Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357:j2099.
Article
PubMed
PubMed Central
Google Scholar
Pulitanò C, Arru M, Bellio L, Rossini S, Ferla G, Aldrighetti L. A risk score for predicting perioperative blood transfusion in liver surgery. Br J Surg. 2007;94(7):860–5.
Article
PubMed
Google Scholar
Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003.
Article
CAS
PubMed
Google Scholar
Nashef SAM, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, et al. EuroSCORE II. Eur J Cardiothorac Surg. 2012;41(4):734–45.
Article
PubMed
Google Scholar
Thamer M, Kaufman JS, Zhang Y, Zhang Q, Cotter DJ, Bang H. Predicting early death among elderly dialysis patients: development and validation of a risk score to assist shared decision making for dialysis initiation. Am J Kidney Dis. 2015;66(6):1024–32.
Article
PubMed
PubMed Central
Google Scholar
Velazquez N, Press B, Renson A, Wysock JS, Taneja S, Huang WC, et al. Development of a novel prognostic risk score for predicting complications of penectomy in the surgical management of penile cancer. Clin Genitourin Cancer. 2019;17(1):e123–9.
Article
PubMed
Google Scholar
Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991;100(6):1619–36.
Article
CAS
PubMed
Google Scholar
Fong Y, Evans J, Brook D, Kenkre J, Jarvis P, Gower-Thomas K. The Nottingham prognostic index: five- and ten-year data for all-cause survival within a screened population. Ann R Coll Surg Engl. 2015;97(2):137–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst. 1998;90(10):766–71.
Article
CAS
PubMed
Google Scholar
Corbelli J, Borrero S, Bonnema R, McNamara M, Kraemer K, Rubio D, et al. Use of the gail model and breast cancer preventive therapy among three primary care specialties. J Women's Health. 2014;23(9):746–52.
Article
Google Scholar
Markaki M, Tsamardinos I, Langhammer A, Lagani V, Hveem K, Røe OD. A validated clinical risk prediction model for lung cancer in smokers of all ages and exposure types: a hunt study. EBioMedicine. 2018;31:36–46.
Article
PubMed
PubMed Central
Google Scholar
Lebrett MB, Balata H, Evison M, Colligan D, Duerden R, Elton P, et al. Analysis of lung cancer risk model (PLCOM2012 and LLPv2) performance in a community-based lung cancer screening programme. Thorax. 2020;75(8):661–8.
Article
PubMed
Google Scholar
Hippisley-Cox J, Coupland C. Development and validation of risk prediction algorithms to estimate future risk of common cancers in men and women: prospective cohort study. BMJ Open. 2015;5(3):e007825.
Article
PubMed
PubMed Central
Google Scholar
Bouwmeester W, Zuithoff NPA, Mallett S, Geerlings MI, Vergouwe Y, Steyerberg EW, et al. Reporting and methods in clinical prediction research: a systematic review. Plos Med. 2012;9(5):e1001221.
Article
PubMed Central
Google Scholar
Bradley A, Meer RVD, McKay CJ. A systematic review of methodological quality of model development studies predicting prognostic outcome for resectable pancreatic cancer. BMJ Open. 2019;9(8):e027192.
Article
PubMed
PubMed Central
Google Scholar
Fahey M, Crayton E, Wolfe C, Douiri A. Clinical prediction models for mortality and functional outcome following ischemic stroke: a systematic review and meta-analysis. Plos One. 2018;13(1):e0185402.
Article
PubMed
PubMed Central
CAS
Google Scholar
Damen JAAG, Hooft L, Schuit E, Debray TPA, Collins GS, Tzoulaki I, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ. 2016;353:i2416.
Article
PubMed
PubMed Central
Google Scholar
Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60.
Article
CAS
PubMed
Google Scholar
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
Article
CAS
PubMed
Google Scholar
Banerjee A, Chen S, Fatemifar G, Zeina M, Lumbers RT, Mielke J, et al. Machine learning for subtype definition and risk prediction in heart failure, acute coronary syndromes and atrial fibrillation: systematic review of validity and clinical utility. BMC Med. 2021;19(1):85.
Article
PubMed
PubMed Central
Google Scholar
Navarro CLA, Damen JAA, Takada T, Nijman SWJ, Dhiman P, Ma J, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ. 2021;375:n2281.
Article
Google Scholar
Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;110:12–22.
Article
PubMed
Google Scholar
Shung D, Simonov M, Gentry M, Au B, Laine L. Machine learning to predict outcomes in patients with acute gastrointestinal bleeding: a systematic review. Dig Dis Sci. 2019;64(8):2078–87.
Article
PubMed
Google Scholar
Chen JH, Asch SM. Machine learning and prediction in medicine — beyond the peak of inflated expectations. N Engl J Med. 2017;376(26):2507–9.
Article
PubMed
PubMed Central
Google Scholar
Shillan D, Sterne JAC, Champneys A, Gibbison B. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Crit Care. 2019;23(1):284.
Article
PubMed
PubMed Central
Google Scholar
Wang W, Kiik M, Peek N, Curcin V, Marshall IJ, Rudd AG, et al. A systematic review of machine learning models for predicting outcomes of stroke with structured data. Plos One. 2020;15(6):e0234722.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song X, Liu X, Liu F, Wang C. Comparison of machine learning and logistic regression models in predicting acute kidney injury: a systematic review and meta-analysis. Int J Med Inform. 2021;151:104484.
Article
PubMed
Google Scholar
Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368 Cited 2020 Jun 8. Available from: https://www.bmj.com/content/368/bmj.m689.
Dhiman P, Ma J, Navarro CA, Speich B, Bullock G, Damen JA, et al. Reporting of prognostic clinical prediction models based on machine learning methods in oncology needs to be improved. J Clin Epidemiol. 2021; Cited 2021 Jul 13. Available from: https://www.sciencedirect.com/science/article/pii/S089543562100202X.
Collins GS, Mallett S, Omar O, Yu L-M. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 2011;9(1):103.
Article
PubMed
PubMed Central
Google Scholar
Bridge J, Blakey JD, Bonnett LJ. A systematic review of methodology used in the development of prediction models for future asthma exacerbation. BMC Med Res Methodol. 2020;20(1):22.
Article
PubMed
PubMed Central
Google Scholar
Mushkudiani NA, Hukkelhoven CWPM, Hernández AV, Murray GD, Choi SC, Maas AIR, et al. A systematic review finds methodological improvements necessary for prognostic models in determining traumatic brain injury outcomes. J Clin Epidemiol. 2008;61(4):331–43.
Article
PubMed
Google Scholar
Sahle BW, Owen AJ, Chin KL, Reid CM. Risk prediction models for incident heart failure: a systematic review of methodology and model performance. J Card Fail. 2017;23(9):680–7.
Article
PubMed
Google Scholar
Collins GS, Omar O, Shanyinde M, Yu L-M. A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriate methods. J Clin Epidemiol. 2013;66(3):268–77.
Article
PubMed
Google Scholar
Collins SD, Peek N, Riley RD, Martin GP. Sample sizes of prediction model studies in prostate cancer were rarely justified and often insufficient. J Clin Epidemiol. 2021;133:53–60.
Article
PubMed
Google Scholar
Breiman L. Statistical modeling: the two cultures. Stat Sci. 2001;16(3):199–231.
Article
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Plos Med. 2009;6(7):e1000097.
Article
PubMed
PubMed Central
Google Scholar
A systematic review protocol of clinical prediction models using machine learning methods in oncology. PROSPERO. Cited 2020 Dec 19. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=140361.
Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1–73.
Article
PubMed
Google Scholar
Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162(1):55–63.
Article
PubMed
Google Scholar
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan — a web and mobile app for systematic reviews. Syst Rev. 2016;5:210.
Article
PubMed
PubMed Central
Google Scholar
The Endnote Team. Endnote. Philadelphia: Clarivate Analytics; 2013.
Google Scholar
Moons KGM, de Groot JAH, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. Plos Med. 2014;11(10):e1001744.
Article
PubMed
PubMed Central
Google Scholar
Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med. 2019;170(1):W1–33.
Article
PubMed
Google Scholar
Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019;170(1):51–8.
Article
PubMed
Google Scholar
Heus P, Damen JAAG, Pajouheshnia R, Scholten RJPM, Reitsma JB, Collins GS, et al. Uniformity in measuring adherence to reporting guidelines: the example of TRIPOD for assessing completeness of reporting of prediction model studies. BMJ Open. 2019;9(4) Cited 2020 Feb 12. Available from: https://bmjopen.bmj.com/content/9/4/e025611.
Harris P, Taylor R, Thielke R, Payne J, Gonzalez N, Conde J. Research electronic data capture (REDCap)-metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377e81.
Article
Google Scholar
StataCorp. Stata Statistical Software: Release 15. College Station: StataCorp LLC; 2017.
Google Scholar
Zhou H-F, Lu J, Zhu H-D, Guo J-H, Huang M, Ji J-S, et al. Early warning models to estimate the 30-day mortality risk after stent placement for patients with malignant biliary obstruction. Cardiovasc Intervent Radiol. 2019;42(12):1751–9.
Article
PubMed
Google Scholar
Dihge L, Ohlsson M, Edén P, Bendahl P-O, Rydén L. Artificial neural network models to predict nodal status in clinically node-negative breast cancer. BMC Cancer. 2019;19(1):610.
Article
PubMed
PubMed Central
Google Scholar
Luna JM, Chao H-H, Diffenderfer ES, Valdes G, Chinniah C, Ma G, et al. Predicting radiation pneumonitis in locally advanced stage II-III non-small cell lung cancer using machine learning. Radiother Oncol. 2019;133:106–12.
Article
PubMed
Google Scholar
Yang X-G, Wang F, Feng J-T, Hu Y-C, Lun D-X, Hua K-C, et al. Recursive Partitioning Analysis (RPA) of prognostic factors for overall survival in patients with spinal metastasis: a new system for stratified treatment. World Neurosurg. 2019;127:e124–31.
Article
PubMed
Google Scholar
Matsuo K, Purushotham S, Jiang B, Mandelbaum RS, Takiuchi T, Liu Y, et al. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model. Am J Obstet Gynecol. 2019;220(4):381.e1–381.e14.
Article
Google Scholar
Khalaf MH, Sundaram V, AbdelRazek Mohammed MA, Shah R, Khosla A, Jackson K, et al. A predictive model for postembolization syndrome after transarterial hepatic chemoembolization of hepatocellular carcinoma. Radiology. 2019;290(1):254–61.
Article
PubMed
Google Scholar
Wong NC, Lam C, Patterson L, Shayegan B. Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy. BJU Int. 2019;123(1):51–7.
Article
PubMed
Google Scholar
Lindsay WD, Ahern CA, Tobias JS, Berlind CG, Chinniah C, Gabriel PE, et al. Automated data extraction and ensemble methods for predictive modeling of breast cancer outcomes after radiation therapy. Med Phys. 2019;46(2):1054–63.
Article
PubMed
Google Scholar
Wang Y-H, Nguyen P-A, Islam MM, Li Y-C, Yang H-C. Development of deep learning algorithm for detection of colorectal cancer in EHR data. Stud Health Technol Inform. 2019;264:438–41.
PubMed
Google Scholar
Muhlestein WE, Akagi DS, Davies JM, Chambless LB. Predicting inpatient length of stay after brain tumor surgery: developing machine learning ensembles to improve predictive performance. Neurosurgery. 2019;85(3):384–93.
Article
PubMed
Google Scholar
Iraji ms. Deep stacked sparse auto-encoders for prediction of post-operative survival expectancy in thoracic lung cancer surgery. J Appl Biomed. 2019;17:75.
Article
Google Scholar
Karhade AV, Thio QCBS, Ogink PT, Shah AA, Bono CM, Oh KS, et al. Development of machine learning algorithms for prediction of 30-day mortality after surgery for spinal metastasis. Neurosurgery. 2019;85(1):E83–91.
Article
PubMed
Google Scholar
Chi S, Li X, Tian Y, Li J, Kong X, Ding K, et al. Semi-supervised learning to improve generalizability of risk prediction models. J Biomed Inform. 2019;92:103117.
Article
PubMed
Google Scholar
Xu Y, Kong S, Cheung WY, Bouchard-Fortier A, Dort JC, Quan H, et al. Development and validation of case-finding algorithms for recurrence of breast cancer using routinely collected administrative data. BMC Cancer. 2019;19(1):210.
Article
PubMed
PubMed Central
Google Scholar
Zhao B, Gabriel RA, Vaida F, Lopez NE, Eisenstein S, Clary BM. Predicting overall survival in patients with metastatic rectal cancer: a machine learning approach. J Gastrointest Surg. 2020;24(5):1165–72.
Article
PubMed
Google Scholar
Günakan E, Atan S, Haberal AN, Küçükyıldız İA, Gökçe E, Ayhan A. A novel prediction method for lymph node involvement in endometrial cancer: machine learning. Int J Gynecol Cancer. 2019;29(2) Cited 2021 Mar 5. Available from: https://ijgc.bmj.com/content/29/2/320.
Vagnildhaug OM, Brunelli C, Hjermstad MJ, Strasser F, Baracos V, Wilcock A, et al. A prospective study examining cachexia predictors in patients with incurable cancer. BMC Palliat Care. 2019;18(1):46.
Article
PubMed
PubMed Central
Google Scholar
Thapa S, Fischbach L, Delongchanp R, Faramawi M, Orloff M. Using machine learning to predict progression in the gastric precancerous process in a population from a developing country who underwent a gastroscopy for dyspeptic symptoms. Cited 2021 Mar 5. Available from: https://www.hindawi.com/journals/grp/2019/8321942/
Xu Y, Kong S, Cheung WY, Quan ML, Nakoneshny SC, Dort JC. Developing case-finding algorithms for second events of oropharyngeal cancer using administrative data: A population-based validation study. Head Neck. 2019;41(7):2291–8.
Article
PubMed
Google Scholar
Auffenberg GB, Ghani KR, Ramani S, Usoro E, Denton B, Rogers C, et al. askMUSIC: leveraging a clinical registry to develop a new machine learning model to inform patients of prostate cancer treatments chosen by similar men. Eur Urol. 2019;75(6):901–7.
Article
PubMed
Google Scholar
Alabi RO, Elmusrati M, Sawazaki-Calone I, Kowalski LP, Haglund C, Coletta RD, et al. Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool. Virchows Arch. 2019;475(4):489–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greene MZ, Hughes TL, Hanlon A, Huang L, Sommers MS, Meghani SH. Predicting cervical cancer screening among sexual minority women using classification and regression tree analysis. Prev Med Rep. 2019;13:153–9.
Article
PubMed
Google Scholar
Nartowt BJ, Hart GR, Roffman DA, Llor X, Ali I, Muhammad W, et al. Scoring colorectal cancer risk with an artificial neural network based on self-reportable personal health data. Plos One. 2019;14(8):e0221421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taninaga J, Nishiyama Y, Fujibayashi K, Gunji T, Sasabe N, Iijima K, et al. Prediction of future gastric cancer risk using a machine learning algorithm and comprehensive medical check-up data: a case-control study. Sci Rep. 2019;9(1):12384.
Article
PubMed
PubMed Central
CAS
Google Scholar
Collins GS, Ogundimu EO, Cook JA, Manach YL, Altman DG. Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model. Stat Med. 2016;35(23):4124–35.
Article
PubMed
PubMed Central
Google Scholar
Oyaga-Iriarte E, Insausti A, Sayar O, Aldaz A. Prediction of irinotecan toxicity in metastatic colorectal cancer patients based on machine learning models with pharmacokinetic parameters. J Pharmacol Sci. 2019;140(1):20–5.
Article
CAS
PubMed
Google Scholar
Yan P, Huang R, Hu P, Liu F, Zhu X, Hu P, et al. Nomograms for predicting the overall and cause-specific survival in patients with malignant peripheral nerve sheath tumor: a population-based study. J Neuro-Oncol. 2019;143(3):495–503.
Article
Google Scholar
Ryu SM, Lee S-H, Kim E-S, Eoh W. Predicting survival of patients with spinal ependymoma using machine learning algorithms with the SEER database. World Neurosurg. 2019;124:e331–e339
Feng S-S, Li H, Fan F, Li J, Cao H, Xia Z-W, et al. Clinical characteristics and disease-specific prognostic nomogram for primary gliosarcoma: a SEER population-based analysis. Sci Rep. 2019;9(1):10744.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Niftrik CHB, van der Wouden F, Staartjes VE, Fierstra J, Stienen MN, Akeret K, et al. Machine learning algorithm identifies patients at high risk for early complications after intracranial tumor surgery: registry-based cohort study. Neurosurgery. 2019;85(4):E756–64.
Article
PubMed
Google Scholar
Merath K, Hyer JM, Mehta R, Farooq A, Bagante F, Sahara K, et al. Use of machine learning for prediction of patient risk of postoperative complications after liver, pancreatic, and colorectal surgery. J Gastrointest Surg. 2020;24(8):1843–51.
Article
PubMed
Google Scholar
Egger ME, Stevenson M, Bhutiani N, Jordan AC, Scoggins CR, Philips P, et al. Age and lymphovascular invasion accurately predict sentinel lymph node metastasis in T2 melanoma patients. Ann Surg Oncol. 2019;26(12):3955–61.
Article
PubMed
Google Scholar
Alcantud JCR, Varela G, Santos-Buitrago B, Santos-García G, Jiménez MF. Analysis of survival for lung cancer resections cases with fuzzy and soft set theory in surgical decision making. Plos One. 2019;14(6):e0218283.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Smeden M, de Groot JAH, Moons KGM, Collins GS, Altman DG, Eijkemans MJC, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol. 2016;16(1):163.
Article
PubMed
PubMed Central
Google Scholar
Hammer J, Geinitz H, Nieder C, Track C, Thames HD, Seewald DH, et al. Risk factors for local relapse and inferior disease-free survival after breast-conserving management of breast cancer: recursive partitioning analysis of 2161 patients. Clin Breast Cancer. 2019;19(1):58–62.
Article
PubMed
Google Scholar
Mahmoudian M, Seyednasrollah F, Koivu L, Hirvonen O, Jyrkkiö S, Elo LL. A predictive model of overall survival in patients with metastatic castration-resistant prostate cancer. F1000Res. 2016;5:2674.
Article
PubMed
Google Scholar
Zheng B, Lin J, Li Y, Zhuo X, Huang X, Shen Q, et al. Predictors of the therapeutic effect of corticosteroids on radiation-induced optic neuropathy following nasopharyngeal carcinoma. Support Care Cancer. 2019;27(11):4213–9.
Article
PubMed
Google Scholar
Li M, Zhan C, Sui X, Jiang W, Shi Y, Yang X, et al. A proposal to reflect survival difference and modify the staging system for lung adenocarcinoma and squamous cell carcinoma: based on the machine learning. Front Oncol. 2019;9 Cited 2021 Mar 5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702456/.
Beachler DC, de Luise C, Yin R, Gangemi K, Cochetti PT, Lanes S. Predictive model algorithms identifying early and advanced stage ER+/HER2- breast cancer in claims data. Pharmacoepidemiol Drug Saf. 2019;28(2):171–8.
Article
CAS
PubMed
Google Scholar
Tian Z, Yen A, Zhou Z, Shen C, Albuquerque K, Hrycushko B. A machine-learning–based prediction model of fistula formation after interstitial brachytherapy for locally advanced gynecological malignancies. Brachytherapy. 2019;18(4):530–8.
Article
PubMed
Google Scholar
Obrzut B, Kusy M, Semczuk A, Obrzut M, Kluska J. Prediction of 10-year overall survival in patients with operable cervical cancer using a probabilistic neural network. J Cancer. 2019;10(18):4189–95.
Article
PubMed
PubMed Central
Google Scholar
Fuse K, Uemura S, Tamura S, Suwabe T, Katagiri T, Tanaka T, et al. Patient-based prediction algorithm of relapse after allo-HSCT for acute Leukemia and its usefulness in the decision-making process using a machine learning approach. Cancer Med. 2019;8(11):5058–67.
Article
PubMed
PubMed Central
Google Scholar
Tighe D, Lewis-Morris T, Freitas A. Machine learning methods applied to audit of surgical outcomes after treatment for cancer of the head and neck. Br J Oral Maxillofac Surg. 2019;57(8):771–7.
Article
CAS
PubMed
Google Scholar
Tseng Y-J, Huang C-E, Wen C-N, Lai P-Y, Wu M-H, Sun Y-C, et al. Predicting breast cancer metastasis by using serum biomarkers and clinicopathological data with machine learning technologies. Int J Med Inform. 2019;128:79–86.
Article
PubMed
Google Scholar
Sala Elarre P, Oyaga-Iriarte E, Yu KH, Baudin V, Arbea Moreno L, Carranza O, et al. Use of machine-learning algorithms in intensified preoperative therapy of pancreatic cancer to predict individual risk of relapse. Cancers (Basel). 2019;11(5):606.
Wang H-H, Wang Y-H, Liang C-W, Li Y-C. Assessment of deep learning using nonimaging information and sequential medical records to develop a prediction model for nonmelanoma skin cancer. JAMA Dermatol. 2019;155(11):1277–83.
Article
PubMed
PubMed Central
Google Scholar
Paik ES, Lee JW, Park JY, Kim JH, Kim M, Kim TJ, et al. Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods. J Gynecol Oncol. 2019;30(4):e65.
Article
PubMed
PubMed Central
Google Scholar
Karhade AV, Thio QCBS, Ogink PT, Bono CM, Ferrone ML, Oh KS, et al. Predicting 90-day and 1-year mortality in spinal metastatic disease: development and internal validation. Neurosurgery. 2019;85(4):E671–81.
Article
PubMed
Google Scholar
Facciorusso A, Del Prete V, Antonino M, Buccino VR, Muscatiello N. Response to repeat echoendoscopic celiac plexus neurolysis in pancreatic cancer patients: a machine learning approach. Pancreatology. 2019;19(6):866–72.
Article
PubMed
Google Scholar
Lemée J-M, Corniola MV, Da Broi M, Joswig H, Scheie D, Schaller K, et al. extent of resection in meningioma: predictive factors and clinical implications. Sci Rep. 2019;9(1):5944.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang CQ, Gardiner L, Wang H, Hueman MT, Chen D. Creating prognostic systems for well-differentiated thyroid cancer using machine learning. Front Endocrinol (Lausanne). 2019;10 Cited 2021 Mar 5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517862/.
Corniola MV, Lemée J-M, Da Broi M, Joswig H, Schaller K, Helseth E, et al. Posterior fossa meningiomas: perioperative predictors of extent of resection, overall survival and progression-free survival. Acta Neurochir. 2019;161(5):1003–11.
Article
PubMed
Google Scholar
Kaviarasi R, Gandhi RR. Accuracy enhanced lung cancer prognosis for improving patient survivability using proposed gaussian classifier system. J Med Syst. 2019;43(7):201.
Article
Google Scholar
Sasani K, Catanese HN, Ghods A, Rokni SA, Ghasemzadeh H, Downey RJ, et al. Gait speed and survival of older surgical patient with cancer: prediction after machine learning. J Geriatr Oncol. 2019;10(1):120–5.
Article
PubMed
Google Scholar
Wang X, Zhang Y, Hao S, Zheng L, Liao J, Ye C, et al. Prediction of the 1-year risk of incident lung cancer: prospective study using electronic health records from the State of Maine. J Med Internet Res. 2019;21(5):e13260.
Article
PubMed
PubMed Central
Google Scholar
Knol MJ, Janssen KJM, Donders ART, Egberts ACG, Heerdink ER, Grobbee DE, et al. Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: an empirical example. J Clin Epidemiol. 2010;63(7):728–36.
Article
PubMed
Google Scholar
Groenwold RHH, White IR, Donders ART, Carpenter JR, Altman DG, Moons KGM. Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis. CMAJ. 2012;184(11):1265–9.
Article
PubMed
PubMed Central
Google Scholar
Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.
Article
PubMed
PubMed Central
Google Scholar
Sim J-A, Yun YH. Predicting disease-free lung cancer survival using Patient Reported Outcome (PRO) measurements with comparisons of five Machine Learning Techniques (MLT). Stud Health Technol Inform. 2019;264:1588–9.
PubMed
Google Scholar
Karadaghy OA, Shew M, New J, Bur AM. Development and assessment of a machine learning model to help predict survival among patients with oral squamous cell carcinoma. JAMA Otolaryngol Head Neck Surg. 2019;145(12):1115–20.
Article
PubMed
PubMed Central
Google Scholar
Kim DW, Lee S, Kwon S, Nam W, Cha I-H, Kim HJ. Deep learning-based survival prediction of oral cancer patients. Sci Rep. 2019;9(1):6994.
Article
PubMed
PubMed Central
CAS
Google Scholar
Al-Bahrani R, Agrawal A, Choudhary A. Survivability prediction of colon cancer patients using neural networks. Health Inform J. 2019;25(3):878–91.
Article
Google Scholar
Maubert A, Birtwisle L, Bernard JL, Benizri E, Bereder JM. Can machine learning predict resecability of a peritoneal carcinomatosis? Surg Oncol. 2019;29:120–5.
Article
CAS
PubMed
Google Scholar
Harrell FE Jr. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis: Springer; 2015. p. 598.
Sun G-W, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol. 1996;49(8):907–16.
Article
CAS
PubMed
Google Scholar
Sauerbrei W, Boulesteix A-L, Binder H. Stability investigations of multivariable regression models derived from low- and high-dimensional data. J Biopharm Stat. 2011;21(6):1206–31.
Article
PubMed
Google Scholar
Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating: Springer; 2019. p. 574.
Riley RD, Ensor J, Snell KIE, Harrell FE, Martin GP, Reitsma JB, et al. Calculating the sample size required for developing a clinical prediction model. BMJ. 2020;368 Cited 2020 Jun 8. Available from: https://www.bmj.com/content/368/bmj.m441.
van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol. 2014;14(1):137.
Article
PubMed
PubMed Central
Google Scholar
Li J, Zhou Z, Dong J, Fu Y, Li Y, Luan Z, et al. Predicting breast cancer 5-year survival using machine learning: A systematic review. Plos One. 2021;16(4):e0250370.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abreu PH, Santos MS, Abreu MH, Andrade B, Silva DC. Predicting breast cancer recurrence using machine learning techniques: a systematic review. ACM Comput Surv. 2016;49(3):1–40.
Article
Google Scholar
Usher-Smith JA, Walter FM, Emery JD, Win AK, Griffin SJ. Risk prediction models for colorectal cancer: a systematic review. Cancer Prev Res (Phila). 2016;9(1):13–26.
Article
CAS
Google Scholar
Mallett S, Royston P, Dutton S, Waters R, Altman DG. Reporting methods in studies developing prognostic models in cancer: a review. BMC Med. 2010;8:20.
Article
PubMed
PubMed Central
Google Scholar
Grigore B, Lewis R, Peters J, Robinson S, Hyde CJ. Development, validation and effectiveness of diagnostic prediction tools for colorectal cancer in primary care: a systematic review. BMC Cancer. 2020;20(1):1084.
Article
PubMed
PubMed Central
Google Scholar
Phung MT, Tin Tin S, Elwood JM. Prognostic models for breast cancer: a systematic review. BMC Cancer. 2019;19(1):230.
Article
PubMed
PubMed Central
Google Scholar
Balki I, Amirabadi A, Levman J, Martel AL, Emersic Z, Meden B, et al. Sample-Size Determination Methodologies for Machine Learning in Medical Imaging Research: A Systematic Review. Can Assoc Radiol J. 2019;70(4):344–53.
Article
PubMed
Google Scholar
Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet. 2019;393(10181):1577–9.
Article
PubMed
Google Scholar