Pung J, Rienhoff O. Key components and IT assistance of participant management in clinical research: a scoping review. JAMIA Open. 2020;3(3):449–58. https://doi.org/10.1093/jamiaopen/ooaa041.
Article
PubMed
PubMed Central
Google Scholar
Vose JM, Chuk MK, Giles F. Challenges in opening and enrolling patients in clinical trials. Am Soc Clin Oncol Educ Book. 2017;37:139–43. https://doi.org/10.1200/EDBK_179807.
Article
PubMed
Google Scholar
Bower P, Brueton V, Gamble C, Treweek S, Smith CT, Young B, et al. Interventions to improve recruitment and retention in clinical trials: a survey and workshop to assess current practice and future priorities. Trials. 2014;15:399. https://doi.org/10.1186/1745-6215-15-399.
Article
PubMed
PubMed Central
Google Scholar
Gardner HR, Albarquoni L, El Feky A, Gillies K, Treweek S. A systematic review of non-randomised evaluations of strategies to improve participant recruitment to randomised controlled trials. F1000Res. 2020;9:86. https://doi.org/10.12688/f1000research.22182.1.
Article
PubMed
PubMed Central
Google Scholar
Zahren C, Harvey S, Weekes L, Bradshaw C, Butala R, Andrews J, et al. Clinical trials site recruitment optimisation: guidance from clinical trials: impact and quality. Clin Trials (London, England). 2021;18(5):594–605. https://doi.org/10.1177/17407745211015924.
Article
Google Scholar
Haidich AB, Ioannidis JP. Patterns of patient enrollment in randomized controlled trials. J Clin Epidemiol. 2001;54(9):877–83. https://doi.org/10.1016/s0895-4356(01)00353-5.
Article
CAS
PubMed
Google Scholar
McDonald AM, Knight RC, Campbell MK, Entwistle VA, Grant AM, Cook JA, et al. What influences recruitment to randomised controlled trials? A review of trials funded by two UK funding agencies. Trials. 2006;7:9. https://doi.org/10.1186/1745-6215-7-9.
Article
PubMed
PubMed Central
Google Scholar
Gul RB, Ali PA. Clinical trials: the challenge of recruitment and retention of participants. J Clin Nurs. 2010;19(1–2):227–33. https://doi.org/10.1111/j.1365-2702.2009.03041.x.
Article
PubMed
Google Scholar
Cullati S, Courvoisier DS, Gayet-Ageron A, Haller G, Irion O, Agoritsas T, et al. Patient enrollment and logistical problems top the list of difficulties in clinical research: a cross-sectional survey. BMC Med Res Methodol. 2016;16:50. https://doi.org/10.1186/s12874-016-0151-1.
Article
PubMed
PubMed Central
Google Scholar
Team V, Bugeja L, Weller CD. Barriers and facilitators to participant recruitment to randomised controlled trials: a qualitative perspective. Int Wound J. 2018;15(6):929–42. https://doi.org/10.1111/iwj.12950.
Article
PubMed
PubMed Central
Google Scholar
Chaudhari N, Ravi R, Gogtay NJ, Thatte UM. Recruitment and retention of the participants in clinical trials: challenges and solutions. Perspect Clin Res. 2020;11(2):64–9. https://doi.org/10.4103/picr.PICR_206_19.
Article
PubMed
PubMed Central
Google Scholar
Houghton C, Dowling M, Meskell P, Hunter A, Gardner H, Conway A, et al. Factors that impact on recruitment to randomised trials in health care: a qualitative evidence synthesis. Cochrane Database Syst Rev. 2020;10(10):MR000045. https://doi.org/10.1002/14651858.MR000045.pub2.
Article
PubMed
Google Scholar
Kasenda B, von Elm E, You J, Blümle A, Tomonaga Y, Saccilotto R, et al. Prevalence, characteristics, and publication of discontinued randomized trials. JAMA. 2014;311(10):1045–51. https://doi.org/10.1001/jama.2014.1361.
Article
CAS
PubMed
Google Scholar
Briel M, Olu KK, von Elm E, Kasenda B, Alturki R, Agarwal A, et al. A systematic review of discontinued trials suggested that most reasons for recruitment failure were preventable. J Clin Epidemiol. 2016;80:8–15. https://doi.org/10.1016/j.jclinepi.2016.07.016.
Article
PubMed
Google Scholar
Walters SJ, Bonacho Dos Anjos Henriques-Cadby I, Bortolami O, Flight L, Hind D, Jacques RM, et al. Recruitment and retention of participants in randomised controlled trials: a review of trials funded and published by the United Kingdom Health Technology Assessment Programme. BMJ Open. 2017;7(3):e015276. https://doi.org/10.1136/bmjopen-2016-015276.
Article
PubMed
PubMed Central
Google Scholar
Peckham E, Arundel C, Bailey D, Callen T, Cusack C, Crosland S, et al. Successful recruitment to trials: findings from the SCIMITAR+ trial. Trials. 2018;19(1):53. https://doi.org/10.1186/s13063-018-2460-7.
Article
PubMed
PubMed Central
Google Scholar
Daykin A, Clement C, Gamble C, Kearney A, Blazeby J, Clarke M, et al. 'Recruitment, recruitment, recruitment’ - the need for more focus on retention: a qualitative study of five trials. Trials. 2018;19(1):76. https://doi.org/10.1186/s13063-018-2467-0.
Article
PubMed
PubMed Central
Google Scholar
Briel M, Speich B, von Elm E, Gloy V. Comparison of randomized controlled trials discontinued or revised for poor recruitment and completed trials with the same research question: a matched qualitative study. Trials. 2019;20(1):800. https://doi.org/10.1186/s13063-019-3957-4.
Article
PubMed
PubMed Central
Google Scholar
Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp Clin Trials Commun. 2018;11:156–64. https://doi.org/10.1016/j.conctc.2018.08.001.
Article
PubMed
PubMed Central
Google Scholar
Van Spall HG, Toren A, Kiss A, Fowler RA. Eligibility criteria of randomized controlled trials published in high-impact general medical journals: a systematic sampling review. JAMA. 2007;297(11):1233–40. https://doi.org/10.1001/jama.297.11.1233.
Article
PubMed
Google Scholar
Weng C, Tu SW, Sim I, Richesson R. Formal representation of eligibility criteria: a literature review. J Biomed Inform. 2010;43(3):451–67. https://doi.org/10.1016/j.jbi.2009.12.004.
Article
PubMed
Google Scholar
Kim ES, Bernstein D, Hilsenbeck SG, Chung CH, Dicker AP, Ersek JL, et al. Modernizing eligibility criteria for molecularly driven trials. J Clin Oncol. 2015;33(25):2815–20. https://doi.org/10.1200/JCO.2015.62.1854.
Article
CAS
PubMed
Google Scholar
Dugas M, Lange M, Müller-Tidow C, Kirchhof P, Prokosch HU. Routine data from hospital information systems can support patient recruitment for clinical studies. Clin Trials. 2010;7(2):183–9. https://doi.org/10.1177/1740774510363013 Epub 2010 Mar 25. PMID: 20338903.
Article
PubMed
Google Scholar
Weng C. Optimizing clinical research participant selection with informatics. Trends Pharmacol Sci. 2015;36(11):706–9. https://doi.org/10.1016/j.tips.2015.08.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Brien EC, Raman SR, Ellis A, Hammill BG, Berdan LG, Rorick T, et al. The use of electronic health records for recruitment in clinical trials: a mixed methods analysis of the harmony outcomes electronic health record ancillary study. Trials. 2021;22(1):465. https://doi.org/10.1186/s13063-021-05397-0.
Article
PubMed
PubMed Central
Google Scholar
Tu SW, Peleg M, Carini S, Bobak M, Ross J, Rubin D, et al. A practical method for transforming free-text eligibility criteria into computable criteria. J Biomed Inform. 2011;44(2):239–50. https://doi.org/10.1016/j.jbi.2010.09.007.
Article
PubMed
Google Scholar
Pressler TR, Yen PY, Ding J, Liu J, Embi PJ, Payne PR. Computational challenges and human factors influencing the design and use of clinical research participant eligibility pre-screening tools. BMC Med Inform Decis Mak. 2012;12:47. https://doi.org/10.1186/1472-6947-12-47.
Article
PubMed
PubMed Central
Google Scholar
Dalianis H. Medical classifications and terminologies: Clinical Text Mining: Secondary Use of Electronic Patient Records; 2018. p. 35–43. https://doi.org/10.1007/978-3-319-78503-5_5.
Book
Google Scholar
Unified Medical Language System (UMLS). NLM. 2021. Retrieved Aug 2, 2021, from https://www.nlm.nih.gov/research/umls/index.html.
Lindberg DA, Humphreys BL, McCray AT. The unified medical language system. Methods Inf Med. 1993;32(4):281–91. https://doi.org/10.1055/s-0038-1634945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friedman C. Towards a comprehensive medical language processing system: methods and issues. Proc AMIA Annu Fall Symp. 1997:595-9.
Patel CO, Cimino JJ. Using semantic and structural properties of the UMLS to discover potential terminological relationships. AMIA Ann Symp Proc. 2008;2008:555.
Google Scholar
Patel CO, Weng C. ECRL: an eligibility criteria representation language based on the UMLS Semantic Network. AMIA Ann Symp Proc. 2008;1084.
Reimer AP, Milinovich A. Using UMLS for electronic health data standardization and database design. J Am Med Inform Assoc. 2020;27(10):1520–8. https://doi.org/10.1093/jamia/ocaa176.
Article
PubMed
PubMed Central
Google Scholar
Rasmy L, Tiryaki F, Zhou Y, Xiang Y, Tao C, Xu H, et al. Representation of EHR data for predictive modeling: a comparison between UMLS and other terminologies. J Am Med Inform Assoc. 2020;27(10):1593–9. https://doi.org/10.1093/jamia/ocaa180.
Article
PubMed
PubMed Central
Google Scholar
Thadani SR, Weng C, Bigger JT, Ennever JF, Wajngurt D. Electronic screening improves efficiency in clinical trial recruitment. J Am Med Inform Assoc. 2009;16(6):869–73. https://doi.org/10.1197/jamia.M3119.
Article
PubMed
PubMed Central
Google Scholar
Penberthy L, Brown R, Puma F, Dahman B. Automated matching software for clinical trials eligibility: measuring efficiency and flexibility. Contemp Clin Trials. 2010;31(3):207–17. https://doi.org/10.1016/j.cct.2010.03.005.
Article
PubMed
PubMed Central
Google Scholar
Köpcke F, Prokosch HU. Employing computers for the recruitment into clinical trials: a comprehensive systematic review. J Med Internet Res. 2014;16(7):e161. https://doi.org/10.2196/jmir.3446.
Article
PubMed
PubMed Central
Google Scholar
Ni Y, Kennebeck S, Dexheimer JW, McAneney CM, Tang H, Lingren T, et al. Automated CT eligibility prescreening: increasing the efficiency of patient identification for CTs in the emergency department. J Am Med Inform Assoc. 2015;22(1):166–78. https://doi.org/10.1136/amiajnl-2014-002887 Epub 2014 Jul 16. PMID: 25030032; PMCID: PMC4433376.
Article
PubMed
Google Scholar
Ni Y, Wright J, Perentesis J, et al. Increasing the efficiency of trial-patient matching: automated CT eligibility pre-screening for pediatric oncology patients. BMC Med Inform Decis Mak. 2015;15:28. Published 2015 Apr 14. https://doi.org/10.1186/s12911-015-0149-3.
Article
PubMed
PubMed Central
Google Scholar
Zhang K, Demner-Fushman D. Automated classification of eligibility criteria in CTs to facilitate patient-trial matching for specific patient populations. J Am Med Inform Assoc. 2017;24(4):781–7. https://doi.org/10.1093/jamia/ocw176.
Article
PubMed
PubMed Central
Google Scholar
Wilson C, Rooshenas L, Paramasivan S, Elliott D, Jepson M, Strong S, et al. Development of a framework to improve the process of recruitment to randomised controlled trials (RCTs): the SEAR (screened, eligible, approached, randomised) framework. Trials. 2018;19(1):50. https://doi.org/10.1186/s13063-017-2413-6.
Article
PubMed
PubMed Central
Google Scholar
Devoe C, Gabbidon H, Schussler N, Cortese L, Caplan E, Gorman C, et al. Use of electronic health records to develop and implement a silent best practice alert notification system for patient recruitment in clinical research: quality; 2019.
Book
Google Scholar
Gligorijevic J, Gligorijevic D, Pavlovski M, Milkovits E, Glass L, Grier K, et al. Optimizing clinical trials recruitment via deep learning. J Am Med Inform Assoc. 2019;26(11):1195–202. https://doi.org/10.1093/jamia/ocz064 Improvement Initiative. JMIR medical informatics, 7(2), e10020. https://doi.org/10.2196/10020.
Article
PubMed
PubMed Central
Google Scholar
Meystre SM, Heider PM, Kim Y, Aruch DB, Britten CD. Automatic trial eligibility surveillance based on unstructured clinical data. Int J Med Inform. 2019;129:13–9. https://doi.org/10.1016/j.ijmedinf.2019.05.018.
Article
PubMed
PubMed Central
Google Scholar
Blatch-Jones A, Nuttall J, Bull A, Worswick L, Mullee M, Peveler R, et al. Using digital tools in the recruitment and retention in randomised controlled trials: survey of UK clinical trial units and a qualitative study. Trials. 2020;21(1):304. https://doi.org/10.1186/s13063-020-04234-0.
Article
PubMed
PubMed Central
Google Scholar
Cai T, Cai F, Dahal KP, Cremone G, Lam E, Golnik C, et al. Improving the efficiency of clinical trial recruitment using an ensemble machine learning to assist with eligibility screening. ACR Open Rheumatol. 2021;3(9):593–600. https://doi.org/10.1002/acr2.11289.
Article
PubMed
PubMed Central
Google Scholar
Spira AI, Stewart MD, Jones S, Chang E, Fielding A, Richie N, et al. Modernizing CT Eligibility Criteria: Recommendations of the ASCO-Friends of Cancer Research Laboratory Reference Ranges and Testing Intervals Work Group. Clin Cancer Res. 2021;27(9):2416–23. https://doi.org/10.1158/1078-0432.CCR-20-3853 Epub 2021 Feb 9. PMID: 33563636; PMCID: PMC8102342.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huff SM, Rocha RA, McDonald CJ, De Moor GJ, Fiers T, Bidgood WD Jr, et al. Development of the logical observation identifier names and codes (LOINC) vocabulary. J Am Med Inform Assoc. 1998;5(3):276–92.
Article
CAS
Google Scholar
Bodenreider O, Cornet R, Vreeman DJ. Recent developments in clinical terminologies - SNOMED CT, LOINC, and RxNorm. Yearb Med Inform. 2018;27(1):129–39. https://doi.org/10.1055/s-0038-1667077.
Article
PubMed
PubMed Central
Google Scholar
Ross J, Tu S, Carini S, Sim I. Analysis of eligibility criteria complexity in CTs. Summit Transl Bioinform. 2010;2010:46–50 PMID: 21347148; PMCID: PMC3041539.
PubMed
PubMed Central
Google Scholar
Bhattacharya S, Cantor MN. Analysis of eligibility criteria representation in industry-standard CT protocols. J Biomed Inform. 2013 Oct;46(5):805–13. https://doi.org/10.1016/j.jbi.2013.06.001 Epub 2013 Jun 12. PMID: 23770150.
Article
PubMed
Google Scholar
Wang AY, Lancaster WJ, Wyatt MC, Rasmussen LV, Fort DG, Cimino JJ. Classifying CT Eligibility Criteria to Facilitate Phased Cohort Identification Using Clinical Data Repositories. AMIA Annu Symp Proc. 2018;2017:1754–63 Published 2018 Apr 16.
PubMed
PubMed Central
Google Scholar
CDASH | CDISC. CDISC. 2021. Retrieved August 3, 2021, from https://www.cdisc.org/standards/foundational/cdash.
Dugas, M. Portal of medical data models (MDM-portal). Institute of Medical Informatics Münster. (2022). Retrieved August 5, 2021, from https://medical-data-models.org.
Google Scholar
Dugas M, Neuhaus P, Meidt A, Doods J, Storck M, Bruland P, et al. Portal of medical data models: information infrastructure for medical research and healthcare. Database (Oxford). 2016;2016:pii–bav121.
Article
Google Scholar
National Cancer Institute Metathesaurus, Official Website: https://ncimetathesaurus.nci.nih.gov.
Hegselmann S, Storck M, Gessner S, et al. Pragmatic MDR: a metadata repository with bottom-up standardization of medical metadata through reuse. BMC Med Inform Decis Mak. 2021;21:160. https://doi.org/10.1186/s12911-021-01524-8.
Article
PubMed
PubMed Central
Google Scholar
Varghese J, Dugas M. Frequency analysis of medical concepts in CTs and their coverage in MeSH and SNOMED-CT. Methods Inf Med. 2015;54(1):83–92. https://doi.org/10.3414/ME14-01-0046 Epub 2014 Oct 27. PMID: 25346408.
Article
CAS
PubMed
Google Scholar
Holz C, Kessler T, Dugas M, Varghese J. Core data elements in acute Myeloid Leukemia: a unified medical language system-based semantic analysis and experts’ review. JMIR Med Inform. 2019;7(3):e13554. Published 2019 Aug 12. https://doi.org/10.2196/13554.
Article
PubMed
PubMed Central
Google Scholar
Kentgen M, Varghese J, Samol A, Waltenberger J, Dugas M. Common data elements for acute coronary syndrome: analysis based on the unified medical language system. JMIR Med Inform. 2019;7(3):e14107. Published 2019 Aug 23. https://doi.org/10.2196/14107.
Article
PubMed
PubMed Central
Google Scholar
UMLS® Reference Manual. Bethesda (MD): National Library of Medicine (US); 2009, Metathesaurus. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9684. [Updated 2021 Aug 20].
The Medical Informatics Initiative’s core data set | Medical Informatics Initiative. (2021). The Medical Informatics Initiative’s Core Data Set. Retrieved Aug 5, 2021, from https://www.medizininformatik-initiative.de/index.php/en/medical-informatics-initiatives-core-data-set.
Google Scholar
Semler S. LOINC: origin, development of and perspectives for medical research and biobanking – 20 years on the way to implementation in Germany. J Lab Med. 2019;43(6):359–82. https://doi.org/10.1515/labmed-2019-0193.
Article
Google Scholar
Basic modules of the MII core data set | Medical Informatics Initiative. Basic Modules of the MII Core Data Set. (n.d..). Retrieved Aug 5, 2021, from https://www.medizininformatik-initiative.de/en/basic-modules-mii-core-data-set.
Medical Subject Headings - Home Page. (2021). Medical Subject Headings. Retrieved Aug 6, 2021. from https://www.nlm.nih.gov/mesh/meshhome.html.
Google Scholar
Miotto R, Weng C. Unsupervised mining of frequent tags for clinical eligibility text indexing. J Biomed Inform. 2013;46(6):1145–51. https://doi.org/10.1016/j.jbi.2013.08.012.
Article
PubMed
Google Scholar
Doods J, Botteri F, Dugas M, Fritz F. EHR4CR WP7. A European inventory of common electronic health record data elements for CT feasibility. Trials. 2014;15:18. https://doi.org/10.1186/1745-6215-15-18 PMID: 24410735; PMCID: PMC3895709.
Article
PubMed
PubMed Central
Google Scholar
Kury F, Butler A, Yuan C, Fu LH, Sun Y, Liu H, et al. Chia, a large annotated corpus of CT eligibility criteria. Sci Data. 2020;7(1):281. https://doi.org/10.1038/s41597-020-00620-0 PMID: 32855408; PMCID: PMC7452886.
Article
PubMed
PubMed Central
Google Scholar
Fraser KC, Nejadgholi I, Bruijn BD, Li M, LaPlante A, Abidine KZ. Extracting UMLS concepts from medical text using general and domain-specific deep learning models. ArXiv. 2019:abs/1910.01274 https://arxiv.org/abs/1910.01274.
Mohan S, Li D. MedMentions: a large biomedical Corpus annotated with UMLS concepts. arXiv:1902.09476v1.
Yuan C, Ryan PB, Ta C, Guo Y, Li Z, Hardin J, et al. Criteria2Query: a natural language interface to clinical databases for cohort definition. J Am Med Inform Assoc. 2019;26(4):294–305. https://doi.org/10.1093/jamia/ocy178.
Article
PubMed
PubMed Central
Google Scholar
Kang T, Zhang S, Tang Y, Hruby GW, Rusanov A, Elhadad N, et al. EliIE: an open-source information extraction system for clinical trial eligibility criteria. J Am Med Inform Assoc. 2017;24(6):1062–71. https://doi.org/10.1093/jamia/ocx019.
Article
PubMed
PubMed Central
Google Scholar
Hao T, Liu H, Weng C. Valx: a system for extracting and structuring numeric lab test comparison statements from text. Methods Inf Med. 2016;55(3):266–75. https://doi.org/10.3414/ME15-01-0112.
Article
PubMed
PubMed Central
Google Scholar
ODM-XML | CDISC. ODM-XML. 2013. Retrieved Aug 6, 2021, from https://www.cdisc.org/standards/data-exchange/odm.
Ayaz M, Pasha MF, Alzahrani MY, Budiarto R, Stiawan D. The fast health interoperability resources (FHIR) standard: systematic literature review of implementations, applications, challenges and opportunities. JMIR Med Inform. 2021;9(7):e21929. https://doi.org/10.2196/21929.
Article
PubMed
PubMed Central
Google Scholar
Cimino JJ. Battling Scylla and Charybdis: the search for redundancy and ambiguity in the 2001 UMLS metathesaurus. Proc AMIA Symp. 2001:120–4.