Shadish WR, Cook TD, Campbell DT. Experimental and Quasi-Experimental Designs. 2nd ed. Wadsworth, Cengage Learning: Belmont; 2002.
Google Scholar
King G, Keohane RO, Verba S. The importance of research Design in Political Science. Am Polit Sci Rev. 1995;89:475–81.
Article
Google Scholar
Meyer BD. Natural and quasi-experiments in economics. J Bus Econ Stat. 1995;13:151–61.
Google Scholar
Dunning T. Natural experiments in the social sciences. A design-based approach. 6th edition. Cambridge: Cambridge University Press; 2012.
Book
Google Scholar
Craig P, Cooper C, Gunnell D, Haw S, Lawson K, Macintyre S, et al. Using natural experiments to evaluate population health interventions: new medical research council guidance. J Epidemiol Community Health. 2012;66:1182–6.
Article
Google Scholar
Cook TD, Shadish WR, Wong VC. Three conditions under which experiments and observational studies produce comparable causal estimates: new findings from within-study comparisons. J Policy Anal Manag. 2008;27:724–50.
Article
Google Scholar
Bärnighausen T, Røttingen JA, Rockers P, Shemilt I, Tugwell P. Quasi-experimental study designs series—paper 1: introduction: two historical lineages. J Clin Epidemiol. 2017;89:4–11.
Article
Google Scholar
Waddington H, Aloe AM, Becker BJ, Djimeu EW, Hombrados JG, Tugwell P, et al. Quasi-experimental study designs series—paper 6: risk of bias assessment. J Clin Epidemiol. 2017;89:43–52.
Article
Google Scholar
Saeed S, Moodie EEM, Strumpf EC, Klein MB. Evaluating the impact of health policies: using a difference-in-differences approach. Int J Public Health. 2019;64:637–42.
Article
Google Scholar
Dunning T. Improving causal inference: strengths and limitations of natural experiments. Polit Res Q. 2008;61:282–93.
Article
Google Scholar
Bärnighausen T, Tugwell P, Røttingen JA, Shemilt I, Rockers P, Geldsetzer P, et al. Quasi-experimental study designs series—paper 4: uses and value. J Clin Epidemiol. 2017;89:21–9.
Article
Google Scholar
Craig P, Katikireddi SV, Leyland A, Popham F. Natural experiments: an overview of methods, approaches, and contributions to public health intervention research. Annu Rev Public Health. 2017;38:39–56.
Article
Google Scholar
Pearl J, Mackenzie D. The book of why: the new science of cause and effect. London: Allen Lane; 2018.
Google Scholar
Rosenbaum PR. How to see more in observational studies: some new quasi-experimental devices. Annu Rev Stat Its Appl. 2015;2:21–48.
Article
Google Scholar
Petimar J, Ramirez M, Rifas-Shiman SL, Linakis S, Mullen J, Roberto CA, et al. Evaluation of the impact of calorie labeling on McDonald’s restaurant menus: a natural experiment. Int J Behav Nutr Phys Act. 2019;16. Article no: 99.
Fergusson DM, Horwood LJ, Boden JM, Mulder RT. Impact of a major disaster on the mental health of a well-studied cohort. JAMA Psychiatry. 2014;71:1025–31.
Article
Google Scholar
Remler DK, Van Ryzin GG. Natural and quasi experiments. In: Research methods in practice: strategies for description and causation. 2nd ed. Thousand Oaks: SAGE Publication Inc.; 2014. p. 467–500.
Google Scholar
Cook PA, Hargreaves SC, Burns EJ, De Vocht F, Parrott S, Coffey M, et al. Communities in charge of alcohol (CICA): a protocol for a stepped-wedge randomised control trial of an alcohol health champions programme. BMC Public Health. 2018;18. Article no: 522.
Lumey LH, Stein AD, Kahn HS, Van der Pal-de Bruin KM, Blauw GJ, Zybert PA, et al. Cohort profile: the Dutch hunger winter families study. Int J Epidemiol. 2007;36:1196–204.
Article
CAS
Google Scholar
Meng X, Qian N. The Long Term Consequences of Famine on Survivors: Evidence from a Unique Natural Experiment using China’s Great Famine. Natl Bur Econ Res Work Pap Ser. 2011;NBER Worki.
Franco M, Bilal U, Orduñez P, Benet M, Morejón A, Caballero B, et al. Population-wide weight loss and regain in relation to diabetes burden and cardiovascular mortality in Cuba 1980-2010: repeated cross sectional surveys and ecological comparison of secular trends. BMJ. 2013;346:f1515.
Article
Google Scholar
Angrist J, Bettinger E, Bloom E, King E, Kremer M. Vouchers for private schooling in Colombia: evidence from a randomized natural experiment. Am Econ Rev. 2002;92:1535–58.
Article
Google Scholar
Angrist JD. Lifetime earnings and the Vietnam era draft lottery: evidence from social security administrative records. Am Econ Rev. 1990;80:313–36.
Google Scholar
Dawson A, Sim J. The nature and ethics of natural experiments. J Med Ethics. 2015;41:848–53.
Article
Google Scholar
Bärnighausen T, Oldenburg C, Tugwell P, Bommer C, Ebert C, Barreto M, et al. Quasi-experimental study designs series—paper 7: assessing the assumptions. J Clin Epidemiol. 2017;89:53-66.
Tugwell P, Knottnerus JA, McGowan J, Tricco A. Big-5 Quasi-Experimental designs. J Clin Epidemiol. 2017;89:1–3.
Article
Google Scholar
Reeves BC, Wells GA, Waddington H. Quasi-experimental study designs series—paper 5: a checklist for classifying studies evaluating the effects on health interventions—a taxonomy without labels. J Clin Epidemiol. 2017;89:30–42.
Article
Google Scholar
Rubin DB. For objective causal inference, design trumps analysis. Ann Appl Stat. 2008;2:808–40.
Article
Google Scholar
Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol. 2016;183:758–64.
Article
Google Scholar
Benjamin-Chung J, Arnold BF, Berger D, Luby SP, Miguel E, Colford JM, et al. Spillover effects in epidemiology: parameters, study designs and methodological considerations. Int J Epidemiol. 2018;47:332–47.
Article
Google Scholar
Munafò MR, Tilling K, Taylor AE, Evans DM, Smith GD. Collider scope: when selection bias can substantially influence observed associations. Int J Epidemiol. 2018;47:226–35.
Article
Google Scholar
Schwartz S, Gatto NM, Campbell UB. Extending the sufficient component cause model to describe the stable unit treatment value assumption (SUTVA). Epidemiol Perspect Innov. 2012;9:3.
Cawley J, Thow AM, Wen K, Frisvold D. The economics of taxes on sugar-sweetened beverages: a review of the effects on prices, sales, cross-border shopping, and consumption. Annu Rev Nutr. 2019;39:317–38.
Article
CAS
Google Scholar
Reichardt CS. Nonequivalent Group Designs. In: Quasi-Experimentation. A Guide to Design and Analysis. 1st edition. New York: The Guildford Press; 2019. p. 112–162.
Denzin N. Sociological methods: a sourcebook. 5th ed. New York: Routledges; 2006.
Google Scholar
Matthay EC, Hagan E, Gottlieb LM, Tan ML, Vlahov D, Adler NE, et al. Alternative causal inference methods in population health research: evaluating tradeoffs and triangulating evidence. SSM - Popul Heal. 2020;10:10052.
Leatherdale ST. Natural experiment methodology for research: a review of how different methods can support real-world research. Int J Soc Res Methodol. 2019;22:19–35.
Article
Google Scholar
Reichardt CS. Quasi-experimentation. A guide to design and analysis. 1st ed. New York: The Guildford Press; 2019.
Google Scholar
Reeves A, McKee M, Mackenbach J, Whitehead M, Stuckler D. Introduction of a National Minimum Wage Reduced Depressive Symptoms in Low-Wage Workers: A Quasi-Natural Experiment in the UK. Heal Econ (United Kingdom). 2017;26:639–55.
Google Scholar
Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.
Article
Google Scholar
Shadish WR, Cook TD, Campbell DT. Generalized Causal Inference: A Grounded Theory. In: Experimental and Quasi-Experimental Designs for Generalized Causal Inference. 2nd ed. Belmont: Wadsworth, Cengage Learning; 2002. p. 341–73.
Google Scholar
Lawlor DA, Tilling K, Smith GD. Triangulation in aetiological epidemiology. Int J Epidemiol. 2016;45:1866–86.
Article
Google Scholar
Hernán MA. The C-word: scientific euphemisms do not improve causal inference from observational data. Am J Public Health. 2018;108:616–9.
Article
Google Scholar
Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction - GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64:383–94.
Article
Google Scholar
Schünemann HJ, Cuello C, Akl EA, Mustafa RA, Meerpohl JJ, Thayer K, et al. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. J Clin Epidemiol. 2019;111:105–14.
Article
Google Scholar
Campbell M, Katikireddi SV, Hoffmann T, Armstrong R, Waters E, Craig P. TIDieR-PHP: a reporting guideline for population health and policy interventions. BMJ. 2018;361:k1079.
Article
Google Scholar
Mamluk L, Jones T, Ijaz S, Edwards HB, Savović J, Leach V, et al. Evidence of detrimental effects of prenatal alcohol exposure on offspring birthweight and neurodevelopment from a systematic review of quasi-experimental studies. Int J Epidemiol. 2021;49(6):1972-95.
Ogilvie D, Adams J, Bauman A, Gregg EW, Panter J, Siegel KR, et al. Using natural experimental studies to guide public health action: turning the evidence-based medicine paradigm on its head. J Epidemiol Community Health. 2019;74:203–8.
Article
Google Scholar