outcomes;--text messages on mobile phones provide valid scores and high response rates. BMC Med Res Meth. 2014;14:52. doi:10.1186/1471-2288-14-52.
Article
Google Scholar
Moore PJ, Little MA, McSharry PE, Geddes JR, Goodwin GM. Forecasting depression in bipolar disorder. IEEE Trans Biomed Eng. 2012;59(10):2801–7. doi:10.1109/tbme.2012.2210715.
Article
PubMed
Google Scholar
Ainsworth J, Palmier-Claus JE, Machin M, Barrowclough C, Dunn G, Rogers A, et al. A comparison of two delivery modalities of a mobile phone-based assessment for serious mental illness: native smartphone application vs text-messaging only implementations. J Med Internet Res. 2013;15(4), e60. doi:10.2196/jmir.2328.
Article
PubMed
PubMed Central
Google Scholar
Granholm E, Ben-Zeev D, Link PC, Bradshaw KR, Holden JL. Mobile Assessment and Treatment for Schizophrenia (MATS): a pilot trial of an interactive text-messaging intervention for medication adherence, socialization, and auditory hallucinations. Schizophr Bull. 2012;38(3):414–25. doi:10.1093/schbul/sbr155.
Article
PubMed
Google Scholar
Spaniel F, Vohlidka P, Kozeny J, Novak T, Hrdlicka J, Motlova L, et al. The Information Technology Aided Relapse Prevention Programme in Schizophrenia: an extension of a mirror-design follow-up. Int J Clin Pract. 2008;62(12):1943–6. doi:10.1111/j.1742-1241.2008.01903.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunstan DA, Tooth SM. Using technology to improve patient assessment and outcome evaluation. Rural Rem Health. 2012;12:2048.
CAS
Google Scholar
Aguilera A, Munoz RF. Text messaging as an adjunct to CBT in low-income populations: a usability and feasibility pilot study. Prof Psychol Res Pract. 2011;42(6):472–8. doi:10.1037/a0025499.
Article
Google Scholar
Aguilera A, Berridge C. Qualitative feedback from a text messaging intervention for depression: benefits, drawbacks, and cultural differences. JMIR MHealth UHealth. 2014;2(4), e46. doi:10.2196/mhealth.3660.
Article
PubMed
PubMed Central
Google Scholar
Aguilera A, Schueller SM, Leykin Y. Daily mood ratings via text message as a proxy for clinic based depression assessment. J Affect Disord. 2015;175:471–4. doi:10.1016/j.jad.2015.01.033.
Article
PubMed
PubMed Central
Google Scholar
Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacPherson H, Richmond S, Bland M, Brealey S, Gabe R, Hopton A, et al. Acupuncture and counselling for depression in primary care: a randomised controlled trial. PLoS Med. 2013;10(9):e1001518. doi:10.1371/journal.pmed.1001518.
Article
PubMed
PubMed Central
Google Scholar
Richmond SJ, Keding A, Hover M, Gabe R, Cross B, Torgerson D, et al. Feasibility, acceptability and validity of SMS text messaging for measuring change in depression during a randomised controlled trial. BMC Psychiatr. 2015;15:68. doi:10.1186/s12888-015-0456-3.
Article
Google Scholar
Whooley MA, Avins AL, Miranda J, Browner WS. Case-finding instruments for depression. Two questions are as good as many. J Gen Intern Med. 1997;12(7):439–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimmerman M, Ruggero CJ, Chelminski I, Young D, Posternak MA, Friedman M, et al. Developing brief scales for use in clinical practice: the reliability and validity of single-item self-report measures of depression symptom severity, psychosocial impairment due to depression, and quality of life. J Clin Psychiatr. 2006;67(10):1536–41.
Article
Google Scholar
Bech P. Depressed mood as a core symptom of depression. Mediographia. 2008;30(1):9–11.
Google Scholar
Löwe B, Kroenke K, Grafe K. Detecting and monitoring depression with a two-item questionnaire (PHQ-2). J Psychosom Res. 2005;58(2):163–71. doi:10.1016/j.jpsychores.2004.09.006.
Article
PubMed
Google Scholar
Böhnke JR, Lutz W. Using item and test information to optimize targeted assessments of psychological distress. Assessment. 2014;21(6):679–93. doi:10.1177/1073191114529152.
Article
PubMed
Google Scholar
Huang FY, Chung H, Kroenke K, Delucchi KL, Spitzer RL. Using the Patient Health Questionnaire-9 to measure depression among racially and ethnically diverse primary care patients. J Gen Intern Med. 2006;21(6):547–52. doi:10.1111/j.1525-1497.2006.00409.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cameron IM, Crawford JR, Lawton K, Reid IC. Psychometric comparison of PHQ-9 and HADS for measuring depression severity in primary care. Br J Gen Pract. 2008;58(546):32–6. doi:10.3399/bjgp08X263794.
Article
PubMed
PubMed Central
Google Scholar
Yu X, Tam WW, Wong PT, Lam TH, Stewart SM. The Patient Health Questionnaire-9 for measuring depressive symptoms among the general population in Hong Kong. Compr Psychiatr. 2012;53(1):95–102. doi:10.1016/j.comppsych.2010.11.002.
Article
Google Scholar
Böhnke JR, Lutz W, Delgadillo J. Negative affectivity as a transdiagnostic factor in patients with common mental disorders. J Affect Disord. 2014;166:270–8. doi:10.1016/j.jad.2014.05.023.
Article
PubMed
Google Scholar
Krause JS, Reed KS, McArdle JJ. Factor structure and predictive validity of somatic and nonsomatic symptoms from the patient health questionnaire-9: a longitudinal study after spinal cord injury. Arch Phys Med Rehabil. 2010;91(8):1218–24. doi:10.1016/j.apmr.2010.04.015.
Article
PubMed
Google Scholar
Elhai JD, Contractor AA, Tamburrino M, Fine TH, Prescott MR, Shirley E, et al. The factor structure of major depression symptoms: a test of four competing models using the Patient Health Questionnaire-9. Psychiatr Res. 2012;199(3):169–73. doi:10.1016/j.psychres.2012.05.018.
Article
Google Scholar
Chilcot J, Rayner L, Lee W, Price A, Goodwin L, Monroe B, et al. The factor structure of the PHQ-9 in palliative care. J Psychosom Res. 2013;75(1):60–4. doi:10.1016/j.jpsychores.2012.12.012.
Article
PubMed
Google Scholar
Petersen JJ, Paulitsch MA, Hartig J, Mergenthal K, Gerlach FM, Gensichen J. Factor structure and measurement invariance of the Patient Health Questionnaire-9 for female and male primary care patients with major depression in Germany. J Affect Disord. 2015;170:138–42. doi:10.1016/j.jad.2014.08.053.
Article
PubMed
Google Scholar
Piccinelli M, Wilkinson G. Gender differences in depression. Critical review. Br J Psychiatr. 2000;177:486–92.
Article
CAS
Google Scholar
Whiteford HA, Ferrari AJ, Degenhardt L, Feigin V, Vos T. The global burden of mental, neurological and substance use disorders: an analysis from the global burden of disease study 2010. PloS One. 2015;10(2), e0116820. doi:10.1371/journal.pone.0116820.
Article
PubMed
PubMed Central
Google Scholar
Kuehner C. Gender differences in unipolar depression: an update of epidemiological findings and possible explanations. Acta Psychiatr Scand. 2003;108(3):163–74.
Article
CAS
PubMed
Google Scholar
Blazer DG. Depression in late life: review and commentary. J Gerontol Biol Med Sci. 2003;58(3):249–65.
Article
Google Scholar
Möller-Leimkühler AM. Barriers to help-seeking by men: a review of sociocultural and clinical literature with particular reference to depression. J Affect Disord. 2002;71(1–3):1–9.
Article
PubMed
Google Scholar
Richards D. Prevalence and clinical course of depression: a review. Clin Psychol Rev. 2011;31(7):1117–25. doi:10.1016/j.cpr.2011.07.004.
Article
PubMed
Google Scholar
Böhnke JR, Croudace TJ. Factors of psychological distress: clinical value, measurement substance, and methodological artefacts. Soc Psychiatr Psychiatr Epidemiol. 2015. doi:10.1007/s00127-015-1022-5.
Google Scholar
Beck AT, Steer RA, Brown GK. Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation; 1996.
Google Scholar
Wirth RJ, Edwards MC. Item factor analysis: current approaches and future directions. Psychol Meth. 2007;12(1):58–79. doi:10.1037/1082-989x.12.1.58.
Article
CAS
Google Scholar
American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV. 4th ed. Washington, DC: American Psychiatric Association; 1994.
Google Scholar
Lorenzo-Seva U, Ferrando PJ. FACTOR: a computer program to fit the exploratory factor analysis model. Behav Res Meth. 2006;38(1):88–91.
Article
Google Scholar
Buja A, Eyuboglu N. Remarks on Parallel Analysis. Multivariate Behav Res. 1992;27(4):509–40. doi:10.1207/s15327906mbr2704_2.
Article
CAS
PubMed
Google Scholar
Timmerman ME, Lorenzo-Seva U. Dimensionality assessment of ordered polytomous items with parallel analysis. Psychol Meth. 2011;16(2):209–20. doi:10.1037/a0023353.
Article
Google Scholar
Gaskin CJ, Happell B. On exploratory factor analysis: a review of recent evidence, an assessment of current practice, and recommendations for future use. Int J Nurs Stud. 2014;51(3):511–21. doi:10.1016/j.ijnurstu.2013.10.005.
Article
PubMed
Google Scholar
Crane PK, Gibbons LE, Ocepek-Welikson K, Cook K, Cella D, Narasimhalu K, et al. A comparison of three sets of criteria for determining the presence of differential item functioning using ordinal logistic regression. Qual Life Res. 2007;16 Suppl 1:69–84. doi:10.1007/s11136-007-9185-5.
Article
PubMed
Google Scholar
Scott NW, Fayers PM, Aaronson NK, Bottomley A, de Graeff A, Groenvold M, et al. Differential item functioning (DIF) analyses of health-related quality of life instruments using logistic regression. Health Qualf Life Outcome. 2010;8:81. doi:10.1186/1477-7525-8-81.
Google Scholar
StataCorp. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP; 2009.
Google Scholar
Krause JS, Bombardier C, Carter RE. Assessment of depressive symptoms during inpatient rehabilitation for spinal cord injury: Is there an underlying somatic factor when using the PHQ? Rehabil Psychol. 2008;53(4):513–20. doi:10.1037/a0013354.
Article
Google Scholar
Richardson EJ, Richards JS. Factor structure of the PHQ-9 screen for depression across time since injury among persons with spinal cord injury. Rehabil Psychol. 2008;53(2):243–9. doi:10.1037/0090-5550.53.2.243.
Article
Google Scholar
Silverstein B. Gender differences in the prevalence of somatic versus pure depression: a replication. Am J Psychiatr. 2002;159(6):1051–2.
Article
PubMed
Google Scholar
Kessler RC, Birnbaum H, Bromet E, Hwang I, Sampson N, Shahly V. Age differences in major depression: results from the National Comorbidity Survey Replication (NCS-R). Psychol Med. 2010;40(2):225–37. doi:10.1017/s0033291709990213.
Article
CAS
PubMed
Google Scholar
Cameron IM, Crawford JR, Lawton K, Reid IC. Differential item functioning of the HADS and PHQ-9: an investigation of age, gender and educational background in a clinical UK primary care sample. J Affect Disord. 2013;147(1–3):262–8. doi:10.1016/j.jad.2012.11.015.
Article
PubMed
Google Scholar
Chen H, Cohen P, Chen S. How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Comm Stat Simulat Comput. 2010;39(4):860–4. doi:10.1080/03610911003650383.
Article
Google Scholar
Gelin MN, Zumbo BD. Differential item functioning results may change depending on how an item is scored: an illustration with the center for epidemiologic studies depression scale. Educ Psychol Meas. 2003;63(1):65–74. doi:10.1177/0013164402239317.
Article
Google Scholar