Goldberg DP, Williams P. A user's guide to the General Health Questionnaire. Windsor UK: NFER-Nelson; 1988.
McDowell I. Measuring health: A guide to rating scales and questionnaires. New York: Oxford University Press; 2006.
Stewart-Brown S. Defining and measuring mental health and wellbeing. In: Knifton L, Quinn N, editors. Public mental health: global perspectives. edn. New York: McGraw Hill Open University Press; 2013. p. 33–42.
Google Scholar
Lindert J, Bain PA, Kubzansky LD, Stein C. Well-being measurement and the WHO health policy Health 2010: systematic review of measurement scales. Eur J Public Health. 2015;25(4):731–40.
Article
PubMed
Google Scholar
Wahl I, Löwe B, Bjorner JB, Fischer F, Langs G, Voderholzer U, Aita SA, Bergemann N, Brähler E, Rose M. Standardization of depression measurement: a common metric was developed for 11 self-report depression measures. J Clin Epidemiol. 2014;67(1):73–86
Weich S, Brugha T, King M, McManus S, Bebbington P, Jenkins R, Cooper C, McBride O, Stewart-Brown S. Mental well-being and mental illness: findings from the Adult Psychiatric Morbidity Survey for England 2007. Br J Psychiatry. 2011;199(1):23–8.
Article
PubMed
Google Scholar
Gibbons RD, Perraillon MC, Kim JB. Item response theory approaches to harmonization and research synthesis. Health Serv Outcomes Res Methodol. 2014;14(4):213–31.
Article
PubMed
PubMed Central
Google Scholar
Böhnke JR, Croudace TJ. Calibrating well-being, quality of life and common mental disorder items: psychometric epidemiology in public mental health research. Br J Psychiatry. 2015. doi:10.1192/bjp.bp.115.165530.
Hussong AM, Curran PJ, Bauer DJ. Integrative data analysis in clinical psychology research. Annu Rev Clin Psychol. 2013;9:61–89.
Article
PubMed
PubMed Central
Google Scholar
Bauer DJ, Hussong AM. Psychometric approaches for developing commensurate measures across independent studies: traditional and new models. Psychol Methods. 2009;14(2):101–25.
Article
PubMed
PubMed Central
Google Scholar
Wainer H, Dorans NJ, Flaugher R, Green BF, Mislevy RJ. Computerized adaptive testing: A primer. Hillsdale, NJ: Lawrence Erlbaum; 2000.
Böhnke JR, Lutz W. Using item and test information to optimize targeted assessments of psychological distress. Assessment. 2014;21(6):679–93.
Article
PubMed
Google Scholar
Hankins M. The factor structure of the twelve item General Health Questionnaire (GHQ-12): The result of negative phrasing? Clin Pract Epidemiol Ment Health. 2008;4(1):10.
Article
PubMed
PubMed Central
Google Scholar
Egberink IJL, Meijer RR. An item response theory analysis of Harter’s Self-Perception Profile for children or why strong clinical scales should be distrusted. Assessment. 2011;18(2):201–12.
Article
PubMed
Google Scholar
Goldberg DP. The detection of psychiatric illness by questionnaire. London: Oxford University Press; 1972.
Google Scholar
Kammann R, Flett R. Affectometer 2: A scale to measure current level of general happiness. Aust J Psychol. 1983;35(2):259–65.
Article
Google Scholar
Tennant R, Joseph S, Stewart-Brown S. The Affectometer 2: a measure of positive mental health in UK populations. Qual Life Res. 2007;16(4):687–95.
Article
PubMed
Google Scholar
Reise SP. The rediscovery of bifactor measurement models. Multivar Behav Res. 2012;47(5):667–96.
Article
Google Scholar
Gibbons RD, Bock RD, Hedeker D, Weiss DJ, Segawa E, Bhaumik DK, Kupfer DJ, Frank E, Grochocinski VJ, Stover A. Full-Information item bifactor analysis of graded response data. Appl Psych Meas. 2007;31(1):4–19.
Article
Google Scholar
Gibbons R, Hedeker D. Full-information item bi-factor analysis. Psychometrika. 1992;57(3):423–36.
Article
Google Scholar
Romppel M, Braehler E, Roth M, Glaesmer H. What is the General Health Questionnaire-12 assessing?: Dimensionality and psychometric properties of the General Health Questionnaire-12 in a large scale German population sample. Compr Psychiatry. 2013;54(4):406–13.
Article
PubMed
Google Scholar
Ye S. Factor structure of the General Health Questionnaire (GHQ-12): The role of wording effects. Pers Indiv Differ. 2009;46(2):197–201.
Article
Google Scholar
Wang W-C, Chen H-F, Jin K-Y. Item response theory models for wording effects in mixed-format scales. Educ Psychol Meas. 2014;75(1):157-78.
Pohl S, Steyer R. Modeling common traits and method effects in multitrait-multimethod analysis. Multivar Behav Res. 2010;45(1):45–72.
Article
Google Scholar
Geiser C, Lockhart G. A comparison of four approaches to account for method effects in latent state–trait analyses. Psychol Methods. 2012;17(2):255–83.
Article
PubMed
PubMed Central
Google Scholar
Scotland NH. Health Education Population Survey. Colchester, Essex: UK Data Archive; 2006.
Google Scholar
Tennant R, Hiller L, Fishwick R, Platt S, Joseph S, Weich S, Parkinson J, Secker J, Stewart-Brown S. The Warwick-Edinburgh Mental Well-being Scale (WEMWBS): development and UK validation. Health Qual Life Outcomes. 2007;5:63.
Article
PubMed
PubMed Central
Google Scholar
Satorra A, Bentler PM. Corrections to test statistics and standard errors in covariance structure analysis. In: von Eye A, Clogg CC, editors. Latent variables analysis: Applications for developmental research. edn. Thousand Oaks: Sage; 1994. p. 399–419.
Google Scholar
Bentler PM. Comparative fit indexes in structural models. Psychol Bull. 1990;107:238–46.
Article
CAS
PubMed
Google Scholar
Tucker LR, Lewis C. A reliability coeffficient for maximum likelihood factor analysis. Psychometrika. 1973;38:1–10.
Article
Google Scholar
Steiger JH, Lind J. Statistically-based tests for the number of common factors. Paper presented at the annual Spring Meeting of the Psychometric Society in Iowa City. May 30, 1980.
Satorra A. Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In: Heijmans RDH, Pollock DSG, Satorra A, editors. Innovations in multivariate statistical analysis A Festschrift for Heinz Neudecker. edn. London: Kluwer Academic Publishers; 2000. p. 233–47.
Chapter
Google Scholar
Muthén L, Muthén B. Mplus: Statistical analysis with latent variables. Version 7.3. Los Angeles, CA: Muthén & Muthén; 1998-2016.
Samejima F. Estimation of latent ability using a response pattern of graded scores, Psychometric Monograph no 17. 1969.
Google Scholar
Takane Y, Leeuw J. On the relationships between item response theory and factor analysis of discretized variables. Psychometrika. 1987;52(3):393–408.
Article
Google Scholar
McDonald RP. Test theory: A unified treatment. Mahwah: Lawrence Erlbaum Associates, Inc.; 1999.
Google Scholar
Baker FB, Kim SH. Item response theory: Parameter estimation techniques. New York: Marcell Dekker; 2004.
Google Scholar
Veerkamp WJ, Berger MP. Some new item selection criteria for adaptive testing. J Educ Behav Stat. 1997;22(2):203–26.
Article
Google Scholar
van der Linden W. Bayesian item selection criteria for adaptive testing. Psychometrika. 1998;63(2):201–16.
Article
Google Scholar
Chang H-H, Ying Z. A global information approach to computerized adaptive testing. Appl Psych Meas. 1996;20(3):213–29.
Article
Google Scholar
Nydick SW: catIrt: An R package for simulating IRT-based computerized adaptive tests. R package version 0.4-2. http://CRAN.R-project.org/package=catIrt. In.; 2014.
Fliege H, Becker J, Walter OB, Bjorner JB, Klapp BF, Rose M. Development of a computer-adaptive test for depression (D-CAT). Qual Life Res. 2005;14(10):2277–91.
Article
PubMed
Google Scholar
Zinbarg R, Revelle W, Yovel I, Li W. Cronbach’s α, Revelle’s β, and Mcdonald’s ωH: their relations with each other and two alternative conceptualizations of reliability. Psychometrika. 2005;70(1):123–33.
Article
Google Scholar
Weiss DJ, Gibbons RD. Computerized adaptive testing with the bifactor model. In: Proceedings of the 2007 GMAC Conference on Computerized Adaptive Testing: 2007. 2007.
Google Scholar
Dimitrov DM. Marginal true-score measures and reliability for binary items as a function of their IRT parameters. Appl Psych Meas. 2003;27(6):440–58.
Article
Google Scholar
Green BF, Bock RD, Humphreys LG, Linn RL, Reckase MD. Technical guidelines for assessing computerized adaptive tests. J Educ Meas. 1984;21(4):347–60.
Article
Google Scholar
Seligman ME, Steen TA, Park N, Peterson C. Positive psychology progress: empirical validation of interventions. Am Psychol. 2005;60(5):410–21.
Article
PubMed
Google Scholar
Ryff CD. Happiness is everything, or is it? Explorations on the meaning of psychological well-being. J Pers Soc Psychol. 1989;57(6):1069.
Article
Google Scholar
Wood AM, Taylor PJ, Joseph S. Does the CES-D measure a continuum from depression to happiness? Comparing substantive and artifactual models. Psychiatry Res. 2010;177(1):120–3.
Article
PubMed
Google Scholar
Joseph S, Lewis CA. The Depression–Happiness Scale: Reliability and validity of a bipolar self‐report scale. J Clin Psychol. 1998;54(4):537–44.
Article
CAS
PubMed
Google Scholar
Kammann R, Farry M, Herbison P. The analysis and measurement of happiness as a sense of well-being. Soc Indic Res. 1984;15(2):91–115.
Article
Google Scholar
Shevlin M, Adamson G. Alternative factor models and factorial invariance of the GHQ-12: a large sample analysis using confirmatory factor analysis. Psychol Assess. 2005;17(2):231–6.
Article
PubMed
Google Scholar
Werneke U, Goldberg DP, Yalcin I, Ustun BT. The stability of the factor structure of the General Health Questionnaire. Psychol Med. 2000;30(4):823–9.
Article
CAS
PubMed
Google Scholar
Hu Y, Stewart-Brown S, Twigg L, Weich S. Can the 12-item General Health Questionnaire be used to measure positive mental health? Psychol Med. 2007;37(7):1005–13.
Article
PubMed
Google Scholar
Molina JG, Rodrigo MF, Losilla JM, Vives J. Wording effects and the factor structure of the 12-item General Health Questionnaire (GHQ-12). Psychol Assess. 2014;26(3):1031–7.
Article
PubMed
Google Scholar
Crawford JR, Henry JD. The positive and negative affect schedule (PANAS): construct validity, measurement properties and normative data in a large non-clinical sample. Br J Clin Psychol. 2004;43(Pt 3):245–65.
Article
PubMed
Google Scholar
Simms LJ, Gros DF, Watson D, O’Hara MW. Parsing the general and specific components of depression and anxiety with bifactor modeling. Depress Anxiety. 2008;25(7):E34–46.
Article
PubMed
Google Scholar
Emons WHM, Sijtsma K, Meijer RR. On the consistency of individual classification using short scales. Psychol Methods. 2007;12(1):105–20.
Article
PubMed
Google Scholar
van der Linden WJ, Glas CAW, editors. Elements of adaptive testing. New York: Springer; 2010.
Google Scholar
Urban R, Kun B, Farkas J, Paksi B, Kokonyei G, Unoka Z, Felvinczi K, Olah A, Demetrovics Z. Bifactor structural model of symptom checklists: SCL-90-R and Brief Symptom Inventory (BSI) in a non-clinical community sample. Psychiatry Res. 2014;216(1):146–54.
Article
PubMed
Google Scholar
Glaesmer H, Braehler E, Grande G, Hinz A, Petermann F, Romppel M. The German version of the Hopkins Symptoms Checklist-25 (HSCL-25): Factorial structure, psychometric properties, and population-based norms. Compr Psychiatry. 2014;55(2):396–403.
Article
PubMed
Google Scholar
Stochl J, Khandaker GM, Lewis G, Perez J, Goodyer IM, Zammit S, Sullivan S, Croudace TJ, Jones PB. Mood, anxiety and psychotic phenomena measure a common psychopathological factor. Psychol Med. 2015;45(07):1483–93.
Article
CAS
PubMed
Google Scholar
Jovanović V. Structural validity of the Mental Health Continuum-Short Form: The bifactor model of emotional, social and psychological well-being. Pers Indiv Differ. 2015;75:154–9.
Article
Google Scholar
Camfield L, Skevington SM. On subjective well-being and quality of life. J Health Psychol. 2008;13(6):764–75.
Article
PubMed
Google Scholar
Wood AM, Tarrier N. Positive Clinical Psychology: a new vision and strategy for integrated research and practice. Clin Psychol Rev. 2010;30(7):819–29.
Article
PubMed
Google Scholar
Gibbons RD, Weiss DJ, Pilkonis PA, Frank E, Moore T, Kim JB, Kupfer DJ. Development of a computerized adaptive test for depression. Arch Gen Psychiatry. 2012;69(11):1104–12.
Article
PubMed
PubMed Central
Google Scholar
Gibbons RD, Weiss DJ, Kupfer DJ, Frank E, Fagiolini A, Grochocinski VJ, Bhaumik DK, Stover A, Bock RD, Immekus JC. Using computerized adaptive testing to reduce the burden of mental health assessment. Psych Serv. 2008;59(4):361–8.
Article
Google Scholar
Gibbons RD, Weiss DJ, Pilkonis PA, Frank E, Moore T, Kim JB, Kupfer DJ. Development of the CAT-ANX: a computerized adaptive test for anxiety. Am J Psychiatry. 2014;171(2):187–94.
Article
PubMed
PubMed Central
Google Scholar